JPH10332733A - Acceleration sensor - Google Patents
Acceleration sensorInfo
- Publication number
- JPH10332733A JPH10332733A JP15456597A JP15456597A JPH10332733A JP H10332733 A JPH10332733 A JP H10332733A JP 15456597 A JP15456597 A JP 15456597A JP 15456597 A JP15456597 A JP 15456597A JP H10332733 A JPH10332733 A JP H10332733A
- Authority
- JP
- Japan
- Prior art keywords
- acceleration
- movable body
- permanent magnet
- sliding surface
- magnetic sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Switches Operated By Changes In Physical Conditions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気抵抗素子およ
びホール素子などの磁気センサと永久磁石を対向させ、
加速度による相互の変位量に応じた磁気センサ出力の変
化によって加速度を検出するようにした加速度センサに
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor, such as a magnetoresistive element and a Hall element, which faces a permanent magnet.
The present invention relates to an acceleration sensor that detects an acceleration by a change in a magnetic sensor output according to a mutual displacement amount due to the acceleration.
【0002】[0002]
【従来の技術】従来、磁気センサを用いて加速度を検出
する加速度センサは、たとえば特公平7−7012号公
報に示されているように、加速度によって撓む材質の片
持梁の先端部あるいは両持梁の中央部に永久磁石を取り
付け、この永久磁石を挟んで両側に前記永久磁石と対向
する磁気抵抗素子を対称位置に設け、両方の磁気センサ
出力を加算して加速度を演算するようにしている。すな
わち、図12に示すように、片方を固定して加速度によ
って撓む可撓梁31の先端に永久磁石32を取り付け、
この永久磁石32に対向させて磁気抵抗素子などの磁気
センサ33、34を対称位置に配置し、加速度によって
可撓梁31が撓んで、質量mの永久磁石32が移動し磁
気センサ33、34に対する変位量xを生じたときに、
加速度Gを G=kx/m (kは比例定数) によって検出するようにしている。なお、磁気センサ3
3、34を対称位置に設けて、両方の検出信号を加算器
35に逆極性で加算し、2倍の出力を得るようにしてい
る。また、図13のように、可撓梁31の両端を支持さ
せ、中央部の両面に永久磁石32、32を設け、この永
久磁石32、32にそれぞれ対向させて固定部に磁気セ
ンサ33、34をそなえて両方の出力を逆極性で加算す
るようにしたものも提案されている。2. Description of the Related Art Conventionally, an acceleration sensor for detecting acceleration by using a magnetic sensor is disclosed in, for example, Japanese Patent Publication No. 7-7012, in which a tip portion or both ends of a cantilever made of a material which is bent by acceleration. A permanent magnet is attached to the center of the beam, and a magnetoresistive element opposed to the permanent magnet is provided on both sides of the permanent magnet at symmetrical positions, and the acceleration is calculated by adding the outputs of both magnetic sensors. I have. That is, as shown in FIG. 12, a permanent magnet 32 is attached to the tip of a flexible beam 31 that is fixed to one side and bent by acceleration,
The magnetic sensors 33 and 34 such as magnetoresistive elements are arranged at symmetrical positions so as to face the permanent magnet 32, and the flexible beam 31 bends due to the acceleration, and the permanent magnet 32 having the mass m moves and moves with respect to the magnetic sensors 33 and 34. When the displacement x occurs,
The acceleration G is detected by G = kx / m (k is a proportional constant). The magnetic sensor 3
3 and 34 are provided at symmetrical positions, and both detection signals are added to the adder 35 with opposite polarities to obtain a double output. Further, as shown in FIG. 13, both ends of the flexible beam 31 are supported, and permanent magnets 32, 32 are provided on both surfaces of the central portion, and the magnetic sensors 33, 34 are fixed to the fixed portions so as to face the permanent magnets 32, 32, respectively. In addition, there has been proposed a configuration in which both outputs are added with opposite polarities.
【0003】[0003]
【発明が解決しようとする課題】しかし、このような従
来の構造においては、片持ちにした可撓梁31の先端に
設けた永久磁石32が、可撓梁31の根元を中心にした
円弧状に変位するので、磁気センサ33、34に対する
永久磁石32の動きが円弧状になって測定しようとする
加速度に対して直線状に移動しないので、測定方向以外
の加速度成分が含まれて測定精度に影響し、大きな加速
度が加わった場合のように可撓梁31の変位が大きくな
るほどその影響が大きくなる。また、可撓梁31を板状
にして両端で支持させた両持梁とし、中央部に永久磁石
32を取り付けた場合は、永久磁石を単一方向のみに変
位させることができるため、測定精度は良くなるが、可
撓梁31の両端を支持しているため、加速度に対する撓
みが小さく、測定感度を上げるためには可撓梁を長くす
る必要があり、加速度センサが大形になるだけでなく、
熱膨張などによって可撓梁の長手方向に応力が加わると
比例定数が変化して検出値に誤差を生じる欠点がある。
本発明は、測定方向の加速度のみを正確に検出できるよ
うにした小形の加速度センサを提供することを目的とす
る。However, in such a conventional structure, the permanent magnet 32 provided at the tip of the cantilevered flexible beam 31 has an arc shape centered on the root of the flexible beam 31. Since the movement of the permanent magnet 32 with respect to the magnetic sensors 33 and 34 does not move linearly with respect to the acceleration to be measured because the movement of the permanent magnet 32 with respect to the magnetic sensors 33 and 34 is included, acceleration components other than the measurement direction are included and measurement accuracy is reduced. Influence, as the displacement of the flexible beam 31 increases as in the case where a large acceleration is applied, the influence increases. In addition, when the flexible beam 31 is a doubly supported beam having a plate shape and supported at both ends, and a permanent magnet 32 is attached to a central portion, the permanent magnet can be displaced only in a single direction. However, since both ends of the flexible beam 31 are supported, the flexure against acceleration is small, and it is necessary to lengthen the flexible beam to increase the measurement sensitivity. Not
When stress is applied in the longitudinal direction of the flexible beam due to thermal expansion or the like, there is a disadvantage that the proportionality constant changes and an error occurs in the detected value.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a small acceleration sensor capable of accurately detecting only acceleration in a measurement direction.
