JPH10332831A - Monitoring apparatus using cut of dna chain as index - Google Patents

Monitoring apparatus using cut of dna chain as index

Info

Publication number
JPH10332831A
JPH10332831A JP13965097A JP13965097A JPH10332831A JP H10332831 A JPH10332831 A JP H10332831A JP 13965097 A JP13965097 A JP 13965097A JP 13965097 A JP13965097 A JP 13965097A JP H10332831 A JPH10332831 A JP H10332831A
Authority
JP
Japan
Prior art keywords
dna
monitoring device
strand breaks
detecting
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13965097A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tomita
裕之 富田
Yuji Miyahara
裕二 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13965097A priority Critical patent/JPH10332831A/en
Publication of JPH10332831A publication Critical patent/JPH10332831A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure effect of an ionizing radiation or an electromagnetic wave on human bodies and the environment by detecting a lag phenomenon of a DNA chain to facilitate understanding by the general public while offering an index with a higher direct correlation with the biological influence. SOLUTION: This apparatus determines the dose of an ionizing radiation or an electromagnetic wave using as unit a cut phenomenon of DNA chain which is relatively understandable appealing to intuition appearing as one of phenomena of biological effect by radiation. A number of breakage in DNA detecting section is so arranged to seal DNA molecules or cells into a gel or a porous substance and is held in a housing case. The DNA molecules are previously included in a buffer solution, the gel or a capillary tube or on a silicon substrate. For example, a individual monitoring device is made up of a lower lid 35 and an upper lid 31 both making a case and a high polymer gel 30 such as agarose or polyacrylamide gel to be housed therein and a hook 36 is mounted for wearing in individual use. A well 6 is provided to add the DNA molecules.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、直接的な生物学的
指標により人体または周辺環境に対して照射された電離
放射線、或いは電磁波の生物影響を定量するための装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for quantifying biological effects of ionizing radiation or electromagnetic waves applied to a human body or a surrounding environment by direct biological indicators.

【0002】[0002]

【従来の技術】個人の放射線被曝管理では、フィルムバ
ッチや熱ルミネセンス線量計,ポケット線量計と呼ばれ
る小型の個人モニタリング装置により被曝線量を定量し
てきた。フィルムバッチは、写真乳剤が感光作用と共に
放射線に比例して黒化作用を示すことから、線量計とし
て応用されている。また熱ルミネセンス物質に放射線が
照射されると、結晶格子から解放された電子が準安定状
態に励起されて捕獲され、室温でも長期間安定した状態
となる。これを外部から加熱すると、その温度に応じて
捕獲されていた電子が熱的に解放されて、ルミネセンス
を発して基底状態に戻ることを利用したのが熱ルミネセ
ンス線量計である。そしてポケット線量計は、電離箱を
利用して線量計測をしている。具体的には箱内に封入さ
れたガスが放射線量に応じて電離し、その際に流れる電
流値から、電離放射線量を計測している。日本アイソト
ープ協会、主任者のための放射線管理の実際、改訂2
版、140ページ(1992)参照。
2. Description of the Related Art In radiation exposure management of individuals, the exposure dose has been quantified by a small personal monitoring device called a film batch, a thermoluminescence dosimeter, or a pocket dosimeter. Film batches have been applied as dosimeters because photographic emulsions exhibit a blackening effect in proportion to radiation along with the sensitizing effect. When radiation is applied to the thermoluminescent material, electrons released from the crystal lattice are excited and captured in a metastable state, and remain stable for a long time at room temperature. When this is heated from the outside, the trapped electrons are thermally released according to the temperature, and the thermoluminescence dosimeter utilizes the fact that it emits luminescence and returns to the ground state. The pocket dosimeter measures the dose using an ionization chamber. Specifically, the gas enclosed in the box is ionized according to the radiation dose, and the ionizing radiation dose is measured from the current value flowing at that time. Japan Radioisotope Association, Radiation Management Practice for Chief, Revised 2
Edition, page 140 (1992).

【0003】一方、環境放射線の測定は電離箱式,GM
計数管式,NaI(Tlシンチレーション式,半導体式
のサーベイメータによりなされている。日本アイソトー
プ協会、主任者のための放射線管理の実際、改訂2版、
124ページ(1992)参照。
On the other hand, environmental radiation is measured by an ionization chamber type, GM
It is done by a counter tube type, NaI (Tl scintillation type, semiconductor type survey meter. Japan Radioisotope Association, radiation control practice for chief, 2nd revised edition,
See page 124 (1992).

