JPH10332932A - Filter polarizing light in specific wavelength range - Google Patents

Filter polarizing light in specific wavelength range

Info

Publication number
JPH10332932A
JPH10332932A JP14131797A JP14131797A JPH10332932A JP H10332932 A JPH10332932 A JP H10332932A JP 14131797 A JP14131797 A JP 14131797A JP 14131797 A JP14131797 A JP 14131797A JP H10332932 A JPH10332932 A JP H10332932A
Authority
JP
Japan
Prior art keywords
film
light
filter
wavelength
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14131797A
Other languages
Japanese (ja)
Other versions
JP3402122B2 (en
Inventor
Osamu Mizuno
修 水野
Hiroyuki Kameda
洋幸 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP14131797A priority Critical patent/JP3402122B2/en
Publication of JPH10332932A publication Critical patent/JPH10332932A/en
Application granted granted Critical
Publication of JP3402122B2 publication Critical patent/JP3402122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the polarizing filter which can polarize light of large irradiation area in a specific wavelength range, has high heat resistance, and does not vary in transmissivity with heat. SOLUTION: The filter which polarizes light in the specific wavelength range is formed by alternately layering a film which has optical anisotropy of optical thickness 1/4 as large as desired wavelength to be polarized and a film which has isotropy. This multi-layered film 3 has no difference in refractive index between the layers to light whose electric field vibrates in an (x) direction and operates as a single-layer film having a specific refractive index and also operates as a multi-layered film having different-refractive-index films laminated by turns to light whose electric field vibrates in a (y) direction orthogonal to the (x) direction. Therefore, when light of the specific wavelength to be polarized (light having wavelength 1/4 as large as the optics thickness of the film) is made incident on this multi-layered film 3, the light whose electric field vibrates in the (x) direction is transmitted and the light whose electric field vibrates in the (y) direction has mutual interference between reflected lights on the border surfaces of the respective layers, so that transmitted light is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定の波長域の光
を偏光するフィルタに関し、特に本発明は液晶基板の配
向膜の形成等に適用するに好適な比較的大面積の光を偏
光するための偏光フィルタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter for polarizing light in a specific wavelength range, and more particularly to a filter for polarizing light having a relatively large area suitable for forming an alignment film of a liquid crystal substrate. Related to a polarizing filter.

【0002】[0002]

【従来の技術】近年、液晶基板の製造において、ラビン
グをせずに液晶の配向をそろえる技術の一つとして、偏
光を利用する方法が提案されている。この方法は、ポリ
イミド樹脂等の薄膜に偏光光を照射して、薄膜の特定方
向のポリマーを化学変化させることにより配向をそろえ
るものであり、上記配向には365nm近傍の紫外線が
効果が大きい。しかしながら、上記技術を液晶基板の配
向膜の形成に適用するには、大型の偏光フィルタが必要
となる。すなわち、液晶表示素子を製造する場合、通常
1枚の基板上に4〜6枚の液晶表示素子が形成されるの
で、光照射の対象となる基板の大きさは、通常550m
m×650mm程度になる。このため、液晶基板の配向
膜の形成に用いられる偏光光の照射領域としては、80
0mm×800mmが必要となる。従来、上記した液晶
基板の配向膜の形成に好適な偏光素子はなかった。
2. Description of the Related Art In recent years, in the production of liquid crystal substrates, a method using polarized light has been proposed as one of techniques for aligning liquid crystal without rubbing. In this method, a thin film of a polyimide resin or the like is irradiated with polarized light to chemically change a polymer in a specific direction of the thin film so as to align the alignment. Ultraviolet rays having a wavelength of about 365 nm have a large effect on the alignment. However, in order to apply the above technique to the formation of the alignment film on the liquid crystal substrate, a large polarizing filter is required. That is, when manufacturing a liquid crystal display element, usually four to six liquid crystal display elements are formed on one substrate, and the size of the substrate to be irradiated with light is usually 550 m.
It is about mx 650 mm. For this reason, as the irradiation region of the polarized light used for forming the alignment film of the liquid crystal substrate, 80
0 mm × 800 mm is required. Conventionally, there has been no polarizing element suitable for forming the above-mentioned alignment film of the liquid crystal substrate.

【0003】[0003]

【発明が解決しようとする課題】偏光素子としては、下
記(1)(2)に示す偏光素子等が知られているが、下記(1)
(2)の偏光素子は次のような問題点を持っており、上記
した液晶基板の配向膜の形成に適用するには好ましくな
い。 (1) キューブ型偏光素子 図6に示すように、複屈折性を示す2個の直角プリズム
の斜面を向かい合わせたものであり、例えば、グラン・
テイラー偏光プリズム、グラン・トムソン偏光プリズム
等がある。
As the polarizing element, the following polarizing elements (1) and (2) are known.
The polarizing element (2) has the following problems, and is not preferable for application to the formation of the alignment film of the liquid crystal substrate described above. (1) Cube-type polarizing element As shown in FIG. 6, two rectangular prisms exhibiting birefringence face each other with inclined surfaces facing each other.
There are a Taylor polarizing prism, a Gran Thomson polarizing prism, and the like.

【0004】キューブ型偏光素子は、図6に示す形状で
あるため、大面積の光を偏光しようとすると、キューブ
の体積が大きくなり、それを取り付ける装置も大きくな
る。このため、大面積の照射領域を必要とする上記液晶
基板の配向膜の形成には適さない。また、グラン・テイ
ラー偏光プリズム、グラン・トムソン偏光プリズムで
は、プリズムから出射されない光(常光線)は、ハウジ
ング内に設けられたマウント材料である黒色ポリマーで
吸収される。このため、連続発振で2W以上のパワーを
持つレーザを使用した場合、その常光線によって黒色ポ
リマーが侵食され、プリズムがはがれてしまうといった
問題がある。
Since the cube-type polarizing element has the shape shown in FIG. 6, when trying to polarize light of a large area, the volume of the cube increases, and the device for mounting the cube also increases. Therefore, it is not suitable for forming an alignment film of the liquid crystal substrate which requires a large-area irradiation region. In the Grand Taylor polarizing prism and the Gran Thomson polarizing prism, light (ordinary ray) not emitted from the prism is absorbed by a black polymer that is a mounting material provided in the housing. For this reason, when a laser having a power of 2 W or more in continuous oscillation is used, there is a problem that the black polymer is eroded by the ordinary light and the prism is peeled off.