【0004】[0004]
【課題を解決するための手段】このため、器枠に測定す
る加速度の方向を軸心にした摺動面を設け、この摺動面
に沿って移動する可動体に永久磁石を取り付け、前記永
久磁石に対向させて器枠に取り付けられた磁気センサ
と、前記可動体を摺動面の基準位置に保持させる保持ば
ねとを設け、加速度によって可動体を保持ばねに抗して
摺動面に沿って摺動させることにより、永久磁石と磁気
センサとの対向位置を直線的に変位させ、この変位量に
応じた磁気センサ出力変化を検出して加速度を演算する
ようにしている。なお、前記摺動面は、器枠内に測定す
る加速度の方向を軸心にして設けた案内柱の外周面や、
器枠内に形成した可動体を囲む案内筒の内周面で構成
し、この摺動面にリニヤ軸受を設けることができる。For this purpose, a sliding surface having the axis of the direction of the measured acceleration as an axis is provided on the casing, and a permanent magnet is attached to a movable body moving along the sliding surface. A magnetic sensor mounted on the casing facing the magnet; and a holding spring for holding the movable body at a reference position on the sliding surface, wherein the movable body is moved along the sliding surface against the holding spring by acceleration. By sliding the permanent magnet and the magnetic sensor, the facing position between the permanent magnet and the magnetic sensor is linearly displaced, and a change in the output of the magnetic sensor according to the amount of displacement is detected to calculate the acceleration. Note that the sliding surface is an outer peripheral surface of a guide column provided with the direction of acceleration measured in the casing as an axis,
It is constituted by an inner peripheral surface of a guide cylinder surrounding a movable body formed in a casing, and a linear bearing can be provided on this sliding surface.
【0005】[0005]
【発明の実施の形態】測定する加速度の方向に沿う摺動
面をそなえた器枠と、永久磁石を取り付けて前記摺動面
に沿って移動する可動体と、前記永久磁石に対向させて
器枠に取り付けた磁気センサを設け、前記可動体を保持
ばねによって摺動面の基準位置に保持させており、加速
度により可動体が保持ばねに抗して摺動面に沿って移動
されると、永久磁石と磁気センサとの対向位置が測定す
る方向に直線的に変化し、磁気センサから前記変位量に
応じた出力が得られ、この出力変化により加速度を演算
するようにしている。なお、器枠の摺動面と可動体は、
器枠内に測定する加速度の方向に案内柱を設け、可動体
の孔に挿通させて摺動させ、あるいは、器枠内に設けた
案内筒や器枠自体の内周面を測定する加速度の方向にし
て摺動面とし、可動体の外周面を摺動可能に嵌合させて
いる。また、可動体と保持ばねを固着させて、保持ばね
の内周または外周を器枠の摺動面に摺動可能に嵌合させ
るようにしても良い。DESCRIPTION OF THE PREFERRED EMBODIMENTS A container frame having a sliding surface along the direction of the acceleration to be measured, a movable body having a permanent magnet attached and moving along the sliding surface, and a container facing the permanent magnet. A magnetic sensor attached to the frame is provided, the movable body is held at a reference position on the sliding surface by a holding spring, and when the movable body is moved along the sliding surface against the holding spring by acceleration, The facing position between the permanent magnet and the magnetic sensor changes linearly in the direction to be measured, an output corresponding to the displacement is obtained from the magnetic sensor, and the acceleration is calculated based on the output change. In addition, the sliding surface of the container frame and the movable body
A guide column is provided in the direction of the acceleration to be measured in the casing, and is inserted into the hole of the movable body and slid, or the acceleration of the guide tube provided in the casing or the inner peripheral surface of the casing itself is measured. The outer peripheral surface of the movable body is slidably fitted to the sliding surface. Alternatively, the movable body and the holding spring may be fixed, and the inner or outer circumference of the holding spring may be slidably fitted to the sliding surface of the casing.
【0006】また、案内柱や案内筒に嵌合させた可動体
の両端面に、それぞれ可動体と器枠との間に挿入した保
持ばねを設け、両方の保持ばねを可動体に対して反対方
向に作用させて、可動体を平衡する位置に保持させ、こ
の平衡位置を基準にして加速度の方向により一方が圧縮
され他方が伸長して可動体を移動させ、その変位量を磁
気センサで検出し、加速度を演算させるようにすれば、
加速度センサを傾けたり横方向にして設置することもで
きる。なお、可動体の両端に永久磁石を設けて磁気セン
サと対向させ、あるいは側面に永久磁石を設けて2個の
磁気センサを対向させ、両方の出力信号を加算して温度
ドリフトや磁気ノイズの影響をなくすことができ、摺動
部分にリニヤ軸受を設けて可動体の移動を円滑にするこ
ともできる。また、磁気センサの永久磁石に対向する面
に緩衝手段を設けることによって、永久磁石との強い衝
撃をなくし、磁気センサの損傷を防ぎ、寿命の長い加速
度センサが得られる。[0006] Further, holding springs inserted between the movable body and the frame are provided on both end faces of the movable body fitted to the guide pillar or the guide cylinder, and both holding springs are opposed to the movable body. The movable body is held at a position where the movable body is balanced by acting in the direction, and one of them is compressed and the other is expanded according to the direction of acceleration to move the movable body based on this balanced position, and the displacement is detected by the magnetic sensor. If you calculate the acceleration,
The acceleration sensor can be installed at an angle or in a horizontal direction. In addition, permanent magnets are provided at both ends of the movable body so as to face the magnetic sensor, or permanent magnets are provided on the side face so that two magnetic sensors face each other. Can be eliminated, and a linear bearing can be provided on the sliding portion to smoothly move the movable body. In addition, by providing the buffering means on the surface of the magnetic sensor facing the permanent magnet, strong impact with the permanent magnet is eliminated, damage to the magnetic sensor is prevented, and a long-life acceleration sensor is obtained.
【0007】[0007]
【実施例】以下、本発明を図に示す実施例に基づいて説
明する。図1は第1の実施例を示す側断面図で、1は器
枠、2は案内柱で、器枠1内に軸心を測定する加速度の
方向(図の矢印方向)に合わせて設け、外周面に摺動面
10を形成している。3は前記案内柱2に摺動可能に挿
通した可動体で、上方の端面に永久磁石4を取り付け、
下方の端面に案内柱2を囲んで可動体3を支持する保持
ばね5を設けている。永久磁石4はフェライト磁石や希
土類磁石などの円板状、環状あるいは薄膜状の任意の磁
石を用いることができる。6は前記可動体3に取り付け
た永久磁石4と対向させた磁気センサで、案内柱2を囲
んで器枠1の上方内面に固着させており、磁気抵抗素子
あるいはホール素子あるいはフラックスゲートなどが用
いられている。7は磁気センサの出力から加速度を演算
する演算器である。なお、前記案内柱2と可動体3の少
なくとも摺動面は低摩擦、低摩耗の固体潤滑材で構成し
ている。したがって、上方から加速度Gが加えられる
と、可動体3は加速度の大きさに応じた慣性により案内
柱2の摺動面10に沿って上方に移動し、保持ばね5を
伸長させて永久磁石4と磁気センサ6との間隔を小さく
する。このため、永久磁石4の漏れ磁界による磁気セン
サ6の出力が増大し、この出力変化を演算器7に入力し
て加速度Gの大きさを G=kx/m (kはばね定数を含む比例定数) で演算する。下方から加速度が加わった場合は、可動体
3が保持ばね5を圧縮させながら案内柱2の摺動面10
に沿って磁気センサ6から離れるように移動し、永久磁
石4と磁気センサ6との間隔が大きくなって磁気センサ
の出力が小さくなり、この出力変化によって演算器7が
加速度を演算する。上記の動作において、可動体3は案
内柱2の摺動面10に沿って加速度の測定方向にのみ摺
動して移動するので、測定方向以外の加速度成分は検出
されず、可動体の質量と保持ばねのばね定数を適宜に選
定できるので、小形で精度の良い加速度センサを得られ
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on an embodiment shown in the drawings. FIG. 1 is a side sectional view showing a first embodiment, 1 is a container frame, 2 is a guide post, which is provided in the container frame 1 in the direction of the acceleration for measuring the axis (the direction of the arrow in the figure). A sliding surface 10 is formed on the outer peripheral surface. Reference numeral 3 denotes a movable body slidably inserted through the guide column 2, and a permanent magnet 4 is attached to an upper end surface thereof.