【0004】[0004]

【発明が解決しようとする課題】フィルムバッチ,熱ル
ミネセンス線量計,ポケット線量計及び各種サーベイメ
ータ等の従来技術は、歴史も古く、低コストでかつ再現
性良く電離放射線の線量を測定することができる。しか
し測定される単位はシーベルト(Sv,J/kg)或い
は、シーベルトパーアワー(Sv/h,J/kg/h)と
いった単位体積あたりに付与されたエネルギー量であ
る。この物理的な単位は、専門家同士では抵抗無く使用
されているが、一般公衆にとっては直感的に理解しにく
い単位であり、あまり知られていない。またこのSvや
Sv/hという量が、特に低線量では、生物学的効果と
一致しないことは、放射線影響研究では古くから重要な
問題として議論が継続されている。このため、上記の線
量計で測定しても、原子力及び放射線に対する一般公衆
の危機感を払拭することが出来ないでいる。
The prior art such as film batch, thermoluminescence dosimeter, pocket dosimeter and various survey meters has a long history, and is capable of measuring the dose of ionizing radiation at low cost and with good reproducibility. it can. However, the unit to be measured is the amount of energy applied per unit volume, such as sievert (Sv, J / kg) or sievert per hour (Sv / h, J / kg / h). Although this physical unit is used without difficulty among experts, it is a unit that is difficult to intuitively understand for the general public, and is not widely known. The fact that the amounts of Sv and Sv / h do not coincide with biological effects, especially at low doses, has long been discussed as an important issue in radiation effects studies. For this reason, even if it measures with the above-mentioned dosimeter, it cannot be wiped out the general public's sense of danger about nuclear power and radiation.

【0005】また近年では、高電圧送電線近傍での電磁
波(電磁場)が生体に悪影響を及ぼすのではないかとの
懸念もなされている。この電磁波については、そのエネ
ルギー付与と生物影響との相関がほとんど明らかになっ
ていない。
In recent years, there has been a concern that an electromagnetic wave (electromagnetic field) near a high-voltage transmission line may adversely affect a living body. With regard to this electromagnetic wave, the correlation between the energy application and the biological effect is hardly clear.

【0006】現在の一般公衆の意識としては、専門家同
士でのみ議論されるSvやSv/h等の物理的単位より
も、より直感的に生物影響を理解できる量を用いた測定
器が望まれている。
[0006] At present, the general public is conscious of a measuring instrument using an amount that can more intuitively understand biological effects than a physical unit such as Sv or Sv / h, which is discussed only between experts. It is rare.

【0007】[0007]

【課題を解決するための手段】放射線生物影響で比較的
良く理解されている現象にDNA鎖切断がある。事実、
DNA鎖切断の修復能力を欠損した細胞は、放射線照射
に対して弱いことが知られている(インタナショナル
ジャーナル オブ ラジェーション バイオロジー(In
t.J.Radiat.Biol.),67,pp.7−18(199
5)参照。)そこでコストや測定の簡便性では従来技術
に劣るものの、DNA鎖切断という、より直感的に理解
されやすい単位で電離放射線或いは電磁波の線量を定量
する方法を本発明は提供する。
A relatively well understood phenomenon of radiobiological effects is DNA strand breaks. fact,
Cells lacking the ability to repair DNA strand breaks are known to be vulnerable to radiation (International
Journal of Radiation Biology (In
tJ Radiat. Biol.), 67, pp. 7-18 (199
See 5). Therefore, the present invention provides a method for quantifying the dose of ionizing radiation or electromagnetic wave in a unit more easily intuitively understood, which is a DNA strand break, although the cost and the simplicity of the measurement are inferior to the conventional technology.

【0008】本装置を携帯電話,パソコンのCRT,T
V等と一体化させたり、高電圧送電線の周囲に定置する
ことで環境モニタリングを行うことが出来る。またDN
A鎖切断をゲル電気泳動法で測定する際、DNAを細胞
から抽出し、その抽出液をピペットでゲル中の溝に滴下
して電圧を印加する必要がある。この処理行程における
DNA分子の損傷を防ぐために、予め緩衝溶液,ゲル
内、或いは毛細管内やシリコン基板上にDNA分子を内
包させる構造を有することを本装置は特徴としている。
[0008] This device is used for mobile phones, personal computer CRTs, T
Environmental monitoring can be performed by integrating with V or the like, or by being fixed around a high-voltage transmission line. Also DN
When measuring A-strand breakage by gel electrophoresis, it is necessary to extract DNA from cells, drop the extract into a groove in the gel with a pipette, and apply a voltage. In order to prevent DNA molecules from being damaged in this processing step, the present apparatus is characterized in that it has a structure in which DNA molecules are included in advance in a buffer solution, a gel, a capillary, or a silicon substrate.