【0005】(2) 有機膜による偏光素子 基板上に有機膜を形成した偏光素子であり、膜を構成す
る分子の結合構造によって、特定の偏光成分の光のみを
透過させ残りの成分の光は膜に吸収される。280nm
〜2μm程度の波長領域の光を偏光する場合は、膜の温
度が95°C以下で使用される。膜の温度が100°C
以上になると膜が変質し透過率が低下する。さらに長時
間使用すると、膜は光のエネルギーを吸収し、膜の温度
が上昇するため、長時間の使用ができない。また、有機
膜は、通常400nm以下の光に関して吸収が大きくな
り、透過率が低下する。すなわち、紫外域における光の
偏光効率が悪い。
(2) Polarizing element using organic film This is a polarizing element having an organic film formed on a substrate. Due to the bonding structure of molecules constituting the film, only light of a specific polarization component is transmitted and light of the remaining components is Absorbed by the membrane. 280 nm
When polarizing light in the wavelength range of about 2 μm, the film is used at a temperature of 95 ° C. or less. 100 ° C film temperature
Above this, the film is altered and the transmittance is reduced. If the film is used for a long time, the film absorbs light energy and the temperature of the film increases, so that the film cannot be used for a long time. In addition, the organic film usually absorbs a large amount of light having a wavelength of 400 nm or less, and the transmittance is reduced. That is, the polarization efficiency of light in the ultraviolet region is poor.

【0006】一方、液晶基板の配向膜の形成は、比較的
強い光のエネルギーを基板面上に照射する必要があり、
またその波長域も前記したように365nm近傍の紫外
線であることが望ましい。このため、有機膜による偏光
素子では、上記液晶基板の配向膜の形成に必要とされる
条件を満たすことができない。本発明は上記した事情に
鑑みなされたものであって、その目的とするところは、
大きい照射面積の光を偏光することができる特定の波長
域の光を偏光するフィルタであって、耐熱性が高く、熱
によって透過率が変化せず、光のエネルギーが強い領域
で長時間使用することができ、しかも、上記偏光フィル
タを適用する装置が極端に大型化しない偏光フィルタを
提供することである。
On the other hand, formation of an alignment film on a liquid crystal substrate requires irradiation of relatively intense light energy onto the substrate surface.
It is also desirable that the wavelength region is ultraviolet light near 365 nm as described above. Therefore, the polarizing element using the organic film cannot satisfy the conditions required for forming the alignment film of the liquid crystal substrate. The present invention has been made in view of the above-described circumstances, and its purpose is to
A filter that polarizes light in a specific wavelength range that can polarize light with a large irradiation area. It has high heat resistance, does not change its transmittance due to heat, and is used for a long time in a region where light energy is strong. Another object of the present invention is to provide a polarizing filter which can be applied to the apparatus and which does not extremely increase the size of a device to which the polarizing filter is applied.

【0007】[0007]

【課題を解決するための手段】基板上に薄膜を蒸着する
際、図7(a)に示すように、蒸着粒子が飛来する方向
に対して、透明基板を垂直に配置して膜を蒸着すると、
この膜に対して垂直方向に入射した光は、いずれの方向
に関しても屈折率が等しくなる(これを等方性の膜とよ
ぶ)。一方、図7(b)に示すように、蒸着粒子が飛来
する方向に対して透明基板を傾けて配置して膜を蒸着す
ると、基板に対して傾斜した図8に示すような柱状構造
の膜が成長する。この柱状構造は、蒸着粒子の方向と基
板の法線との作る平面に対して直交する方向(以下、こ
の方向をx方向と呼ぶ)に密に、基板に平行で上記x方
向に直交する方向(以下、この方向をy方向と呼ぶ)に
粗に分布する。このため、蒸着された膜は、x方向とy
方向とで屈折率が異なり光学的異方性を有することにな
る(蒸着粒子が飛来する方向に対して基板を傾けて配置
して基板上に膜を蒸着する方法を「斜め蒸着法」とよ
ぶ)。
Means for Solving the Problems When depositing a thin film on a substrate, as shown in FIG. 7 (a), a transparent substrate is arranged perpendicularly to the direction in which deposition particles fly, and the film is deposited. ,
Light incident perpendicularly to the film has the same refractive index in any direction (this is called an isotropic film). On the other hand, as shown in FIG. 7B, when a film is deposited by disposing the transparent substrate at an angle to the direction in which the deposition particles fly, a film having a columnar structure as shown in FIG. Grows. This columnar structure is dense in a direction perpendicular to the plane formed by the direction of the deposition particles and the normal of the substrate (hereinafter, this direction is referred to as the x direction), in a direction parallel to the substrate and perpendicular to the x direction. (Hereinafter, this direction is referred to as the y direction). For this reason, the deposited film has an x-direction and a y-direction.
The refractive index differs depending on the direction, and the substrate has optical anisotropy. (The method of depositing a film on a substrate by arranging the substrate at an angle to the direction in which the deposited particles fly is referred to as "oblique deposition." ).

【0008】上記のように光学的異方性を持つ膜に光が
入射すると、光の電場の振動方向によって位相がずれ
る。この性質を利用して上記光学的異方性を持つ膜は、
従来から光学位相板として1/4波長板、1/2波長板
等に用いられている。ここで、x方向の屈折率をnx、
y方向の屈折率をnyとし、|nx−ny|=Δnとす
ると、「Δn×膜の物理的厚さ」が、入射光の波長の1
/4ときは1/4波長板に、入射光の波長の1/2とき
は1/2波長板になる(上記斜め蒸着法および光学位相
差板については、例えば、「表面技術」Vol.46,No.7,19
95,P32〜P35 を参照されたい)。
When light is incident on a film having optical anisotropy as described above, the phase shifts depending on the direction of vibration of the electric field of light. A film having the above optical anisotropy utilizing this property,
Conventionally, it has been used as a quarter-wave plate, a half-wave plate, or the like as an optical phase plate. Here, the refractive index in the x direction is nx,
Assuming that the refractive index in the y direction is ny and | nx−ny | = Δn, “Δn × the physical thickness of the film” is 1 of the wavelength of the incident light.
In the case of / 4, the wavelength becomes a 波長 wavelength plate, and in the case of の of the wavelength of incident light, the wavelength becomes a (wavelength plate. , No.7,19
95, pages 32-35).