A holding spring 5 that supports the movable body 3 around the guide column 2 is provided on the lower end surface. As the permanent magnet 4, any disc-shaped, ring-shaped or thin-film magnet such as a ferrite magnet or a rare earth magnet can be used. Numeral 6 denotes a magnetic sensor facing the permanent magnet 4 attached to the movable body 3, which is fixed to the upper inner surface of the casing 1 around the guide column 2, and uses a magnetoresistive element, a Hall element, a flux gate, or the like. Have been. Numeral 7 denotes an arithmetic unit for calculating acceleration from the output of the magnetic sensor. At least the sliding surfaces of the guide column 2 and the movable body 3 are made of a low-friction, low-wear solid lubricant. Therefore, when the acceleration G is applied from above, the movable body 3 moves upward along the sliding surface 10 of the guide column 2 by inertia according to the magnitude of the acceleration, and extends the holding spring 5 to move the permanent magnet 4. The distance between the magnetic sensor 6 and the magnetic sensor 6 is reduced. For this reason, the output of the magnetic sensor 6 due to the leakage magnetic field of the permanent magnet 4 increases, and this output change is input to the calculator 7 to determine the magnitude of the acceleration G as G = kx / m (k is a proportional constant including a spring constant). ). When acceleration is applied from below, the movable body 3 compresses the holding spring 5 while the sliding surface 10
Along with the magnetic sensor 6, the distance between the permanent magnet 4 and the magnetic sensor 6 increases, and the output of the magnetic sensor decreases, and the calculator 7 calculates the acceleration based on this output change. In the above operation, since the movable body 3 slides and moves along the sliding surface 10 of the guide column 2 only in the acceleration measurement direction, no acceleration component other than the measurement direction is detected, and the mass of the movable body and Since the spring constant of the holding spring can be appropriately selected, a small and accurate acceleration sensor can be obtained.
【0008】図2は、第2の実施例を示す側断面図で、
図1と同じ部分に同一の符号を付しており、案内柱2を
短くして一方端で器枠1内に固定させて設け、案内柱2
の軸心が測定する加速度方向になるよう支持させてお
り、可動体3に設けた凹穴8を前記案内柱2に摺動する
ように嵌合させ、凹穴8の底と案内柱2の先端とは、加
速度が加わったときに接触しないよう空隙を設けてい
る。この実施例では、図1の実施例と同様に作用し、可
動体3の上面に大きな永久磁石を取り付けることがで
き、磁気センサの出力を大きくすることができる。FIG. 2 is a side sectional view showing a second embodiment.
The same parts as those in FIG. 1 are denoted by the same reference numerals, and the guide post 2 is shortened and provided fixed at one end in the casing 1.
Of the movable body 3 is slidably fitted into the guide post 2 so that the bottom of the concave hole 8 and the guide post 2 The tip is provided with a gap so that it does not contact when acceleration is applied. In this embodiment, a large permanent magnet can be attached to the upper surface of the movable body 3 in the same manner as the embodiment of FIG. 1, and the output of the magnetic sensor can be increased.
【0009】図3は第3の実施例で、器枠1内に案内筒
9を設けており、この案内筒9の軸心を測定する加速度
の方向に合わせ、内側面に摺動面10を形成している。
この摺動面10に沿って摺動する可動体3をそなえ、可
動体3の上端面に永久磁石4を取り付け、下端面と器枠
との間に保持ばね5を設けている。6は前記永久磁石4
に対向させて案内筒9内の器枠内面に取り付けた磁気セ
ンサ、7は磁気センサ6に接続した演算器である。この
加速度センサに加速度が加えられると、可動体3が加速
度の大きさに応じて、保持ばね5を伸長または圧縮させ
て案内筒9内周との摺動面10に沿って軸方向に移動
し、永久磁石4と磁気センサ6との間隔が変化して、磁
気センサ6に加わる永久磁石4の漏れ磁界が変化して、
磁気センサ6の出力が増大し、この出力変化によって演
算器7から案内筒9の軸方向のみの加速度が検出され
る。この実施例では、永久磁石4と磁気センサ6を取り
付ける部分に案内柱2が貫通していないので、大きな永
久磁石を取り付けることができ、あるいは、可動体3を
小さくしても十分な取付面を得ることができる。なお、
案内筒9は、円筒形などの筒状のものに限られず、複数
個の支柱を筒状位置に配置して、相互の内側面で摺動面
10を形成して可動体を接触摺動させるようにしてもよ
く、また、器枠1自体の内周面を摺動面10として用い
るようにすることもできる。FIG. 3 shows a third embodiment, in which a guide tube 9 is provided in the casing 1, and the axis of the guide tube 9 is adjusted to the direction of the acceleration to be measured. Has formed.
A movable body 3 that slides along the sliding surface 10 is provided, a permanent magnet 4 is attached to an upper end surface of the movable body 3, and a holding spring 5 is provided between the lower end surface and the casing. 6 is the permanent magnet 4
A magnetic sensor 7 is attached to the inner surface of the casing in the guide tube 9 so as to face the. When acceleration is applied to the acceleration sensor, the movable body 3 extends or compresses the holding spring 5 according to the magnitude of the acceleration, and moves in the axial direction along the sliding surface 10 with the inner circumference of the guide cylinder 9. The distance between the permanent magnet 4 and the magnetic sensor 6 changes, and the leakage magnetic field of the permanent magnet 4 applied to the magnetic sensor 6 changes.
The output of the magnetic sensor 6 increases, and from this output change, the acceleration in only the axial direction of the guide cylinder 9 is detected from the calculator 7. In this embodiment, since the guide column 2 does not penetrate the portion where the permanent magnet 4 and the magnetic sensor 6 are mounted, a large permanent magnet can be mounted, or a sufficient mounting surface can be provided even if the movable body 3 is made small. Obtainable. In addition,
The guide cylinder 9 is not limited to a cylindrical one such as a cylindrical one, and a plurality of pillars are arranged at a cylindrical position, and sliding surfaces 10 are formed on inner surfaces of each other to allow the movable body to contact and slide. Alternatively, the inner peripheral surface of the container frame 1 itself may be used as the sliding surface 10.