【0009】[0009]

【発明の実施の形態】DNA鎖切断数の定量方法につい
て記す。まず図1に数千塩基対程度の長さの短いDNA
が鎖切断により、その形態が変化する様子を示す。この
長さの短いDNAはプラスミドDNAと呼ばれ、大腸菌
等から抽出したものが市販されている。プラスミドDN
Aは鎖切断がない場合はスーパーコイル状1であるが、
DNA分子の2本の鎖のうち、片方の鎖のみ切断されるD
NA一重鎖切断2が存在すると円環状3になる。またD
NA分子の2本の鎖のうち、両方の鎖が切断されるDN
A二重鎖切断4が存在すると線状5になる。これら三者
の分子量は同一だが、分子形状がそれぞれ異なるため、
ゲル内での移動性(mobility)に違いが現れる。つま
り、スーパーコイル状1では分子形状がコンパクトなた
め、ゲル内での通過速度が早いが、円環状3では裾を引
くためゲル内での通過速度が遅くなる。この通過速度の
違いを利用して、スーパーコイル状1,円環状3,線状
5の三者を分離し、その比率を知ることが出来ると、以
下の式からプラスミドDNA分子1分子あたりの平均鎖
切断数を算出できる。
BEST MODE FOR CARRYING OUT THE INVENTION A method for quantifying the number of DNA strand breaks will be described. First, Fig. 1 shows a short DNA of several thousand base pairs in length.
Shows how the morphology changes due to strand breakage. This short DNA is called a plasmid DNA, and a DNA extracted from Escherichia coli or the like is commercially available. Plasmid DN
A is supercoiled 1 when there is no strand break,
D, in which only one of the two strands of the DNA molecule is cleaved
The presence of NA single-strand breaks 2 results in a circular ring 3. Also D
DN where both strands of two strands of NA molecule are cleaved
The presence of A double-strand break 4 results in a linear 5. These three have the same molecular weight, but have different molecular shapes.
Differences appear in mobility within the gel. In other words, the supercoiled 1 has a small molecular shape and therefore has a high passing speed in the gel, but the annular 3 has a low tail and the passing speed in the gel is low. Utilizing this difference in passage speed, the three components of supercoiled, annular, and linear 5 can be separated and the ratio can be determined. The number of strand breaks can be calculated.

【0010】 X=ln[(1−L)/S] …(式1) Y=L/(1−L) …(式2) 但し、一つのDNA分子あたりの平均一重鎖切断数を
X,平均二重鎖切断数をY,スーパーコイル状1の比率
をS,線状5の比率をLとする。比率とは、スーパーコ
イル状1,円環状3,線状5三者の総量を100%とし
た場合のそれぞれの割合である。
X = ln [(1-L) / S] (Equation 1) Y = L / (1-L) (Equation 2) However, the average number of single strand breaks per DNA molecule is X, The average number of double strand breaks is Y, the ratio of supercoiled 1 is S, and the ratio of linear 5 is L. The ratio is each ratio when the total amount of the supercoiled shape, the annular shape, and the linear shape is defined as 100%.

【0011】図2に、コバルト60ガンマ線をプラスミ
ドDNAに照射した際に観察される電気泳動像を図示す
る。コバルト60は、1.17MeV)メガエレクトロン
ボルト)と1.33MeVのエネルギーを持つガンマ線を
放出する。この高いエネルギーのガンマ線によりDNA
鎖は切断される。
FIG. 2 shows an electrophoretic image observed when the plasmid DNA is irradiated with cobalt 60 gamma rays. Cobalt 60 emits gamma rays with energies of 1.17 MeV (mega electron volts) and 1.33 MeV. This high-energy gamma ray causes DNA
The strand is cut.

【0012】図2は電気泳動後に観察されるDNAのバ
ンド構造である。DNA分子は電場をかける前は、ウェ
ル6内に存在する(x=x0)。その後、DNA分子を
x=xiの方向に泳動させると、スーパーコイル状1が
最も泳動距離が長く、続いて線状5,円環状3の順に泳
動距離が異なる。
FIG. 2 shows the band structure of DNA observed after electrophoresis. Before the electric field is applied, the DNA molecule is present in the well 6 (x = x0). Thereafter, when the DNA molecules are migrated in the direction of x = xi, the migration distance of the supercoiled 1 is the longest, and subsequently the migration distances of the linear 5 and the ring 3 are different.

