JPH10332682A - Method for evaluating electrical insulation oil - Google Patents

Method for evaluating electrical insulation oil

Info

Publication number
JPH10332682A
JPH10332682A JP14019297A JP14019297A JPH10332682A JP H10332682 A JPH10332682 A JP H10332682A JP 14019297 A JP14019297 A JP 14019297A JP 14019297 A JP14019297 A JP 14019297A JP H10332682 A JPH10332682 A JP H10332682A
Authority
JP
Japan
Prior art keywords
insulating oil
chemiluminescence
temperature
electric insulating
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14019297A
Other languages
Japanese (ja)
Inventor
Takeshi Amimoto
剛 網本
Kazuya Tohata
和也 東畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14019297A priority Critical patent/JPH10332682A/en
Publication of JPH10332682A publication Critical patent/JPH10332682A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To evaluate deterioration of insulation oil by increasing the temperature of an electrical insulation oil and measuring the number of chemiluminescence, obtaining a specific expression for indicating the relationship between the inverse number of temperature and the number of chemiluminescence, and performing judgment from the number of chemiluminescence at a constant temperature and a constant in an expression. SOLUTION: The temperature of an electrical insulation oil is increased by heating and the number of chemiluminescence and a measurement temperature during this period are measured, thus converting into Arrhenius plot with the abscissa as an inverse number X of the measurement temperature (absolute temperature). The Arrhenius plot can be regressed nearly linearly, a regression expression Y=A.exp(-BX/ R) (R: gas constant, A, B: constants) is established, and the constant B is obtained from these. The constant B indicates an activation energy. Further, the number of chemiluminescence at an initial temperature before temperature increases is obtained from the regression expression. The value is the number of chemiluminescence while an energy from the outside is small and indicates the current degree of deterioration of an electrical insulation oil. This method allows the number of chemiluminescence to be measured quickly, thus the degree of deterioration of the electrical insulation oil can be quickly evaluated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、油入電気機器に
用いられる電気絶縁油の劣化の度合いを評価する技術に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for evaluating the degree of deterioration of electrical insulating oil used for oil-filled electrical equipment.

【0002】[0002]

【従来の技術】油入電気機器に用いられる電気絶縁油
は、電気機器の運転年数と共に劣化する。特に、電気絶
縁油に微量に溶解した銅は、触媒となり酸化劣化を促進
する。このため、保守管理の観点から定期的に電気絶縁
油の物性試験が行われているが、種々の試験項目の中で
劣化の度合いを評価する試験は重要な項目になってい
る。電気絶縁油の劣化を評価する従来の技術について
は、例えばJIS C 2101(1993)に基づく電気絶縁油の酸化
安定性試験では、銅触媒存在下で、一定圧の酸素を導入
し、一定時間加熱して電気絶縁油を劣化させ、スラッジ
量および全酸価を測定する。この酸化安定性試験につい
て以下に説明する。
2. Description of the Related Art Electrical insulating oil used in oil-filled electrical equipment deteriorates with the number of years of operation of the electrical equipment. In particular, a small amount of copper dissolved in the electric insulating oil becomes a catalyst and promotes oxidative deterioration. For this reason, a physical property test of the electrical insulating oil is regularly performed from the viewpoint of maintenance management, and among various test items, a test for evaluating the degree of deterioration is an important item. Regarding the conventional technology for evaluating the deterioration of electric insulating oil, for example, in the oxidation stability test of electric insulating oil based on JIS C 2101 (1993), oxygen at a constant pressure is introduced in the presence of a copper catalyst and heated for a certain period of time. Then, the electric insulating oil is deteriorated, and the sludge amount and the total acid value are measured. This oxidation stability test is described below.