【0010】図4は、第4の実施例を示す側断面図で、
器枠1の下方に案内筒11をそなえて摺動面10を形成
させ、この案内筒11内に挿入した保持ばね5に、接続
板12を介して保持ばね5より小径の可動体3を連結し
ており、保持ばね5の外周が案内筒11の内周面に形成
された摺動面10に沿って摺動するようにしてある。4
は永久磁石、6は磁気センサ、7は演算器である。この
ように、器枠1に設けられ測定する方向の摺動面10を
そなえた案内筒11に、可動体3の保持ばね5の外周面
が接触して摺動するように構成することによって、摺動
面10に接触する可動部分の接触面を小さくでき、摩擦
抵抗が少なくなる利点がある。なお、案内筒11に代え
て案内柱を設けて保持ばねの内周面と接触摺動させるよ
うにしてもよい。FIG. 4 is a side sectional view showing a fourth embodiment.
A sliding surface 10 is formed below the casing 1 with a guide cylinder 11, and the movable body 3 having a smaller diameter than the holding spring 5 is connected via a connecting plate 12 to the holding spring 5 inserted into the guide cylinder 11. The outer periphery of the holding spring 5 slides along a sliding surface 10 formed on the inner peripheral surface of the guide cylinder 11. 4
Is a permanent magnet, 6 is a magnetic sensor, and 7 is a calculator. As described above, the outer peripheral surface of the holding spring 5 of the movable body 3 is configured to be slid in contact with the guide cylinder 11 provided with the sliding surface 10 in the measuring direction provided on the casing 1. There is an advantage that the contact surface of the movable portion that comes into contact with the sliding surface 10 can be reduced, and the frictional resistance is reduced. Note that a guide column may be provided instead of the guide cylinder 11 so as to be slid in contact with the inner peripheral surface of the holding spring.
【0011】図5は第5の実施例を示す側断面図で、可
動体の両端に保持ばねを設けるようにしている。1は器
枠、2は器枠1内に測定する加速度の方向に設けた案内
柱で、器枠1内に軸心を測定する加速度の方向に合わせ
て設け、外周面に摺動面10を形成している。3は前記
案内柱2に摺動可能に挿通した可動体で、両端面に永久
磁石41、42を取り付けている。51、52は案内柱
2を囲んで可動体3を支持する保持ばねで、同じばね定
数のものを用いることが望ましい。61、62は前記永
久磁石41、42と対向させた磁気センサ、7は演算器
である。この実施例においては、加速度が加わっていな
い状態では保持ばね51、52が平衡した位置に可動体
3を保持しており、加速度が加わると、可動体3が加速
度の方向に応じて一方の保持ばねを圧縮させ他方の保持
ばねを伸長させて案内柱2の摺動面10に沿って移動
し、各磁気センサ61、62の出力が変動し、両方の検
出信号により演算器7で案内柱2の軸方向の加速度の方
向と大きさを演算検出し、両方の出力信号を加算するこ
とにより温度ドリフトや磁気ノイズの影響をなくすこと
ができる。なお、加速度センサの仕様によっては、可動
体の一方側の永久磁石と磁気センサを省くことができ
る。FIG. 5 is a side sectional view showing a fifth embodiment, in which holding springs are provided at both ends of a movable body. 1 is a casing, 2 is a guide column provided in the direction of the acceleration measured in the casing 1, provided in the casing 1 in accordance with the direction of the acceleration for measuring the axis, and has a sliding surface 10 on the outer peripheral surface. Has formed. Reference numeral 3 denotes a movable body slidably inserted into the guide column 2, and permanent magnets 41 and 42 are attached to both end surfaces. Reference numerals 51 and 52 denote holding springs which surround the guide column 2 and support the movable body 3, and it is desirable to use springs having the same spring constant. 61 and 62 are magnetic sensors facing the permanent magnets 41 and 42, and 7 is a calculator. In this embodiment, when no acceleration is applied, the movable springs 3 are held at positions where the holding springs 51 and 52 are in equilibrium. When acceleration is applied, the movable body 3 holds one of the movable bodies 3 in accordance with the direction of the acceleration. The spring is compressed and the other holding spring is extended to move along the sliding surface 10 of the guide column 2, the output of each of the magnetic sensors 61 and 62 fluctuates, and the arithmetic unit 7 detects the output of each of the magnetic sensors 61 and 62. By calculating and detecting the direction and magnitude of the acceleration in the axial direction, and adding both output signals, the effects of temperature drift and magnetic noise can be eliminated. Note that, depending on the specifications of the acceleration sensor, the permanent magnet and the magnetic sensor on one side of the movable body can be omitted.
【0012】図6は、案内柱と可動体との摺動面にリニ
ヤ滑り軸受を設けて可動体3を円滑に摺動させるように
し、永久磁石を可動体の側面に取り付けた第6の実施例
を示すものである。1は器枠、2は器枠1内に測定する
加速度の方向に設けた案内柱、3は可動体で、リニヤ滑
り軸受13を介して前記案内柱2に嵌合させており、案
内柱2に沿って軸方向に移動する。4は可動体3の側面
に取り付けた永久磁石、51、52は可動体3の両端と
器枠1の内面間に挿入した保持ばね、61、62は器枠
1の内周面に設けた磁気センサで、永久磁石4に対向さ
せて移動方向に振り分けた位置に設けている。7は演算
器である。この実施例における可動体3は、図5の実施
例と同様に作用するが、リニヤ滑り軸受13によって摺
動面10の摩擦抵抗が小さくなり、可動体3の移動が円
滑に行われる。なお、このようなリニヤ滑り軸受は、前
記したいずれの実施例にも用いることができる。FIG. 6 shows a sixth embodiment in which a linear sliding bearing is provided on the sliding surface between the guide column and the movable body so that the movable body 3 slides smoothly, and a permanent magnet is attached to the side surface of the movable body. This is an example. 1 is a frame, 2 is a guide column provided in the direction of the acceleration measured in the frame 1, 3 is a movable body, which is fitted to the guide column 2 via a linear sliding bearing 13; Move axially along. 4 is a permanent magnet attached to the side surface of the movable body 3, 51 and 52 are holding springs inserted between both ends of the movable body 3 and the inner surface of the casing 1, and 61 and 62 are magnets provided on the inner peripheral face of the casing 1. A sensor is provided at a position facing the permanent magnet 4 and distributed in the movement direction. 7 is an arithmetic unit. The movable body 3 in this embodiment operates in the same manner as the embodiment in FIG. 5, but the frictional resistance of the sliding surface 10 is reduced by the linear sliding bearing 13, and the movement of the movable body 3 is performed smoothly. Such a linear sliding bearing can be used in any of the above-described embodiments.