【0013】このバンド構造をスキャナ等で読み込むこ
とで、図9のようなピーク状のパターンが見られる。D
NA鎖切断数が多い順に同図(a),(b),(c),
(d)ようなピーク状のパターンとなる。DNA鎖切断
数が増加するにつれ、スーパーコイル状1の割合が減少
し、一重鎖切断のある円環状3や二重鎖切断のある線状
5の比率が増大する。このピーク面積がDNA量に比例
することを利用して、式1,2よりDNA鎖切断数を定
量することができる(ジャーナル オブ ラジェーショ
ン リサーチ(Journal of Radiation Research),3
6,pp.46−55(1995)参照)。
When this band structure is read by a scanner or the like, a peak-like pattern as shown in FIG. 9 is seen. D
(A), (b), (c), and (c) of FIG.
A peak-like pattern as shown in FIG. As the number of DNA strand breaks increases, the proportion of supercoiled 1 decreases and the proportion of circular 3 with single strand breaks and linear 5 with double strand breaks increases. Utilizing the fact that this peak area is proportional to the amount of DNA, the number of DNA strand breaks can be quantified by Formulas 1 and 2 (Journal of Radiation Research, 3
6, pp. 46-55 (1995)).

【0014】図3に本モニタを個人モニタリングに適用
した場合の装置の構成を示す。本実施例の装置はケース
となる下蓋35と上蓋31およびこの中に収容する高分
子ゲル30からなる。個人が装着出来るようフック36
を収納ケースの一部に取り付けてある。個人が装着する
際の邪魔とならないように装置全体の高さと幅を数cm以
内とし、厚さを数mm程度とすることが望ましい。また、
小型化することで、携帯電話,パソコンCRT,TVと
の一体化を行い、1カ月おきなど、定期的に置き換えて
使用することも可能である。
FIG. 3 shows the configuration of the apparatus when this monitor is applied to personal monitoring. The apparatus according to the present embodiment includes a lower lid 35 and an upper lid 31 serving as a case, and a polymer gel 30 housed therein. Hook 36 for individual wear
Is attached to a part of the storage case. It is desirable that the height and width of the entire apparatus be within several cm and the thickness be about several mm so as not to disturb the wearing of the device. Also,
By reducing the size, it can be integrated with a mobile phone, a personal computer CRT, or a TV, and can be used after being replaced periodically, such as every other month.

【0015】図3の個人モニタのフック36の部分を粘
着性のテープに置き換えることで、電気製品の表面に固
定しておく定置型のモニタとすることが出来る。あらか
じめDNA分子を添加するウェル6を、アガロース、或
いはポリアクリルアミドゲル等の高分子ゲル30内に設
ける。
By replacing the hook 36 of the personal monitor shown in FIG. 3 with an adhesive tape, it is possible to obtain a stationary monitor fixed to the surface of the electric appliance. A well 6 to which DNA molecules are added in advance is provided in a polymer gel 30 such as agarose or polyacrylamide gel.

【0016】この高分子ゲルの代表的なサイズを図4
(a),(b)に示す。ゲルは水分を含むため乾燥に弱
い。そこでこの高分子ゲル30の周囲は乾燥及び太陽光
等による劣化を防ぐために、高分子フィルム製の袋(図
示せず)に入れて密閉しておく。そしてこの高分子ゲル
30を放射線や電磁波をほとんど遮蔽しない薄いガラス
窓32,低いエネルギーの放射線や電磁波を遮蔽するア
ルミニウムや鉄製の窓33、及び鉛等の放射線遮蔽に優
れた金属製の窓34をその表面に設けた上蓋31と、身
体に装着するためのクリップ36を設けた上蓋と同じ材
料の下蓋35で挟む。上蓋31と下蓋35の材料は、電
離放射線と電磁波の両者を遮蔽するために、電離放射線
遮蔽能力の高い鉛等の原子番号が大きい金属と、電磁波
の遮蔽能力の高い銅,アルミニウム等の高電導体との多
層板で構成する。
FIG. 4 shows a typical size of this polymer gel.
(A) and (b) show. Gels are susceptible to drying because they contain moisture. Therefore, the periphery of the polymer gel 30 is sealed in a bag (not shown) made of a polymer film in order to prevent drying and deterioration due to sunlight or the like. A thin glass window 32 that shields the polymer gel 30 from radiation and electromagnetic waves, an aluminum or iron window 33 that shields low-energy radiation and electromagnetic waves, and a metal window 34 that is excellent in shielding radiation such as lead. It is sandwiched between an upper lid 31 provided on the surface thereof and a lower lid 35 made of the same material as the upper lid provided with a clip 36 to be attached to the body. The upper lid 31 and the lower lid 35 are made of a material having a high atomic number, such as lead, which has a high ionizing radiation shielding ability, and a high metal such as copper, aluminum, etc., having a high electromagnetic shielding ability, in order to shield both ionizing radiation and electromagnetic waves. It is composed of a multilayer board with a conductor.