【0009】本発明は上記斜め蒸着法により特定波長域
の光を偏光するフィルタを構成したものであり、斜め蒸
着法により光学的異方性を持つ膜が形成できる点に着目
し、偏光したい波長の1/4の光学的厚さの光学的異方
性を持つ膜と等方性を持つ膜を、図1(a)に示すよう
に交互に多層に重ね合わせることにより特定の波長域の
光を偏光するフィルタを構成する。なお、上記光学的厚
さとは「膜の物理的厚さ×屈折率」のことである。ここ
で、上記斜め蒸着法により蒸着膜を形成すると、異方性
膜の厚さは一方端が他方端より厚いスロープ状になる
が、本発明においては、図1(a)に示すように異方性
膜の略中央部の厚さで上記光学的厚さ(偏光したい波長
の1/4)を定義する。
According to the present invention, a filter for polarizing light in a specific wavelength range is formed by the above-described oblique deposition method, and attention is paid to the fact that a film having optical anisotropy can be formed by the oblique deposition method. As shown in FIG. 1 (a), a film having a specific wavelength range is obtained by alternately stacking a film having an optical anisotropy having an optical thickness of of the thickness and a film having an isotropic property as a multilayer. Is formed. The optical thickness is “physical thickness of film × refractive index”. Here, when the vapor deposition film is formed by the oblique vapor deposition method, the thickness of the anisotropic film becomes a slope shape with one end being thicker than the other end, but in the present invention, as shown in FIG. The optical thickness (1/4 of the wavelength to be polarized) is defined by the thickness at the substantially central portion of the anisotropic film.

【0010】上記のように形成された多層膜は、x方向
に電場が振動する光に対しては各層間で屈折率に違いが
なく、所定の屈折率を持つ一層の膜として作用し、x方
向に直交するy方向に電場が振動する光に対しては、屈
折率の異なる膜が交互に積層された多層の膜として作用
する。したがって、このように形成された多層膜に対し
て、所定の偏光させたい波長の光(波長が膜の光学的厚
さの1/4の光)を入射すると、図1(b)(c)に示
すように、x方向に電場が振動する光は透過するが、y
方向に電場が振動する光に対しては各層の屈折率が異な
るため、各層の界面での反射光が互いに干渉して強め合
い透過光が減少する。
The multilayer film formed as described above has no difference in refractive index between the layers with respect to light whose electric field oscillates in the x direction, and acts as a single layer having a predetermined refractive index. For light whose electric field oscillates in the y direction perpendicular to the direction, it acts as a multilayer film in which films having different refractive indexes are alternately stacked. Therefore, when light of a predetermined wavelength to be polarized (light having a wavelength of 1/4 of the optical thickness of the film) is incident on the multilayer film formed in this manner, the multilayer film shown in FIGS. As shown in the figure, light whose electric field oscillates in the x direction is transmitted, but y
Since the refractive index of each layer is different with respect to the light whose electric field oscillates in the direction, the reflected light at the interface between the layers interferes with each other and strengthens each other to reduce the transmitted light.

【0011】これは、光学的薄膜の以下の特性による。
屈折率の異なる界面において光は反射する。ここで、波
長λの光を、波長λの1/4の光学的厚さを持つ膜に入
射させると、膜の光入射側の界面における入射光の位相
を0°とすると、該入射光が膜の光入射側と反対側の界
面にて反射し、再び光入射側の界面に達したときの位相
は180°となる。一方、低屈折率層と高屈折率層との
界面において、低屈折率層側から入射した光が反射する
とき、該界面における反射光の位相は、該界面における
入射光の位相に対して、反転(位相が180°ずれる)
が起こる。すなわち、入射光の該界面における位相を0
°とすると、該界面における反射光の位相は180°に
なる。したがって、波長λの1/4の光学的厚さを持つ
膜の隣り合う媒質の波長λに対する屈折率がいずれも該
膜の波長λに対する屈折率より低い場合、すなわち、該
膜の光入射側の界面が低屈折率層から高屈折率層への界
面であり、該膜の光入射側と反対側の界面が高屈折率層
から低屈折率層への界面である場合、該膜の光入射側の
界面における入射光の位相を0°とすると、該界面にて
反射する反射光の該界面における位相は180°とな
る。一方、該入射光が該膜の光入射側と反対側の界面に
て反射し、再び光入射側の界面に達したときの位相も1
80°になる。よって、該膜の光入射側の界面での反射
光の位相と、該膜の光入射側と反対側の界面での反射光
の位相とは一致することとなる。(光学的薄膜の特性に
ついては、例えば、H.A.Macleod 原著、小倉繁太郎他3
名訳、日刊工業新聞社、1989年11月30日発行、「光学薄
膜」、6〜11ページ、藤原史郎編、石黒浩三他2名
著、共立出版株式会社、昭和60年2月25日発行、光学
技術シリーズ11「光学薄膜」12〜15ページ等を参
照されたい)。
This is due to the following characteristics of the optical thin film.
Light reflects at interfaces with different refractive indices. Here, when light having a wavelength λ is incident on a film having an optical thickness of 1 / of the wavelength λ, if the phase of the incident light at the interface on the light incident side of the film is 0 °, the incident light is The light is reflected at the interface on the side opposite to the light incident side of the film, and has a phase of 180 ° when it reaches the interface on the light incident side again. On the other hand, at the interface between the low-refractive-index layer and the high-refractive-index layer, when light incident from the low-refractive-index layer is reflected, the phase of the reflected light at the interface is relative to the phase of the incident light at the interface. Inversion (180 ° out of phase)
Happens. That is, the phase of the incident light at the interface is set to 0.
In this case, the phase of the reflected light at the interface becomes 180 °. Therefore, when the refractive index for the wavelength λ of the adjacent medium of the film having the optical thickness of 1 / of the wavelength λ is lower than the refractive index for the wavelength λ of the film, that is, on the light incident side of the film. When the interface is the interface from the low refractive index layer to the high refractive index layer, and the interface on the opposite side of the film from the light incident side is the interface from the high refractive index layer to the low refractive index layer, the light incident on the film Assuming that the phase of the incident light at the interface on the side is 0 °, the phase of the light reflected at the interface at the interface is 180 °. On the other hand, when the incident light is reflected at the interface of the film opposite to the light incident side and reaches the interface on the light incident side again, the phase also becomes 1
80 °. Therefore, the phase of the reflected light at the interface of the film on the light incident side coincides with the phase of the reflected light at the interface of the film on the side opposite to the light incident side. (For the properties of optical thin films, see, for example,
Name translation, Nikkan Kogyo Shimbun, published on November 30, 1989, "Optical Thin Film", pp. 6-11, edited by Shiro Fujiwara, edited by Kozo Ishiguro and two others, Kyoritsu Shuppan Co., Ltd., published on February 25, 1985, Optical technology series 11 “Optical thin film” See pages 12 to 15).