【0013】図7は第7の実施例で、図5の実施例にお
ける案内柱2と可動体3との摺動面に、リニヤ転がり軸
受14を設けており、可動体3を円滑に摺動させて加速
度の検出精度を向上させるようにしており、図5の実施
例と同様に作用する。なお、1は器枠、41、42は可
動体3の両端面に取り付けた永久磁石、51、52は案
内柱2を囲んで可動体3の両端面と器枠1内面との間に
設け、可動体3を支持する保持ばね、61、62は永久
磁石41、42と対向させた磁気センサである。FIG. 7 shows a seventh embodiment in which a linear rolling bearing 14 is provided on the sliding surface between the guide column 2 and the movable body 3 in the embodiment of FIG. 5, so that the movable body 3 slides smoothly. Thus, the accuracy of acceleration detection is improved, and the operation is the same as in the embodiment of FIG. In addition, 1 is a casing, 41 and 42 are permanent magnets attached to both end faces of the movable body 3, 51 and 52 are provided between both end faces of the movable body 3 and the inner face of the casing 1 surrounding the guide column 2, Holding springs 61 and 62 for supporting the movable body 3 are magnetic sensors facing the permanent magnets 41 and 42.
【0014】図8は第8の実施例で、図6の実施例にお
けるリニヤ滑り軸受に替えて、案内柱2にリニヤ転がり
軸受14を設けて可動体3を円滑に摺動させるようにし
ており、図6の実施例と同様に作用する。なお、1は器
枠、4は可動体3の側面に取り付けた永久磁石、51、
52は案内柱2を囲んで可動体3を支持する保持ばね、
61、62は永久磁石4に対向させて移動方向に振り分
けた位置に設けた磁気センサである。なお、このような
リニヤ転がり軸受は、前記図7および図8に示した実施
例に限られず、他の実施例の摺動面にも用いることがで
きる。FIG. 8 shows an eighth embodiment, in which a linear rolling bearing 14 is provided on the guide column 2 in place of the linear sliding bearing in the embodiment of FIG. 6 so that the movable body 3 can slide smoothly. , And operates similarly to the embodiment of FIG. In addition, 1 is a frame, 4 is a permanent magnet attached to the side of the movable body 3, 51,
52 is a holding spring that surrounds the guide column 2 and supports the movable body 3;
Reference numerals 61 and 62 denote magnetic sensors provided at positions allocated to the permanent magnet 4 in the moving direction. Note that such a linear rolling bearing is not limited to the embodiment shown in FIGS. 7 and 8, and can be used for the sliding surface of another embodiment.
【0015】図9は第9の実施例を示すものである。こ
の実施例では、器枠1に設けた案内筒15の内周面にリ
ニヤ転がり軸受14を設け、このリニヤ転がり軸受14
に可動体3を挿通させており、案内筒15に設けたリニ
ヤ転がり軸受14の固定部と可動体3両端のばね受け1
6との間に保持ばね51、52を介挿して、可動体3を
保持ばねの平衡した位置に保持させている。41、42
は可動体3の両端面に取り付けた永久磁石、61、62
は前記永久磁石に対向させて器枠1に設けた磁気センサ
である。加速度が加わっていない状態では保持ばね5
1、52が平衡した位置で可動体3を保持しており、加
速度が加わると、可動体3が加速度の方向に応じて一方
の保持ばねを圧縮させ他方の保持ばねを伸長させて案内
柱2のリニヤ転がり軸受14に沿って移動し、永久磁石
41、42の一方が対向する磁気センサから離れ、他方
が他方の磁気センサに接近する。これにより磁気センサ
61、62の出力が相互に変動し、両方の検出信号によ
り移動する軸方向の加速度の方向と大きさを演算検出す
る。なお、永久磁石と磁気センサは一方だけに設けるこ
ともでき、リニヤ転がり軸受14をリニヤ滑り軸受にし
てもよい。FIG. 9 shows a ninth embodiment. In this embodiment, a linear rolling bearing 14 is provided on the inner peripheral surface of a guide cylinder 15 provided on the casing 1.
The movable member 3 is inserted through the fixed portion of the linear rolling bearing 14 provided on the guide cylinder 15 and the spring receivers 1 at both ends of the movable member 3.
The movable body 3 is held at an equilibrium position of the holding spring by interposing holding springs 51 and 52 between the movable spring 3 and the movable spring 3. 41, 42
Are permanent magnets attached to both end surfaces of the movable body 3, 61 and 62
Is a magnetic sensor provided on the casing 1 so as to face the permanent magnet. When no acceleration is applied, the holding spring 5
1 and 52 hold the movable body 3 at a balanced position. When acceleration is applied, the movable body 3 compresses one of the holding springs and expands the other holding spring according to the direction of the acceleration to guide the guide pillar 2. Moves along the linear rolling bearing 14, one of the permanent magnets 41 and 42 moves away from the facing magnetic sensor, and the other approaches the other magnetic sensor. As a result, the outputs of the magnetic sensors 61 and 62 fluctuate with each other, and the direction and magnitude of the moving axial acceleration are calculated and detected based on both detection signals. The permanent magnet and the magnetic sensor may be provided on only one side, and the linear rolling bearing 14 may be a linear sliding bearing.