【0017】放射線のエネルギーの違いにより、ガラス
窓32,アルミニウムや鉄製の窓33,鉛等の金属製の
窓34の透過能力が異なるため、被ばくした放射線の種
類を簡便に評価することが出来る。また鉛等の放射線遮
蔽能力に優れた金属製の窓34の内側には放射線や電磁
波が照射されなくても自然に生じる鎖切断数を測定する
ためのコントロール測定用DNA分子を配置しておく。
一定期間着用ごとに、このケース31,35を開けて中
の、フィルム袋に納められたゲル30を取り出し、その
まま分析部に装着する。そして図1,図2に示した方法
でDNA鎖切断数を定量する。
Since the transmission abilities of the glass window 32, the window 33 made of aluminum or iron, and the window 34 made of metal such as lead differ depending on the difference in radiation energy, the type of radiation that has been exposed can be easily evaluated. In addition, a DNA molecule for control measurement for measuring the number of strand breaks which occur naturally even without being irradiated with radiation or electromagnetic waves is arranged inside a metal window 34 having excellent radiation shielding ability such as lead.
Each time the wear is performed for a certain period, the cases 31 and 35 are opened, the gel 30 contained in the film bag is taken out, and the gel 30 is directly attached to the analysis unit. Then, the number of DNA strand breaks is quantified by the method shown in FIGS.

【0018】次にシリコン基板上に微細加工を施して本
モニタに適用した場合の概念図を図5に示す。DNAの
体積を小さくすることで外界の温度変化によるDNA分
子の損傷は小さくなり、装置単価も低く抑えることが可
能である。個々の電気泳動ユニット50には、電気泳動
用の電極端子51が、泳動前のDNA溜52と泳動後の
DNA溜54に接続されている。それらの電極端子51
の間にDNAのゲル電気泳動路53が形成されている。
個々の電気泳動ユニット50のサイズは数十mm角以内に
出来る。
Next, FIG. 5 shows a conceptual diagram in a case where a microfabrication is performed on a silicon substrate and applied to the present monitor. By reducing the volume of DNA, damage to DNA molecules due to a change in external temperature is reduced, and the unit cost of the apparatus can be reduced. In each of the electrophoresis units 50, electrode terminals 51 for electrophoresis are connected to a DNA reservoir 52 before migration and a DNA reservoir 54 after migration. Those electrode terminals 51
A gel electrophoresis path 53 for DNA is formed between them.
The size of each electrophoresis unit 50 can be within several tens of mm square.

【0019】また毛細管(キャピラリー)内に電気泳動
用ゲルとDNAとを封入して、電気泳動法によりDNA
鎖切断を測定する場合の概念図を図6に示す。毛細管6
2内にDNAを封入するとDNAの体積を小さくするこ
とが出来るため、外界の温度変化によるDNA分子の損
傷は小さくなり、装置単価も低く抑えることが可能であ
る。個々の電気泳動ユニット60は泳動前のDNA溜6
1,毛細管ゲル電気泳動路62等から構成される。
An electrophoresis gel and DNA are enclosed in a capillary (capillary), and the DNA is obtained by electrophoresis.
FIG. 6 shows a conceptual diagram in the case of measuring strand breaks. Capillary 6
By enclosing the DNA in 2, the volume of the DNA can be reduced, so that damage to the DNA molecules due to a change in the external temperature is reduced, and the unit cost of the apparatus can be reduced. Each of the electrophoresis units 60 stores the DNA pool 6 before electrophoresis.
1, a capillary gel electrophoresis path 62 and the like.

【0020】図7に定置式の本モニタリング装置の概念
図を示す。部屋の壁70等に配置して、環境モニタリン
グを行う。一定期間ごとに、この外ケース71と内ケー
ス31を開けて中のゲル30を取り出し、そのまま電気
泳動装置等の分析部に取り付けて電極を接続させるの
は、個人用モニタと同様である。人体の皮膚組織を考慮
する場合は、外ケース71の材質を、組成を人間に模し
て作成した疑似人体(ファントムと呼ばれる)で用いら
れている皮膚等価物質(皮膚組織のC,N,O原子の存
在比率を考慮したプラスチック)で製作する。
FIG. 7 shows a conceptual diagram of the stationary type monitoring apparatus. It is placed on the wall 70 of the room or the like to monitor the environment. At regular intervals, the outer case 71 and the inner case 31 are opened, the gel 30 inside is taken out, and attached to an analysis unit such as an electrophoresis apparatus as it is to connect electrodes, similarly to a personal monitor. When considering the skin tissue of the human body, the material of the outer case 71 is made of a skin equivalent material (C, N, O of skin tissue) used in a pseudo human body (called a phantom) created by imitating the composition of a human. It is made of plastic that takes into account the atomic ratio.