【0012】したがって、互いに異なる屈折率の膜が交
互に積層され、各層の光学的厚さが波長λの1/4の多
層膜にy方向に電場が振動する波長λの光を入射させる
と、図1(c)に示すように各界面での反射光は、多層
膜の入射面において、位相が揃った状態で戻り、これら
の成分は互いに強め合うように再結合する。したがっ
て、層が多くなると、同位相の反射光が沢山反射される
こととなり、反射光の強度は強くなり、それに応じて透
過する光の強度は弱くなる。ただし、この多層膜は所定
の波長λ以外の光はx方向、y方向にかかわらず透過す
る。上記蒸着膜を形成する物質としては、5酸化2タン
タル(Ta2 5 )、2酸化ハフニウム(HfO2 )、
3酸化タングステン(WO3 )、2酸化セリウム(Ce
2 )、2酸化ジルコニウム(ZrO2 )等を使用する
ことができる。
Accordingly, when films having different refractive indexes are alternately laminated, and light having a wavelength λ at which an electric field vibrates in the y direction is incident on a multilayer film having an optical thickness of 層 of the wavelength λ, As shown in FIG. 1 (c), the reflected light at each interface returns on the incident surface of the multilayer film in a state where the phases are aligned, and these components are recombined so as to reinforce each other. Therefore, as the number of layers increases, a large amount of reflected light having the same phase is reflected, the intensity of the reflected light increases, and the intensity of the transmitted light decreases accordingly. However, this multilayer film transmits light other than the predetermined wavelength λ regardless of the x direction and the y direction. Materials for forming the above-mentioned deposited film include tantalum pentoxide (Ta 2 O 5 ), hafnium oxide 2 (HfO 2 ),
Tungsten trioxide (WO 3 ), cerium dioxide (Ce)
O 2 ) and zirconium dioxide (ZrO 2 ) can be used.

【0013】本発明の請求項1〜3の発明においては、
上記のように、偏光したい波長の1/4の光学的厚さの
光学的異方性を持つ膜と等方性を持つ膜を交互に多層に
重ね合わせることにより特定の波長域の光を偏光するフ
ィルタを構成したので、必要とされる蒸着設備を用意す
れば照射面積に応じた任意の大きさの偏光素子を作るこ
とができる。また、平面板で偏光素子を構成することが
できるので、適用する装置が大型化することもない。さ
らに、蒸着膜で多層膜を形成しているので、耐熱性が高
く、熱によって透過率等の光学特性が劣化することがな
く、光エネルギーが強い領域で使用することができる。
またさらに、蒸着膜で形成されているので、紫外域の光
(240nm〜400nm)を偏光することができる。
In the invention of claims 1 to 3 of the present invention,
As described above, a film of a specific wavelength range is polarized by alternately superimposing a film having optical anisotropy and an isotropic film having an optical thickness of 1/4 of the wavelength to be polarized. Since the necessary filter is provided, a polarizing element having an arbitrary size corresponding to the irradiation area can be manufactured if necessary deposition equipment is prepared. In addition, since the polarizing element can be formed by a flat plate, the size of a device to be applied is not increased. Further, since the multilayer film is formed by a vapor-deposited film, heat resistance is high, and optical characteristics such as transmittance are not degraded by heat, so that it can be used in a region where light energy is strong.
Furthermore, since it is formed of a vapor-deposited film, light in the ultraviolet region (240 nm to 400 nm) can be polarized.

【0014】[0014]

【発明の実施の形態】以下本発明の実施の形態について
説明する。 (1)蒸着膜の形成 図2は本発明における蒸着膜の形成方法を説明する図で
あり、同図において、1は多層膜を形成する透明基板、
2は蒸着粒子を放出する蒸着源であり、特定の波長域の
光を偏光するフィルタは次のようにして製造される。 (a) 同図(a)に示すように、蒸着粒子が飛来する方向
に対して透明基板1を傾けて(傾斜角度:+α)配置
し、偏光させたい波長の1/4の光学的厚さ(物理的厚
さ×屈折率)の膜を蒸着する。このようにして蒸着され
た膜は前記したように光学的異方性の性質を持つ。上記
のように斜め蒸着を行うと、前記したように基板上の蒸
着膜は蒸着源に近い方が厚く、遠い方が薄くなる。
Embodiments of the present invention will be described below. (1) Formation of vapor-deposited film FIG. 2 is a view for explaining a method of forming a vapor-deposited film according to the present invention. In FIG.
Reference numeral 2 denotes an evaporation source that emits evaporation particles, and a filter for polarizing light in a specific wavelength range is manufactured as follows. (a) As shown in FIG. 3A, the transparent substrate 1 is arranged to be inclined (inclination angle: + α) with respect to the direction in which the vapor deposition particles fly, and the optical thickness is 1 / of the wavelength to be polarized. A (physical thickness × refractive index) film is deposited. The film thus deposited has the property of optical anisotropy as described above. When oblique vapor deposition is performed as described above, the vapor deposition film on the substrate is thicker near the vapor deposition source and thinner farther away, as described above.

【0015】(b) 同図(b)に示すように、異方性の膜
が蒸着された透明基板1を、蒸着粒子が飛来する方向に
対して垂直に配置し、偏光させたい波長の1/4の光学
的厚さの膜を蒸着する。このようにして蒸着された膜は
前記したように光学的等方性の性質を持つ。 (c) 同図(c)に示すように、等方性の膜が形成された
透明基板1を、蒸着粒子が飛来する方向に対して傾けて
(傾斜角度:−α)配置し、偏光させたい波長の1/4
の光学的厚さを持つ膜を蒸着する。 (d) 上記(b) と同様にして、光学的等方性の性質を持つ
膜を形成する。 (e) 上記(a) から(d) の処理を繰り返し、光学的異方性
膜と光学的等方性膜とが交互に蒸着された多層膜を形成
する。
(B) As shown in FIG. 1 (b), a transparent substrate 1 on which an anisotropic film is deposited is arranged perpendicular to the direction in which the deposited particles fly, and the wavelength of light to be polarized is 1 A film having an optical thickness of / 4 is deposited. The film thus deposited has optically isotropic properties as described above. (c) As shown in FIG. 3 (c), the transparent substrate 1 on which the isotropic film is formed is inclined (inclination angle: -α) with respect to the direction in which the vapor deposition particles fly, and polarized. 1/4 of the desired wavelength
A film having an optical thickness of is deposited. (d) A film having optically isotropic properties is formed in the same manner as in (b) above. (e) The above processes (a) to (d) are repeated to form a multilayer film in which optically anisotropic films and optically isotropic films are alternately deposited.