【0016】図10は、磁気センサに緩衝手段を設けた
例を示す第10の実施例である。1は器枠で案内筒9を
設けており、前記案内筒9の外周面を摺動面10にして
可動体3を嵌合させ、この可動体3を支持する保持ばね
5を案内筒9の内側に配置してばね座17に保持させて
いる。4は可動体3に取り付けた永久磁石、6は永久磁
石4に対向して設けた磁気センサである。20は磁気セ
ンサ6の表面を覆う緩衝手段で、高分子系コーティング
材たとえばエポキシ系樹脂の塗布層20aで構成してい
る。加速度が加わったときに、可動体3とともに永久磁
石4が移動して、磁気センサ6に当たると、可動体3の
質量により磁気センサ6に大きな衝撃が加わり、磁気セ
ンサが破損されるおそれがある。このため、磁気センサ
6を覆う緩衝手段20を設け、永久磁石4との衝撃をや
わらげて磁気センサを保護する。実験の結果では、緩衝
手段20をそなえない加速度センサでは、定格の2倍の
加速度を10回加えた場合、出力信号に異常を生じた
が、前記エポキシ系樹脂の塗布層20aからなる緩衝手
段20を設けた場合は、同じ条件で加速度を検出しても
正常な出力信号を得ることができた。なお、緩衝手段2
0を構成する塗布層20aに熱伝導性が優れた材料、た
とえばダウコーニング社の放熱性シリコンコンパウンド
などを用いれば、高温時の出力信号のドリフトが緩和さ
れる利点も得られる。FIG. 10 is a tenth embodiment showing an example in which the magnetic sensor is provided with a buffer means. Reference numeral 1 denotes a casing provided with a guide cylinder 9. The movable body 3 is fitted with the outer peripheral surface of the guide cylinder 9 as a sliding surface 10, and a holding spring 5 supporting the movable body 3 is connected to the guide cylinder 9. It is arranged inside and held by the spring seat 17. Reference numeral 4 denotes a permanent magnet attached to the movable body 3, and reference numeral 6 denotes a magnetic sensor provided to face the permanent magnet 4. Numeral 20 denotes a buffering means for covering the surface of the magnetic sensor 6, which is composed of a coating layer 20a of a polymer coating material, for example, an epoxy resin. When the permanent magnet 4 moves together with the movable body 3 when the acceleration is applied and hits the magnetic sensor 6, a large shock is applied to the magnetic sensor 6 by the mass of the movable body 3, and the magnetic sensor may be damaged. For this reason, a buffer means 20 for covering the magnetic sensor 6 is provided to reduce the impact with the permanent magnet 4 and protect the magnetic sensor. According to the results of the experiment, in the acceleration sensor without the buffer means 20, when the acceleration twice the rated value was applied ten times, the output signal became abnormal. However, the buffer means 20 comprising the epoxy resin coating layer 20a was abnormal. Provided, a normal output signal could be obtained even if acceleration was detected under the same conditions. Note that the buffer means 2
If a material having excellent thermal conductivity, for example, a heat-dissipating silicon compound manufactured by Dow Corning, is used for the coating layer 20a constituting 0, there is also obtained an advantage that the drift of the output signal at high temperatures is reduced.
【0017】図11は緩衝手段20の他の実施例を示す
第11の実施例で、図9の実施例と同様に構成し、可動
体3にリニヤ転がり軸受14を設けた加速度センサに実
施した例で、図9と同じ部分に同一の符号を付してい
る。この実施例における緩衝手段20は、永久磁石4と
磁気センサ6の間に、磁気センサ側に近づけ空隙を介し
て張架した、たとえばSUS316箔やマイラーフィル
ムなどの非磁性の薄板20bで構成されている。したが
って、加速度により可動体3が移動すると、永久磁石4
が磁気センサ6に当たる前に、磁気センサ6と空隙を介
して張架された緩衝手段20の薄板20bに当たって緩
衝され、磁気センサ6を保護することができ、マイラー
フィルムを使った場合、定格の100倍の加速度を加え
て100回の検出を行った結果、加速度の検出に異常が
認められず、SUS316箔を使った場合は、100倍
の加速度を1000回加えても、異常を生じなかった。FIG. 11 shows an eleventh embodiment showing another embodiment of the buffer means 20, which is constructed in the same manner as the embodiment of FIG. 9, and is applied to an acceleration sensor in which the movable body 3 is provided with the linear rolling bearing 14. In the example, the same parts as those in FIG. 9 are denoted by the same reference numerals. The buffer means 20 in this embodiment is constituted by a non-magnetic thin plate 20b such as a SUS316 foil or a Mylar film, which is stretched between the permanent magnet 4 and the magnetic sensor 6 through a gap close to the magnetic sensor. I have. Therefore, when the movable body 3 moves due to acceleration, the permanent magnet 4
Before hitting the magnetic sensor 6, the magnetic sensor 6 is buffered by hitting the thin plate 20b of the buffer means 20 stretched through the gap with the magnetic sensor 6, and the magnetic sensor 6 can be protected. As a result of performing the detection 100 times by applying the double acceleration, no abnormality was detected in the detection of the acceleration. When the SUS316 foil was used, no abnormality occurred even when the acceleration 100 times was applied 1000 times.
【0018】[0018]
【発明の効果】このように本発明は、加速度を測定する
方向の摺動面をそなえた器枠と、永久磁石をそなえ前記
摺動面に沿って移動する可動体と、前記永久磁石に対向
して器枠に取り付けられた磁気センサと、前記可動体を
摺動面の基準位置に保持させる保持ばねとをそなえ、加
速度によって前記可動体が、保持ばねに抗して前記基準
位置から移動して永久磁石と磁気センサとの対向位置を
変位させることにより、加速度が加えられたときに、永
久磁石を前記摺動面に沿って直線方向に移動させるよう
にしてあるので、この移動による磁気センサの検出値に
前記直線方向以外の加速度成分が含まれず、測定方向の
みの正確な加速度を検出することができ、小形で高性能
の加速度センサを得られ、保持ばねにより加速度センサ
の定格を容易に設定できる効果がある。また、可動体を
直線移動させるので、加速度による変位が円滑で、摺動
面にリニヤ滑り軸受あるいはリニヤ転がり軸受を設ける
ことによって移動時の抵抗をさらに少なくすることがで
き、迅速で精度の良い検出を行うことができる。また、
可動体を器枠の軸方向に支持させてあるので、2組の磁
気センサを可動体の両端面に永久磁石を取り付け、ある
いは側面に容易に設置でき、温度によるドリフトや磁気
ノイズの影響を簡単に除く構造にすることができるなど
の利点がある。なお、磁気センサに緩衝手段を設けて、
加速度によって移動する永久磁石が直接磁気センサに当
たらないようにしておくことによって、磁気センサを衝
撃から保護し、他数回の検出にも異常を生じないで安定
した検出を行うことができ、加速度センサの寿命を増大
させる効果が得られる。As described above, according to the present invention, a casing having a sliding surface in a direction for measuring acceleration, a movable body having a permanent magnet and moving along the sliding surface, and a movable body facing the permanent magnet are provided. A magnetic sensor attached to the casing, and a holding spring for holding the movable body at a reference position on the sliding surface, wherein the movable body moves from the reference position against the holding spring by acceleration. By displacing the position where the permanent magnet and the magnetic sensor face each other, the permanent magnet is moved in a linear direction along the sliding surface when acceleration is applied. The acceleration value other than the linear direction is not included in the detection value of the above, and it is possible to detect an accurate acceleration only in the measurement direction, to obtain a compact and high-performance acceleration sensor. Setting There can be effectively. In addition, since the movable body is moved linearly, displacement due to acceleration is smooth, and by providing a linear sliding bearing or a linear rolling bearing on the sliding surface, resistance during movement can be further reduced, and quick and accurate detection can be performed. It can be performed. Also,
Since the movable body is supported in the axial direction of the frame, two sets of magnetic sensors can be installed with permanent magnets on both ends of the movable body, or easily installed on the side surface, so that drift due to temperature and the effects of magnetic noise are easy. There is an advantage that the structure can be eliminated. In addition, by providing a buffer means in the magnetic sensor,
By preventing the permanent magnet that moves due to acceleration from directly hitting the magnetic sensor, the magnetic sensor is protected from impact, and stable detection can be performed without causing any abnormality in several other detections. The effect of increasing the life of the sensor is obtained.