【0021】図8に分析部の全体構成図を示す。本分析
部は、DNA分子を含むゲルを検知部を取り付けて電極
を接続させて、DNA鎖切断を測定する測定部80と、
光及び蛍光を検出する検出部81,データ処理部82,
データ表示部83及び、上記部分に電気を供給する電源
84から構成される。
FIG. 8 shows the overall configuration of the analyzer. The analysis unit includes a measurement unit 80 that attaches a detection unit to a gel containing DNA molecules, connects electrodes, and measures DNA strand breaks,
A detector 81 for detecting light and fluorescence, a data processor 82,
It comprises a data display section 83 and a power supply 84 for supplying electricity to the above sections.

【0022】[0022]

【発明の効果】本発明によれば、DNA鎖切断という一
般公衆の理解が容易でありかつ生物影響と直接の相関が
高い指標で、電離放射線或いは電磁波の人体及び環境へ
の影響を測定する装置を提供できる。フィルムバッチ等
の従来方法と比較して、測定コストや測定時間はかかる
ものの、DNA鎖切断という細胞にとり有害と認められ
ている直接的な指標での測定を行うことで、原子力発電
所の作業者、発電所周囲の公衆の理解が得易い。また携
帯電話,パソコンCRT,TVの表面に本モニタリング
装置を一体化させることで、家庭内におけるモニタリン
グを行うことができる。また放射線等の影響が予測され
る箇所に定置することで、環境モニタリングを行うこと
も可能である。
According to the present invention, an apparatus for measuring the effects of ionizing radiation or electromagnetic waves on the human body and the environment with an index that is easily understood by the general public, that is, DNA strand breaks, and has a high direct correlation with biological effects. Can be provided. Compared to conventional methods such as film batches, although the measurement cost and measurement time are longer, workers at nuclear power plants can perform measurements using DNA strand breaks, a direct indicator that is considered harmful to cells. It is easy to get public understanding around the power plant. In addition, by integrating the present monitoring device on the surface of a mobile phone, a personal computer CRT, or a TV, monitoring at home can be performed. It is also possible to monitor the environment by placing the detector at a location where the effects of radiation and the like are expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鎖切断によるプラスミドDNAの形状変化の説
明図。
FIG. 1 is an explanatory diagram of a change in the shape of plasmid DNA due to strand breaks.

【図2】電気泳動による、DNA鎖切断数の定量方法の
説明図。
FIG. 2 is an explanatory diagram of a method for quantifying the number of DNA strand breaks by electrophoresis.

【図3】本発明を個人モニタリングに適用した実施例の
検知部の構成を示す斜視図。
FIG. 3 is a perspective view showing a configuration of a detection unit according to an embodiment in which the present invention is applied to personal monitoring.

【図4】本発明を個人モニタリングに適用した実施例の
検知部の寸法図。
FIG. 4 is a dimensional view of a detection unit of an embodiment in which the present invention is applied to personal monitoring.

【図5】シリコン微細加工技術を応用した実施例の検知
部の平面図。
FIG. 5 is a plan view of a detection unit according to an embodiment to which silicon microfabrication technology is applied.

【図6】毛細管電気泳動を応用した実施例の検知部の斜
視図。
FIG. 6 is a perspective view of a detection unit of an embodiment to which capillary electrophoresis is applied.

【図7】本発明を環境モニタリングに適用した実施例の
検知部の斜視図。
FIG. 7 is a perspective view of a detection unit according to an embodiment in which the present invention is applied to environmental monitoring.

【図8】本発明のモニタの分析部の構成を示すブロック
図。
FIG. 8 is a block diagram showing a configuration of an analyzer of the monitor according to the present invention.

【図9】図2のバンド構造の光学的読みとり結果を示す
特性図。
FIG. 9 is a characteristic diagram showing an optical reading result of the band structure of FIG. 2;

【符号の説明】[Explanation of symbols]