【0016】斜め蒸着時、蒸着膜の厚さは上記したよう
に蒸着源に近い方が厚く、遠い方が薄くなるので、基板
を傾ける方向が同じであると、作成された多層膜の厚み
が両端で異なることとなり、その結果、膜の両端で反射
帯域がずれてしまう。なお、反射帯域の幅は変わらない
が、反射帯域全体が長波長或いは短波長域に平行移動す
る。反射帯域の幅は、後述する図4に示すように、透過
率の最大値Tmax と最小値Tmin の中間の透過率におけ
る波長の幅Wで定義される。そこで、上記したように、
基板1を蒸着粒子が飛来する方向に対してα傾けて斜め
蒸着したのち、基板1を蒸着粒子が飛来する方向に垂直
にして蒸着を行い、次いで基板1を蒸着粒子が飛来する
方向に対して−α傾けて斜め蒸着する。上記のような蒸
着をすることにより、図3の,,のような多層膜
が形成され、作成された多層膜の両端部の厚さが同じに
なる。
At the time of oblique deposition, the thickness of the deposited film is thicker near the deposition source and thinner farther away from the deposition source, as described above. As a result, the reflection bands are shifted at both ends of the film. Although the width of the reflection band does not change, the entire reflection band moves in parallel to the long wavelength region or the short wavelength region. The width of the reflection band is defined by a wavelength width W at a transmittance intermediate between the maximum value Tmax and the minimum value Tmin of the transmittance, as shown in FIG. So, as mentioned above,
After obliquely vapor-depositing the substrate 1 at an angle of α with respect to the direction in which the vapor-deposited particles fly, vapor deposition is performed with the substrate 1 perpendicular to the direction in which the vapor-deposited particles fly, and then the substrate 1 is moved in the direction in which the vapor-deposited particles fly. -Oblique deposition with an inclination of α. By performing the above-described vapor deposition, a multilayer film as shown in FIG. 3 is formed, and the thickness of both ends of the formed multilayer film becomes the same.

【0017】また、斜め蒸着時、基板を傾ける角度α
は、前記したΔn〔=(x方向の屈折率nx)−(y方
向の屈折率をny)〕の大きさに基づいて決められる。
Δnが大きい方が反射帯域の幅が広くなるとともに、よ
り少ない層数で高い反射効率を得ることができ、光学特
性において有利である。5酸化2タンタル(Ta
2 5)膜の場合、大きなΔnを得るには傾ける角度が
約70°が最適であることが実験により確認されてい
る。
Further, at the time of oblique deposition, the angle α for tilting the substrate
Is determined based on the magnitude of Δn [= (refractive index nx in x direction) − (refractive index in y direction is ny)].
The larger Δn is, the wider the reflection band is, and the higher the reflection efficiency can be obtained with a smaller number of layers, which is advantageous in optical characteristics. Tantalum pentoxide (Ta)
In the case of the 2 O 5 ) film, it has been experimentally confirmed that the inclination angle is optimally about 70 ° in order to obtain a large Δn.

【0018】以上のように作成された多層膜に、波長が
膜の光学的厚さの4倍の光を入射すると、前記したよう
に、x方向に電場が振動する光は透過するが、y方向に
電場が振動する光に対しては各層の屈折率が異なるため
透過光が減少し、特定の波長域の光に対して偏光素子と
して機能する。なお、上記蒸着膜の形成に際し、同じ蒸
着物質を用いて上記(a) の斜め蒸着、→(b) の普通の蒸
着→(c) の斜め蒸着→(d) の普通の蒸着、を繰り返して
多層膜を作成してもよいし、形成される膜のx方向、y
方向のそれぞれの屈折率が合えば複数の物質を用いて蒸
着を行っても同様の効果を得ることができる。
When light having a wavelength four times the optical thickness of the film is incident on the multilayer film formed as described above, light whose electric field oscillates in the x direction is transmitted as described above, but y light is transmitted. With respect to light whose electric field oscillates in the direction, the transmitted light decreases because the refractive index of each layer is different, and functions as a polarizing element for light in a specific wavelength range. In the formation of the above-mentioned vapor deposition film, the same oblique vapor deposition of (a), ordinary vapor deposition of (b) → oblique vapor deposition of (c) → ordinary vapor deposition of (d) were repeated using the same vapor deposition substance. A multilayer film may be formed, or the x direction, y
As long as the refractive indices in the directions match, the same effect can be obtained even when vapor deposition is performed using a plurality of substances.

【0019】(2)具体例 上記した方法で以下の様な多層膜を作成した。 ・蒸着膜:5酸化2タンタル(Ta2 5 ) ・一層の光学的厚さ:100μm、層数:31層 ・異方性膜のy方向の屈折率(ny):1.59(波長
397nmのとき) ・異方性膜のx方向の屈折率(nx)及び等方性膜の屈
折率:1.72(波長396nmのとき) 図4は上記多層膜のx方向とy方向の透過率を示す図で
あり、同図に示すように、400nmの光のうち、x方
向に電場が振動する光のみを透過する多層膜を作成する
ことができた。この多層膜に紫外線を含む光を照射する
ことにより、波長400nm以下の領域で、所定の波長
の偏光光を得ることができた。
(2) Specific Example The following method was used to form a multilayer film as described above. - deposited film: 5 oxide 2 tantalum (Ta 2 O 5) · further optical thickness: 100 [mu] m, number of layers: 31 layers & anisotropic film y-direction of the refractive index of (ny): 1.59 (Wavelength 397nm 4) The refractive index (nx) of the anisotropic film in the x direction and the refractive index of the isotropic film: 1.72 (at a wavelength of 396 nm) FIG. 4 shows the transmittance of the multilayer film in the x and y directions. As shown in the figure, a multilayer film transmitting only the light whose electric field oscillates in the x direction out of the light of 400 nm was able to be formed. By irradiating the multilayer film with light containing ultraviolet light, polarized light having a predetermined wavelength could be obtained in a region having a wavelength of 400 nm or less.