【0003】まず、試料(電気絶縁油)の前処理とし
て、1時間乾燥したろ紙を用いて試験直前に試料をろ過
し、ろ過の初めに出る25mlは捨てる。次に、試料容
器に準備した銅触媒を入れ、次いで試料25mlを試料
容器に採り、試料容器を120℃程度に調節された恒温
油浴内に浸す。その後直ちに酸素を導入する。酸素の導
入は、油の酸化によって消費される酸素を補給する程度
であるが、この試料の酸化操作は中断しないように75
時間行う。所定時間の酸化を終わった試料容器は、恒温
油浴の外に取り出し、これを暗所に約1時間放置する。
その後、試料は沈殿用ナフサを加えて洗いながら、共栓
容器に移す。銅触媒および試料容器は、十分に洗浄し、
その液を試料に加える。この場合、溶剤の使用料は30
0mlとする。これを暗所に16〜20時間放置した
後、ろ紙あるいは吸引によってろ過する。
[0003] First, as a pretreatment of a sample (electric insulating oil), the sample is filtered using a filter paper dried for one hour immediately before the test, and the 25 ml discharged at the beginning of the filtration is discarded. Next, the prepared copper catalyst is put in a sample container, and then a 25 ml sample is taken in the sample container, and the sample container is immersed in a constant temperature oil bath adjusted to about 120 ° C. Immediately thereafter oxygen is introduced. The introduction of oxygen is sufficient to replenish the oxygen consumed by the oxidation of the oil, but the oxidation of this sample is not interrupted.
Do time. The sample container that has been oxidized for a predetermined time is taken out of the constant temperature oil bath and left in a dark place for about 1 hour.
Thereafter, the sample is transferred to a stoppered container while washing by adding naphtha for precipitation. The copper catalyst and sample container should be thoroughly cleaned,
Add the liquid to the sample. In this case, the solvent fee is 30
Make it 0 ml. After leaving this in a dark place for 16 to 20 hours, it is filtered by filter paper or suction.

【0004】ろ紙でろ過した場合、ろ紙上のスラッジは
沈殿用ナフサで洗浄し、洗液に着色を認めなくなった
ら、100〜105℃で3時間乾燥した後その質量を量
って、スラッジ量を定量する。次に、スラッジを分離し
たろ液を集め、沈殿用ナフサで薄め、これに所定の溶剤
および指示薬を加えた後、標定した0.05mol/l
水酸化カリウム溶液で滴定して、全酸価を求める。
[0004] When filtered with filter paper, the sludge on the filter paper is washed with a naphtha for sedimentation, and when coloration is not observed in the washing liquid, the slurry is dried at 100 to 105 ° C for 3 hours, and the mass is measured to determine the amount of sludge. Quantify. Next, the filtrate from which the sludge was separated was collected, diluted with a naphtha for sedimentation, added with a predetermined solvent and an indicator, and then standardized at 0.05 mol / l.
Titrate with potassium hydroxide solution to determine total acid number.

【0005】また、電気絶縁油の劣化を評価する従来の
方法の別例として、電気絶縁油に油入電気機器に用いら
れる他材料を浸漬し、酸素を導入し、一定時間加熱しな
がら、電気絶縁油の誘電正接を連続的に測定する、ある
いは、他材料共存下で、電気絶縁油を加熱した後、スラ
ッジ量および全酸価を測定する等の方法も、用いられて
いる。
As another example of a conventional method for evaluating the deterioration of an electric insulating oil, another material used for oil-filled electric equipment is immersed in the electric insulating oil, oxygen is introduced, and the electric insulating oil is heated for a certain period of time. A method of continuously measuring the dielectric loss tangent of the insulating oil or measuring the amount of sludge and the total acid value after heating the electric insulating oil in the presence of another material has also been used.

【0006】[0006]

【発明が解決しようとする課題】従来の電気絶縁油の評
価方法は、劣化の度合いを以上の様に評価するものであ
るため、評価に長時間要し、複雑であるとともに評価に
要する油量も多いものであった。
Since the conventional method for evaluating an electric insulating oil evaluates the degree of deterioration as described above, it takes a long time for the evaluation, and the amount of oil required for the evaluation is complicated and complicated. There were many.

【0007】この発明は、上記のような問題点を解消す
るために成されたものであって、少量の電気絶縁油を用
いて短時間で容易に劣化の度合いを評価できる電気絶縁
油の評価方法を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and is intended to evaluate the degree of deterioration of an electric insulating oil by using a small amount of the electric insulating oil in a short time and easily. The aim is to get the method.

【0008】[0008]

【課題を解決するための手段】この発明の請求項1に係
わる電気絶縁油の評価方法は、電気絶縁油を昇温加熱し
て化学発光数を測定し、測定温度(絶対温度)の逆数X
と各測定温度に対応する化学発光数Yとの関係を満たす
回帰式“Y=A・exp(−BX/R);Rは気体定
数、A,Bは定数”を求め、所定の温度tにおける化学
発光数Ytと上記定数Bとの大きさから上記電気絶縁油
の劣化の度合いを評価するものである。
According to a first aspect of the present invention, there is provided a method for evaluating an electric insulating oil, comprising measuring the number of chemiluminescence by heating the electric insulating oil, and measuring the reciprocal X of the measured temperature (absolute temperature).
And a regression equation “Y = A · exp (−BX / R); R is a gas constant, and A and B are constants” satisfying a relationship between the temperature and the chemiluminescence number Y corresponding to each measurement temperature. The degree of deterioration of the electrical insulating oil is evaluated from the magnitude of the chemiluminescence number Yt and the constant B.