【図1】本発明の第1の実施例を示す側断面図である。FIG. 1 is a side sectional view showing a first embodiment of the present invention.
【図2】本発明の第2の実施例を示す側断面図である。FIG. 2 is a side sectional view showing a second embodiment of the present invention.
【図3】本発明の第3の実施例を示す側断面図である。FIG. 3 is a side sectional view showing a third embodiment of the present invention.
【図4】本発明の第4の実施例を示す側断面図である。FIG. 4 is a side sectional view showing a fourth embodiment of the present invention.
【図5】本発明の第5の実施例を示す側断面図である。FIG. 5 is a side sectional view showing a fifth embodiment of the present invention.
【図6】本発明の第6の実施例を示す側断面図である。FIG. 6 is a side sectional view showing a sixth embodiment of the present invention.
【図7】本発明の第7の実施例を示す側断面図で、案内
柱の一部を断面にしてある。FIG. 7 is a side sectional view showing a seventh embodiment of the present invention, in which a part of a guide column is sectioned.
【図8】本発明の第8の実施例を示す側断面図で、案内
柱の一部を断面にしてある。FIG. 8 is a side sectional view showing an eighth embodiment of the present invention, in which a part of a guide column is sectioned.
【図9】本発明の第9の実施例を示す側断面図である。FIG. 9 is a side sectional view showing a ninth embodiment of the present invention.
【図10】本発明の第10の実施例を示す側断面図であ
る。FIG. 10 is a side sectional view showing a tenth embodiment of the present invention.
【図11】本発明の第11の実施例を示す側断面図で、
可動体の一部を断面にしてある。FIG. 11 is a side sectional view showing an eleventh embodiment of the present invention.
A part of the movable body is shown in cross section.
【図12】従来の例を示す側断面図である。FIG. 12 is a side sectional view showing a conventional example.
【図13】従来の別の例を示す側断面図である。FIG. 13 is a side sectional view showing another example of the related art.
1 器枠 2 案内柱 3 可動体 4、41、42 永久磁石 5、51、52 保持ばね 6、61、62 磁気センサ 7 演算器 8 凹穴 9 案内筒 10 摺動面 11 案内筒 12 接続板 13 リニヤ滑り軸受 14 リニヤ転がり軸受 15 案内筒 16 ばね受け 17 ばね座 20 緩衝手段 20a 塗布層 20b 薄板 31 可撓梁 32 永久磁石 33、34 磁気センサ 35 加算器 DESCRIPTION OF SYMBOLS 1 Package 2 Guide pillar 3 Movable body 4, 41, 42 Permanent magnet 5, 51, 52 Holding spring 6, 61, 62 Magnetic sensor 7 Computing unit 8 Concave hole 9 Guide cylinder 10 Sliding surface 11 Guide cylinder 12 Connection plate 13 Linear sliding bearing 14 Linear rolling bearing 15 Guide cylinder 16 Spring receiver 17 Spring seat 20 Buffer means 20a Coating layer 20b Thin plate 31 Flexible beam 32 Permanent magnet 33, 34 Magnetic sensor 35 Adder
───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜松 弘 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 (72)発明者 野村 章博 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Hiroshi Hamamatsu 2-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu City, Fukuoka Prefecture Inside Yaskawa Electric Co., Ltd. (72) Inventor Akihiro Nomura 2-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu City, Fukuoka Prefecture Yaskawa Electric Corporation
Claims (11)
永久磁石に対向させて設けた磁気センサをそなえ、永久
磁石の変位によって生じる漏れ磁界の変化を磁気センサ
で検出し、その検出値から前記永久磁石に加わった加速
度を演算する加速度センサにおいて、測定する加速度の
方向に沿う摺動面を形成した器枠と、永久磁石をそなえ
て前記摺動面に沿って移動する可動体と、前記永久磁石
に対向して器枠に取り付けられた磁気センサと、前記可
動体を摺動面の基準位置に保持させる保持ばねとをそな
え、加速度により前記可動体を、ばねに抗して前記基準
位置から摺動面に沿って移動させることにより、永久磁
石と磁気センサとの対向位置を変位させることを特徴と
する加速度センサ。A permanent magnet that is displaced by acceleration and a magnetic sensor provided to face the permanent magnet; a change in a leakage magnetic field caused by the displacement of the permanent magnet is detected by a magnetic sensor; In an acceleration sensor for calculating an acceleration applied to a magnet, a casing having a sliding surface along a direction of the measured acceleration, a movable body including a permanent magnet and moving along the sliding surface, And a holding spring for holding the movable body at a reference position on the sliding surface, and sliding the movable body from the reference position against the spring by acceleration. An acceleration sensor that displaces a facing position between a permanent magnet and a magnetic sensor by moving along a moving surface.
向を軸心にしてその外周に摺動面を形成した案内柱をそ
なえ、可動体を前記案内柱に挿通し、加速度に応じて可
動体を案内柱の前記摺動面に沿って移動させるようにし
た請求項1に記載した加速度センサ。2. A guide column having a sliding surface formed on the outer periphery of the container frame with the direction of acceleration to be measured as an axis, wherein a movable body is inserted through the guide column, and The acceleration sensor according to claim 1, wherein a movable body is moved along the sliding surface of the guide column.
向を軸心にしてその外周に摺動面を形成した案内柱をそ
なえ、可動体に前記案内柱を差し込む凹孔を設け、加速
度に応じて可動体を凹孔の内周面で前記摺動面に沿って
移動させるようにした請求項1に記載した加速度セン
サ。3. A guide hole having a sliding surface formed on the outer periphery thereof with the direction of acceleration to be measured as an axis, and a concave hole for inserting the guide post into a movable body is provided inside the casing. The acceleration sensor according to claim 1, wherein the movable body is moved along the sliding surface on the inner peripheral surface of the concave hole according to the condition.
向を軸心にしてその内周面に摺動面を形成した案内筒を
そなえ、可動体を前記案内筒内に挿入し、加速度に応じ
て可動体を案内筒の摺動面に沿って移動させるようにし
た請求項1に記載した加速度センサ。4. A guide cylinder having a sliding surface formed on the inner peripheral surface thereof with the direction of acceleration to be measured as an axis, and a movable body is inserted into the guide cylinder inside the casing. 2. The acceleration sensor according to claim 1, wherein the movable body is moved along the sliding surface of the guide cylinder in accordance with the following.
向を軸心にしてその内周面に摺動面を形成した案内筒を
そなえ、可動体に取り付けた保持ばねを前記案内筒に挿
入し、加速度に応じて保持ばねを前記摺動面に沿って伸
縮させるようにした請求項1に記載した加速度センサ。5. A guide cylinder having a sliding surface formed on an inner peripheral surface thereof with the direction of acceleration to be measured as an axis, and a holding spring attached to a movable body is provided in the guide cylinder. The acceleration sensor according to claim 1, wherein the acceleration sensor is inserted, and the holding spring expands and contracts along the sliding surface according to the acceleration.