【0020】(3)適用例 図5は本発明の多層膜から形成される偏光フィルタを用
いた偏光光照射装置の構成の一例を示す図である。同図
に示すように偏光光照射装置は、超高圧水銀ランプ等の
放電ランプ11と、楕円集光鏡12と、第1の平面鏡1
3と、インテグレータレンズ15とシャッタ14と第2
の平面鏡16とコリメータレンズ17と、特定の波長の
光を透過させるフィルタ18と、前記した多層膜から形
成される偏光フィルタ19から構成されている。
(3) Application Example FIG. 5 is a diagram showing an example of the configuration of a polarized light irradiation device using a polarizing filter formed of a multilayer film according to the present invention. As shown in FIG. 1, the polarized light irradiating apparatus includes a discharge lamp 11 such as an ultra-high pressure mercury lamp, an elliptical converging mirror 12, and a first plane mirror 1
3, the integrator lens 15, the shutter 14, and the second
, A filter 18 for transmitting light of a specific wavelength, and a polarizing filter 19 formed of the above-mentioned multilayer film.

【0021】同図において、放電ランプ11が放射する
紫外光を含む光は、楕円集光鏡12で集光され、第1の
平面鏡13で反射し、シャッタ14を介してインテグレ
ータレンズ15に入射する。インテグレータレンズ15
から出た光は、さらに第2の平面鏡16で反射し、コリ
メータレンズ17で平行光にされ、特定の波長の光を透
過させるフィルタ19を介して偏光フィルタ19に入射
する。偏光フィルタ19は、前記したように、特定の波
長域の光に対して、x方向に電場が振動する光のみを透
過させ、y方向に電場が振動する光の透過光を減少させ
る。このため、上記フィルタ18を通過した特定の波長
域の光のうち、x方向に電場が振動する光のみが偏光フ
ィルタ19を通過し、マスクMを介して液晶基板等のワ
ークWに照射される。20は前記したマスクMとワーク
Wのアライメントを行うためのアライメント顕微鏡、2
1はワークステージであり、ワークステージ21はX,
Y,Z,θ方向に移動可能であり、ワークステージ21
上にワークが載置される。なお、X軸はワーク面に平行
な軸、Y軸はワーク面に平行でX軸に直交する軸、Z軸
はX,Y軸に直交する軸,θはZ軸を軸とする回転であ
る。
In FIG. 1, light including ultraviolet light emitted from a discharge lamp 11 is condensed by an elliptical converging mirror 12, reflected by a first plane mirror 13, and incident on an integrator lens 15 via a shutter 14. . Integrator lens 15
Is further reflected by the second plane mirror 16, is converted into parallel light by the collimator lens 17, and is incident on the polarization filter 19 through the filter 19 that transmits light of a specific wavelength. As described above, the polarizing filter 19 transmits only light whose electric field oscillates in the x direction and reduces transmitted light of light whose electric field oscillates in the y direction, for light in a specific wavelength range, as described above. Therefore, of the light in the specific wavelength range that has passed through the filter 18, only the light whose electric field oscillates in the x direction passes through the polarizing filter 19 and irradiates the work W such as a liquid crystal substrate through the mask M. . Reference numeral 20 denotes an alignment microscope for aligning the mask M and the work W,
1 is a work stage, and work stage 21 is X,
The work stage 21 is movable in the Y, Z, and θ directions.
The work is placed on the top. Note that the X axis is an axis parallel to the work surface, the Y axis is an axis parallel to the work surface and orthogonal to the X axis, the Z axis is an axis orthogonal to the X and Y axes, and θ is a rotation about the Z axis. .

【0022】次に図5に示した偏光光照射装置を用いた
液晶表示素子の配向膜の光配向処理について説明する。
配向されていない液晶基板の薄膜の全面に下記のように
偏光光を照射することにより、液晶基板の薄膜の全面を
光配向することができる。 (a) 図5において、ワークステージ21上にワークWを
載置する。基板の全面に偏光光を照射する場合にはマス
クMを使用しない。また、液晶基板の薄膜部分のみ光を
透過させるマスクMを使用してもよい。 (b) ワークステージ21をZ軸を中心に回転させ、偏光
方向がワークWに対して所定の方向に向くようにする。
また、マスクMを使用する場合には、図示しないマスク
ステージにマスクMをセットし、アライメント顕微鏡で
マスクMとワークWのアライメント・マークを観察し、
ワークステージ21をX,Y,θ方向に駆動してマスク
MとワークWのアライメント・マークが一致するように
マスクMとワークWの位置合わせを行う。この場合に
は、予め、マスクMの向きが上記偏光方向に一致するよ
うにセットしておいてもよい。
Next, the photo-alignment treatment of the alignment film of the liquid crystal display device using the polarized light irradiation device shown in FIG. 5 will be described.
By irradiating the entire surface of the thin film of the liquid crystal substrate that is not aligned with polarized light as described below, the entire surface of the thin film of the liquid crystal substrate can be optically aligned. (a) In FIG. 5, the work W is placed on the work stage 21. When irradiating the entire surface of the substrate with polarized light, the mask M is not used. Further, a mask M that transmits light only in the thin film portion of the liquid crystal substrate may be used. (b) The work stage 21 is rotated about the Z axis so that the polarization direction is oriented in a predetermined direction with respect to the work W.
When the mask M is used, the mask M is set on a mask stage (not shown), and the alignment mark between the mask M and the work W is observed with an alignment microscope.
The work stage 21 is driven in the X, Y, and θ directions to position the mask M and the work W so that the alignment marks of the mask M and the work W match. In this case, the orientation of the mask M may be set in advance so as to match the polarization direction.

【0023】(c) シャッタ14を開き、ワークWに偏光
光を所定時間照射する。なお、上記説明では、液晶基板
の薄膜の全面に偏光光を照射する場合について説明した
が、ラビングもしくは光配向により既に配向膜が形成さ
れている液晶基板の一部にマスクを介して偏光光を照射
することにより配向特性を変化させることもできる。
(C) The shutter 14 is opened, and the work W is irradiated with polarized light for a predetermined time. In the above description, the case where the entire surface of the thin film of the liquid crystal substrate is irradiated with the polarized light has been described. However, the polarized light is irradiated through a mask on a part of the liquid crystal substrate on which the alignment film has already been formed by rubbing or optical alignment. Irradiation can also change the alignment characteristics.