1…スーパーコイル状のプラスミドDNA、2…DNA
一重鎖切断、3…円環状のプラスミドDNA、4…DN
A二重鎖切断、5…線状のプラスミドDNA、6…泳動
前のDNA分子を保持しておくウェル、30…ゲル、3
1…収納ケース(上蓋)、32…ガラス窓、33…アル
ミニウム或いは鉄製の窓、34…鉛製の窓、35…収納
ケース(下蓋)、36…洋服等に付ける際のフック、5
0…シリコン微細加工技術を応用したDNA電気泳動
部、51…電極、52…DNA溜(泳動前)、53…シ
リコンの溝に高分子ゲルを封入した電気泳動路、54…
DNA溜(泳動後)、60…毛細管(キャピラリー)に
よるDNA電気泳動部、61…DNA溜(泳動前)、6
2…毛細管に高分子ゲルを封入した電気泳動路、70…
建物の壁、71…外側ケース、80…DNA鎖切断測定
部、81…光及び蛍光の検出部、82…データ処理部、
83…データ表示部、84…電源。
1 ... Supercoiled plasmid DNA, 2 ... DNA
Single strand break, 3 ... circular plasmid DNA, 4 ... DN
A double-strand break, 5: linear plasmid DNA, 6: well holding DNA molecules before electrophoresis, 30: gel, 3
DESCRIPTION OF SYMBOLS 1 ... Storage case (upper lid), 32 ... Glass window, 33 ... Aluminum or iron window, 34 ... Lead window, 35 ... Storage case (lower lid), 36 ... Hook when attaching to clothes etc., 5
0: DNA electrophoresis section using silicon microfabrication technology, 51: Electrode, 52: DNA reservoir (before electrophoresis), 53: Electrophoresis path with polymer gel sealed in silicon groove, 54 ...
DNA pool (after electrophoresis), 60: DNA electrophoresis section by capillary (capillary), 61: DNA pool (before electrophoresis), 6
2 ... Electrophoresis path with polymer gel sealed in capillaries, 70 ...
Building wall, 71: outer case, 80: DNA strand break measurement unit, 81: light and fluorescence detection unit, 82: data processing unit,
83: Data display unit, 84: Power supply.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】DNA鎖切断現象の検知部と、検知部に生
じたDNA鎖切断数の分析部から構成される、電離放射
線及び電磁波の生体影響のモニタリング装置。
An apparatus for monitoring the biological effects of ionizing radiation and electromagnetic waves, comprising a detector for detecting a DNA strand break phenomenon and an analyzer for analyzing the number of DNA strand breaks generated in the detector.
【請求項2】請求項1のDNA鎖切断数の検知部は、D
NA分子或いは細胞をゲル或いは多孔膜中に封入して、
更に収納ケース内に納めたものとし、検知部をフック等
で人体などに装着可能な構造を有するモニタリング装
置。
2. The detecting unit for detecting the number of DNA strand breaks according to claim 1,
Encapsulate NA molecules or cells in gel or porous membrane,
Furthermore, a monitoring device that is housed in a storage case and has a structure in which the detection unit can be attached to a human body with a hook or the like.
【請求項3】請求項1のDNA鎖切断数の検知部を、緩
衝溶液中にDNA分子或いは細胞を加えて、更に収納ケ
ース内に納めたものとした、請求項2のモニタリング装
置。
3. The monitoring device according to claim 2, wherein the detection unit for detecting the number of DNA strand breaks according to claim 1 is a device in which DNA molecules or cells are added to a buffer solution and further housed in a storage case.
【請求項4】請求項2または3に記載された細胞とし
て、大腸菌や酵母菌を用いるモニタリング装置。
4. A monitoring device using Escherichia coli or yeast as the cell according to claim 2 or 3.
【請求項5】前記検知部の収納ケースの一部を鉛等の原
子番号が大きい金属と、銅,アルミニウム等の高電導体
との多層板を箱形にした構造で遮蔽し、その箱の内面に
被ばくを受けない場合でも自然に生じる鎖切断数を測定
するためのコントロール測定用DNA分子を配置する構
造を有する請求項2のモニタリング装置。
5. A part of the storage case of the detection part is shielded by a box-shaped structure of a multilayer plate of a metal having a large atomic number such as lead and a high conductor such as copper and aluminum. 3. The monitoring device according to claim 2, wherein the monitoring device has a structure in which a control measurement DNA molecule for measuring the number of naturally occurring strand breaks even when the inner surface is not exposed is arranged.
【請求項6】前記検出部の乾燥や太陽光による劣化を防
ぐために、検知部をポリ塩化ビニル等の高分子のフィル
ムの袋内に内包し、袋の入り口を密閉した構造を有する
請求項2のモニタリング装置。
6. A structure in which the detecting section is enclosed in a bag made of a polymer film such as polyvinyl chloride and the entrance of the bag is sealed in order to prevent drying of the detecting section and deterioration due to sunlight. Monitoring equipment.
【請求項7】DNA分子或いは大腸菌,酵母菌等の細胞
を、毛細管内部、或いは表面にみぞ加工を施したシリコ
ン基板上に封入したものを、検知部として用いる請求項
2のモニタリング装置。
7. The monitoring device according to claim 2, wherein a DNA molecule or a cell such as Escherichia coli or yeast is sealed in a capillary substrate inside or on a silicon substrate whose surface is grooved, and is used as a detection unit.
【請求項8】少なくとも一つの光検出部,データ処理部
を有し、請求項2または6の検知部を収納ケースから取
り出して、分析部の一部分に直接装着することでDNA
鎖切断数の測定が可能な分析部を有するモニタリング装
置。
8. A DNA having at least one light detecting section and a data processing section, wherein the detecting section according to claim 2 or 6 is taken out of the storage case and directly attached to a part of the analyzing section.
A monitoring device having an analysis unit capable of measuring the number of strand breaks.
【請求項9】フォトダイオード,CCD(Charge Coupl
ed Device )等の光センサを用いて、DNA鎖切断検知
部由来の発光値を電気信号に変換する光検出部を分析部
に有する請求項8のモニタリング装置。
9. A photodiode, a CCD (Charge Coupl)
9. The monitoring apparatus according to claim 8, further comprising a light detection unit for converting a luminescence value derived from the DNA strand break detection unit into an electric signal using an optical sensor such as an ed Device).
【請求項10】請求項8の光検出部から得られた電気信
号波形曲線の面積を積分し、その積分値がDNA分子量
に比例することを利用してDNA鎖切断数を算出するデ
ータ処理部を分析部に有するモニタリング装置。
10. A data processing unit for calculating the number of DNA strand breaks by integrating the area of the electric signal waveform curve obtained from the light detection unit according to claim 8 and utilizing the fact that the integrated value is proportional to the DNA molecular weight. A monitoring device having a in the analysis unit.
JP13965097A 1997-05-29 1997-05-29 Monitoring apparatus using cut of dna chain as index Pending JPH10332831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13965097A JPH10332831A (en) 1997-05-29 1997-05-29 Monitoring apparatus using cut of dna chain as index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13965097A JPH10332831A (en) 1997-05-29 1997-05-29 Monitoring apparatus using cut of dna chain as index