と器枠との間に挿入され、加速度の方向により一方が圧
縮され他方が伸長して可動体を移動させるようにした請
求項1ないし5のいずれかに記載した加速度センサ。6. The holding spring is inserted between the movable body and the frame on both sides of the movable body, one of which is compressed and the other is extended to move the movable body according to the direction of acceleration. 6. The acceleration sensor according to any one of 1 to 5.
面に接触する面との間に、リニヤ滑り軸受をそなえた請
求項1ないし6のいずれかに記載した加速度センサ。7. The acceleration sensor according to claim 1, wherein a linear sliding bearing is provided between a sliding surface of the casing and a surface of the movable body that contacts the sliding surface.
面に接触する面との間に、リニヤ転がり軸受をそなえた
請求項1ないし6のいずれかに記載した加速度センサ。8. The acceleration sensor according to claim 1, wherein a linear rolling bearing is provided between a sliding surface of the casing and a surface of the movable body that contacts the sliding surface.
に緩衝手段を設けた請求項1ないし8のいずれかに記載
した加速度センサ。9. The acceleration sensor according to claim 1, wherein a buffer is provided on a surface of the magnetic sensor facing the permanent magnet.
覆う高分子系コーティング材の塗布層である請求項9に
記載した加速度センサ。10. The acceleration sensor according to claim 9, wherein the buffer means is a coating layer of a polymer coating material covering a surface of the magnetic sensor.
サの間に、磁気センサとは空隙を介して張架し移動した
永久磁石が当たるようにした非磁性の薄板である請求項
9に記載した加速度センサ。11. The non-magnetic thin plate as set forth in claim 9, wherein the buffer means is a non-magnetic thin plate between the permanent magnet and the magnetic sensor, which is moved by the permanent magnet stretched through a gap between the permanent magnet and the magnetic sensor. Acceleration sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15456597A JPH10332733A (en) | 1997-05-27 | 1997-05-27 | Acceleration sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15456597A JPH10332733A (en) | 1997-05-27 | 1997-05-27 | Acceleration sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10332733A true JPH10332733A (en) | 1998-12-18 |
Family
ID=15587027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15456597A Pending JPH10332733A (en) | 1997-05-27 | 1997-05-27 | Acceleration sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10332733A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100458374B1 (en) * | 2002-11-12 | 2004-11-26 | 주식회사 제어계측기술 | Noncontact controller of electronic accelerator for an internal-combustion engine and an electric vehicle |
JP2007064825A (en) * | 2005-08-31 | 2007-03-15 | Shinka Jitsugyo Kk | Acceleration sensor, and electronic device equipped therewith |
US7621185B2 (en) | 2005-07-28 | 2009-11-24 | Sae Magnetics (H.K.) Ltd. | Acceleration sensor and electronic device comprising the same |
JP2014038103A (en) * | 2007-06-20 | 2014-02-27 | Headway Technologies Inc | Sensing unit |
JP2014531016A (en) * | 2011-03-03 | 2014-11-20 | ライフ テクノロジーズ コーポレーション | Sampling probe, system, apparatus and method |
CN114910664A (en) * | 2022-05-18 | 2022-08-16 | 清华大学 | Magnetic liquid acceleration sensor |
KR20220114713A (en) * | 2021-02-09 | 2022-08-17 | 김기영 | Detection system for preventing violent driving |
-
1997
- 1997-05-27 JP JP15456597A patent/JPH10332733A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100458374B1 (en) * | 2002-11-12 | 2004-11-26 | 주식회사 제어계측기술 | Noncontact controller of electronic accelerator for an internal-combustion engine and an electric vehicle |
US7621185B2 (en) | 2005-07-28 | 2009-11-24 | Sae Magnetics (H.K.) Ltd. | Acceleration sensor and electronic device comprising the same |
JP2007064825A (en) * | 2005-08-31 | 2007-03-15 | Shinka Jitsugyo Kk | Acceleration sensor, and electronic device equipped therewith |
JP2014038103A (en) * | 2007-06-20 | 2014-02-27 | Headway Technologies Inc | Sensing unit |
JP2014531016A (en) * | 2011-03-03 | 2014-11-20 | ライフ テクノロジーズ コーポレーション | Sampling probe, system, apparatus and method |
US9529008B2 (en) | 2011-03-03 | 2016-12-27 | Life Technologies Corporation | Sampling probes, systems, apparatuses, and methods |
JP2017015714A (en) * | 2011-03-03 | 2017-01-19 | ライフ テクノロジーズ コーポレーション | Sampling probe, system, apparatus, and method |
US10082518B2 (en) | 2011-03-03 | 2018-09-25 | Life Technologies Corporation | Sampling probes, systems, apparatuses, and methods |
US10890596B2 (en) | 2011-03-03 | 2021-01-12 | Life Technologies Corporation | Sampling probes, systems, apparatuses, and methods |
KR20220114713A (en) * | 2021-02-09 | 2022-08-17 | 김기영 | Detection system for preventing violent driving |
CN114910664A (en) * | 2022-05-18 | 2022-08-16 | 清华大学 | Magnetic liquid acceleration sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101325542B1 (en) | Magnetic force sensor | |
EP1591792A3 (en) | Accelerometer with compensation of external magnetic fields | |
US20070120556A1 (en) | Magnetic position sensor for a mobile object with limited linear travel | |
JP2008534979A (en) | Device having a sensor device | |
JP2006153879A (en) | Linear position sensor | |
JP6367458B2 (en) | Sensor | |
JP2008537139A (en) | Device comprising a sensor device | |
JP2005195481A (en) | Magnetic linear position sensor | |
JPH10332733A (en) | Acceleration sensor | |
US7380345B2 (en) | Portable digital horizontal inclinometer | |
JP3474402B2 (en) | Measuring instrument | |
CN112394197A (en) | Pendulum accelerometer | |
KR100848447B1 (en) | Pressure sensor | |
JPH09236644A (en) | Magnetic potentiometer | |
JP6882530B2 (en) | Sensor device | |
JP2913525B2 (en) | Inclinometer | |
JP2001174207A (en) | Displacement gauge and measuring method for displacement amount | |
JPH1138035A (en) | Acceleration sensor | |
JPS62229003A (en) | Piston displacement detecting hydraulic cylinder | |
RU2039994C1 (en) | Compensation accelerometer | |
JPH095016A (en) | Magnetic sensor | |
JPH10319035A (en) | Acceleration sensor | |
JP3422184B2 (en) | Magnetic rotation angle sensor | |
JPH10325719A (en) | Sensor for inclination and acceleration | |
JPH0925912A (en) | Operating speed detecting sensor of cylinder |