【0024】[0024]

【発明の効果】以上説明したように、本発明において
は、光学的異方性を持つ膜と等方性を持つ膜を交互に多
層に重ね合わせることにより特定の波長域の光を偏光す
るフィルタを構成したので、以下の効果を得ることがで
きる。 (1)必要とされる蒸着設備を用意すれば照射面積に応
じた任意の大きさの偏光素子を作ることができる。ま
た、平面板で偏光素子を構成することができるので、適
用する装置が大型化することもない。 (2)蒸着膜で多層膜を形成しているので、耐熱性が高
く、熱によって透過率等の光学特性が劣化することがな
く、光エネルギーが強い領域で使用することができる。 (3)偏光素子が蒸着膜で形成されているので、紫外域
の光(240nm〜400nm)を偏光することができ
る。
As described above, in the present invention, a filter for polarizing light in a specific wavelength range is obtained by alternately superposing a film having optical anisotropy and a film having isotropic properties in a multilayer. Thus, the following effects can be obtained. (1) If necessary vapor deposition equipment is prepared, a polarizing element having an arbitrary size according to an irradiation area can be manufactured. In addition, since the polarizing element can be formed by a flat plate, the size of a device to be applied is not increased. (2) Since a multilayer film is formed by a vapor-deposited film, heat resistance is high, optical characteristics such as transmittance are not deteriorated by heat, and it can be used in a region where light energy is strong. (3) Since the polarizing element is formed of a vapor-deposited film, the light in the ultraviolet region (240 nm to 400 nm) can be polarized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における偏光素子構成およびその作用を
説明する図である。
FIG. 1 is a diagram illustrating a configuration of a polarizing element and an operation thereof according to the present invention.

【図2】本発明における蒸着膜の形成方法を説明する図
である。
FIG. 2 is a diagram illustrating a method for forming a vapor deposition film in the present invention.

【図3】基板の傾きと蒸着される膜厚の関係を説明する
図である。
FIG. 3 is a diagram illustrating the relationship between the inclination of a substrate and the thickness of a deposited film.

【図4】本発明の実施例の偏光素子の特性を示す図であ
る。
FIG. 4 is a diagram illustrating characteristics of a polarizing element according to an example of the present invention.

【図5】本発明の偏光素子を用いた偏光光照射装置の構
成の一例を示す図である。
FIG. 5 is a diagram showing an example of a configuration of a polarized light irradiation device using the polarizing element of the present invention.

【図6】キューブ型偏光素子の構成を示す図である。FIG. 6 is a diagram showing a configuration of a cube-type polarizing element.

【図7】斜め蒸着法を説明する図である。FIG. 7 is a diagram illustrating an oblique vapor deposition method.

【図8】斜め蒸着法により作られる柱状構造を説明する
図である。
FIG. 8 is a diagram illustrating a columnar structure formed by an oblique deposition method.

【符号の説明】[Explanation of symbols]

1 透明基板 2 蒸着源 11 放電ランプ 12 楕円集光鏡 13 第1の平面鏡 14 シャッタ 15 インテグレータレンズ 16 第2の平面鏡 17 コリメータレンズ 18 フィルタ 19 偏光素子 20 アライメント顕微鏡 21 ワークステージ M マスク W ワークW DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Evaporation source 11 Discharge lamp 12 Elliptical condensing mirror 13 First plane mirror 14 Shutter 15 Integrator lens 16 Second plane mirror 17 Collimator lens 18 Filter 19 Polarizing element 20 Alignment microscope 21 Work stage M Mask W Work W

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に膜が多層にわたって蒸着されて
なる特定の波長域の光を偏光するフィルタであって、 上記フィルタに入射する光における所定の偏光成分に対
する屈折率が、上記多層膜の互いに隣り合う層の膜にお
いて異なることを特徴とする偏光フィルタ。
1. A filter that polarizes light in a specific wavelength range formed by depositing a multilayer film on a substrate, wherein a refractive index of a light component incident on the filter with respect to a predetermined polarization component is equal to or less than that of the multilayer film. A polarizing filter characterized in that films of adjacent layers are different from each other.
【請求項2】 上記多層膜は膜厚が一定の第1の膜と膜
厚がスロープ状に異なる第2の膜が交互に蒸着され、か
つ、フィルタの略中央部における各膜の光学的厚さが特
定の光の波長の1/4となるように形成されており、 上記第1の膜に隣り合う2つの第2の膜のスロープの方
向が正反対であることを特徴とする請求項1の偏光フィ
ルタ。
2. The multilayer film according to claim 1, wherein a first film having a constant film thickness and a second film having a film thickness different from each other in a slope shape are alternately deposited, and the optical thickness of each film in a substantially central portion of the filter. 2 is formed so as to be 4 of the wavelength of the specific light, and the slope directions of two second films adjacent to the first film are exactly opposite to each other. Polarizing filter.
【請求項3】 第2の膜が斜め蒸着法により形成されも
のであることを特徴とする請求項2の偏光フィルタ。
3. The polarizing filter according to claim 2, wherein the second film is formed by an oblique deposition method.
JP14131797A 1997-05-30 1997-05-30 Filter that polarizes light in a specific wavelength range Expired - Lifetime JP3402122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14131797A JP3402122B2 (en) 1997-05-30 1997-05-30 Filter that polarizes light in a specific wavelength range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14131797A JP3402122B2 (en) 1997-05-30 1997-05-30 Filter that polarizes light in a specific wavelength range

Publications (2)

Publication Number Publication Date
JPH10332932A true JPH10332932A (en) 1998-12-18
JP3402122B2 JP3402122B2 (en) 2003-04-28

Family

ID=15289106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14131797A Expired - Lifetime JP3402122B2 (en) 1997-05-30 1997-05-30 Filter that polarizes light in a specific wavelength range

Country Status (1)

Country Link
JP (1) JP3402122B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191836B1 (en) 1996-11-07 2001-02-20 Lg Philips Lcd, Co., Ltd. Method for fabricating a liquid crystal cell
US6226066B1 (en) 1996-01-09 2001-05-01 Lg. Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US6292296B1 (en) 1997-05-28 2001-09-18 Lg. Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US6383579B1 (en) 1999-04-21 2002-05-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6399165B1 (en) 1997-11-21 2002-06-04 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6479218B1 (en) 1999-10-14 2002-11-12 Lg Philips Lcd Co., Ltd Method for manufacturing multi-domain liquid crystal cell
US6764724B1 (en) 1999-03-25 2004-07-20 Lg.Philips Lcd Co., Ltd. Alignment layer for a liquid crystal display device
US6770335B2 (en) 2000-10-28 2004-08-03 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display device and method for fabricating the same with said materials
US6793987B2 (en) 2000-10-28 2004-09-21 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display fabricated with such photoalignment materials
US7061679B1 (en) 1998-05-27 2006-06-13 Lg. Philips Lcd Co., Ltd. Light irradiating device
JP2006337875A (en) * 2005-06-03 2006-12-14 Sony Corp Reflective polarizer and method for manufacturing the same
JP2010210705A (en) * 2009-03-06 2010-09-24 Seiko Epson Corp Polarizing element and method of manufacturing the same, projection type display device, liquid crystal device, and electronic device
US7894029B2 (en) 2004-04-12 2011-02-22 Hitachi Displays, Ltd. Apparatus for optically arranging surface of alignment film and method for manufacturing liquid crystal display device using the same
JP2016148828A (en) * 2015-05-14 2016-08-18 ウシオ電機株式会社 Light irradiation device and light irradiation method