Publications (1)

Publication Number Publication Date
JPH10332831A true JPH10332831A (en) 1998-12-18

Family

ID=15250219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13965097A Pending JPH10332831A (en) 1997-05-29 1997-05-29 Monitoring apparatus using cut of dna chain as index

Country Status (1)

Country Link
JP (1) JPH10332831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209318A (en) * 2007-02-27 2008-09-11 Hiroshima Univ Radiation or ultraviolet ray measuring method
JP2011239830A (en) * 2010-05-14 2011-12-01 Gunma Univ Multipurpose phantom and using method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209318A (en) * 2007-02-27 2008-09-11 Hiroshima Univ Radiation or ultraviolet ray measuring method
JP2011239830A (en) * 2010-05-14 2011-12-01 Gunma Univ Multipurpose phantom and using method thereof

Similar Documents

Publication Publication Date Title
FI110144B (en) Ionising radiation detection - comprises use of dosimeter with MOSFET transistor with floating gate, with ionising radiation affecting surface of gate through open air or gas space, etc.
CN107257932B (en) Utilize the ionisation chamber of double probe structures and the alpha particle detection device of difference amplifier
Richter et al. Environmental gamma dosimetry with OSL of α-Al2O3: C for in situ sediment measurements
Hsu et al. Synthesis and physical characteristics of radiophotoluminescent glass dosimeters
Rahman et al. Real-time dosimetry in radiotherapy using tailored optical fibers
Beerten et al. Photon energy dependence of three fortuitous dosemeters from personal electronic devices, measured by optically stimulated luminescence
JPH10332831A (en) Monitoring apparatus using cut of dna chain as index
Leidner et al. Energy calibration of the GEMPix in the energy range of 6 keV to 2 MeV
Bateman et al. High speed quantitative digital beta autoradiography using a multistep avalanche detector and an Apple II microcomputer
Yoshizumi et al. A new ring-shaped graphite monitor ionization chamber
Wernli et al. The direct ion storage dosemeter for the measurement of photon, beta and neutron dose equivalents
Sharifi et al. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays
da Silva et al. Application of extrapolation chambers in low-energy X-rays as reference systems
Rajan et al. Radiation monitoring instruments
Simões et al. Measurement of the gamma-ray probability per decay of 42K
Hosemann et al. Self-powered dosimeter for gamma and X-radiation
Lee et al. In-situ CeBr 3 gamma-ray spectrometry for radioactivity analysis of soil
Saxena et al. Preparation of 57Co point sources for the performance evaluation of nuclear imaging instruments
Al-Karmi et al. EPR of gamma-irradiated polycrystalline alanine-in-glass dosimeter
Fonseca et al. Disintegration rate measurement of a 192Ir solution
Malsky et al. In vivo dosimetry with miniature glass rods. Part I. Physical aspects and recent developments
Dose Radiation Detection and Measurement
Fonseca et al. Measurement of the gamma-ray probability per decay of I-126
Isaksson Radiometry
Domenech et al. Measuring Instruments and Methods