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633355B2 (en) 1996-01-09 2003-10-14 Lg. Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US6226066B1 (en) 1996-01-09 2001-05-01 Lg. Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US6879363B2 (en) 1996-01-09 2005-04-12 Lg.Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US7145618B2 (en) 1996-01-09 2006-12-05 Lg.Philips Lcd Co., Ltd Method for controlling pretilt angle direction in a liquid crystal cell
US6433850B2 (en) 1996-01-09 2002-08-13 Lg. Phillips Lcd Co., Ltd. Pretilt angle direction in a liquid crystal cell
US6721025B2 (en) 1996-11-07 2004-04-13 Lg.Philips Lcd Co., Ltd Method for fabricating a liquid crystal cell
US6417905B1 (en) 1996-11-07 2002-07-09 Lg. Philips Lcd Co., Ltd. Method for fabricating a liquid crystal cell
US6462797B1 (en) 1996-11-07 2002-10-08 Lg. Philips Lcd Co., Ltd. Method for fabricating a liquid crystal cell
US6191836B1 (en) 1996-11-07 2001-02-20 Lg Philips Lcd, Co., Ltd. Method for fabricating a liquid crystal cell
US7911696B1 (en) 1997-05-28 2011-03-22 Lg Display Co., Ltd. Large scale polarizer and polarizer system employing it
US6292296B1 (en) 1997-05-28 2001-09-18 Lg. Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US7016113B2 (en) 1997-05-28 2006-03-21 Lg.Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US6639720B2 (en) 1997-05-28 2003-10-28 Lg.Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US7016112B2 (en) 1997-05-28 2006-03-21 Lg.Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US6399165B1 (en) 1997-11-21 2002-06-04 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6572939B2 (en) 1997-11-21 2003-06-03 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
US7061679B1 (en) 1998-05-27 2006-06-13 Lg. Philips Lcd Co., Ltd. Light irradiating device
US7901605B2 (en) 1999-03-25 2011-03-08 Lg Display Co., Ltd. Method of forming an alignment layer for liquid crystal display device
US7608211B2 (en) 1999-03-25 2009-10-27 Lg Display Co., Ltd. Method of making a liquid crystal display device
US6764724B1 (en) 1999-03-25 2004-07-20 Lg.Philips Lcd Co., Ltd. Alignment layer for a liquid crystal display device
US7014892B2 (en) 1999-03-25 2006-03-21 Lg.Philips Lcd Co., Ltd. Alignment layer for a liquid crystal display device
US6383579B1 (en) 1999-04-21 2002-05-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6582784B2 (en) 1999-04-21 2003-06-24 Lg.Philips Lcd Co., Ltd. Liquid crystal display
US6479218B1 (en) 1999-10-14 2002-11-12 Lg Philips Lcd Co., Ltd Method for manufacturing multi-domain liquid crystal cell
US6787292B2 (en) 1999-10-14 2004-09-07 Lg.Philips Lcd Co., Ltd. Method for manufacturing multi-domain liquid crystal cell
US7083833B2 (en) 2000-10-28 2006-08-01 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display fabricated with such photoalignment materials
US6793987B2 (en) 2000-10-28 2004-09-21 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display fabricated with such photoalignment materials
US6770335B2 (en) 2000-10-28 2004-08-03 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display device and method for fabricating the same with said materials
US7894029B2 (en) 2004-04-12 2011-02-22 Hitachi Displays, Ltd. Apparatus for optically arranging surface of alignment film and method for manufacturing liquid crystal display device using the same
JP2006337875A (en) * 2005-06-03 2006-12-14 Sony Corp Reflective polarizer and method for manufacturing the same
JP4622685B2 (en) * 2005-06-03 2011-02-02 ソニー株式会社 Reflective polarizer and method of manufacturing the same
JP2010210705A (en) * 2009-03-06 2010-09-24 Seiko Epson Corp Polarizing element and method of manufacturing the same, projection type display device, liquid crystal device, and electronic device
US8488070B2 (en) 2009-03-06 2013-07-16 Seiko Epson Corporation Polarizing element and method for manufacturing the same, projection type display, liquid crystal device, and electronic apparatus
JP2016148828A (en) * 2015-05-14 2016-08-18 ウシオ電機株式会社 Light irradiation device and light irradiation method

Also Published As

Publication number Publication date
JP3402122B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
JP5902389B2 (en) Tolerant, inorganic and absorbing UV grid polarizer
JPH10332932A (en) Filter polarizing light in specific wavelength range
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
CN116184549A (en) Optical element and light polarization device
JP2005534981A (en) Precision phase lag device and method of manufacturing the same
JP4204824B2 (en) Optical system
CN108227061B (en) Phase difference compensation element, liquid crystal display device, and projection type image display device
CN115605785A (en) Transmission type liquid crystal diffraction element
JP5069037B2 (en) Laminated wire grid polarizer
JP5206029B2 (en) Liquid crystal display
JP4792679B2 (en) Isolator and variable voltage attenuator
WO2000073824A1 (en) Polarized light beam splitter and polarized light illuminator comprising the same
KR100687562B1 (en) Polarizing filter and polarized light irradiation apparatus using the same
JP4106981B2 (en) Optical attenuator
JP5309437B2 (en) Polarized light irradiation device, alignment device for photo-alignment film, and photo-alignment film obtained using the same
JP3623032B2 (en) Birefringent plate and optical system using the same
JP7136911B2 (en) image display device
JP3971035B2 (en) Polarization conversion element and display device using the polarization conversion element
KR100968208B1 (en) Circularly polarized light conversion element and brightness enhancing element and the fabrication method thereof
RU2143128C1 (en) Polarizer
JP5010837B2 (en) Polarizing filter and polarized light irradiation device
JPS5997105A (en) Interference type polarizer
RU2140094C1 (en) Optical polarizer
WO2024038894A1 (en) Optical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090228

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100228

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120229

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130228