【0009】この発明の請求項2に係わる電気絶縁油の
評価方法は、所定の温度tを、電気絶縁油を実用的に用
いる温度、あるいは昇温前の初期温度に設定するもので
ある。
According to a second aspect of the present invention, there is provided a method for evaluating an electric insulating oil, wherein the predetermined temperature t is set to a temperature at which the electric insulating oil is practically used or an initial temperature before the temperature is raised.

【0010】この発明の請求項3に係わる電気絶縁油の
評価方法は、化学発光数Ytおよび定数Bの保守基準と
なる管理値を設定し、上記管理値と比較することによっ
て電気絶縁油の劣化の度合いを評価するものである。
According to a third aspect of the present invention, there is provided a method for evaluating an electrical insulating oil, wherein a control value serving as a maintenance standard for the chemiluminescence number Yt and the constant B is set and compared with the control value. Is to evaluate the degree of

【0011】この発明の請求項4に係わる電気絶縁油の
評価方法は、電気絶縁油を、使用条件に応じた劣化促進
要因によって加速劣化させる条件下で、昇温加熱して化
学発光数を測定するものである。
According to a fourth aspect of the present invention, in the method for evaluating an electric insulating oil, the number of chemiluminescence is measured by heating the electric insulating oil under a condition in which the electric insulating oil is acceleratedly degraded by a deterioration accelerating factor according to a use condition. Is what you do.

【0012】この発明の請求項5に係わる電気絶縁油の
評価方法は、電気絶縁油を油入電気機器に用いられる他
材料と共存させた条件下で、昇温加熱して化学発光数を
測定するものである。
According to a fifth aspect of the present invention, there is provided a method for evaluating an electric insulating oil, comprising measuring the number of chemiluminescence by heating and heating under the condition that the electric insulating oil coexists with other materials used for oil-filled electric equipment. Is what you do.

【0013】この発明の請求項6に係わる電気絶縁油の
評価方法は、電気絶縁油を油入電気機器に用いられる他
材料と共存させたものと、上記電気絶縁油単独のものと
をそれぞれ昇温加熱して化学発光数を測定して比較する
ことにより、上記共存材料による上記電気絶縁油の劣化
への影響を評価するものである。
According to a sixth aspect of the present invention, there is provided a method for evaluating an electrical insulating oil, wherein the electrical insulating oil is made to coexist with other materials used for oil-filled electrical equipment, and the electrical insulating oil alone is used to raise the electrical insulating oil. The effect of the coexisting material on the deterioration of the electric insulating oil is evaluated by measuring the number of chemiluminescences by heating and comparing the numbers.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、この発明の実施の形態1を図につ
いて説明する。図1は、電気絶縁油に用いる新油および
劣化油における化学発光数を、東北電子(株)製ケミカ
ルルミネッセンスアナライザーを用いて、測定した結果
を示すグラフである。新油は電気絶縁油メーカーの1種
4号油を、劣化油は同じく1種4号油で約20年使用し
た変圧器から採取したものを使用した。測定条件は、試
料油量;5ml、測定波長300〜650nm、昇温温
度区間;(室温〜100℃)で、2種の電気絶縁油を昇
温加熱し、この間の化学発光数および測定温度を連続的
に測定した。図1の縦軸は単位時間当たりの化学発光数
Y、横軸は測定温度であり、化学発光数は測定温度の上
昇に伴い指数関数的に増加する。なお、この測定に要す
る時間は10〜20分程度である。
Embodiment 1 FIG. Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a graph showing the results of measuring the number of chemiluminescence in a new oil and a degraded oil used as an electric insulating oil using a chemical luminescence analyzer manufactured by Tohoku Electronics Co., Ltd. The new oil used was Type 4 oil of an electrical insulating oil manufacturer, and the deteriorated oil was the same type 1 oil collected from a transformer used for about 20 years. The measurement conditions were as follows: the amount of sample oil: 5 ml, the measurement wavelength: 300 to 650 nm, the temperature rising temperature section: (room temperature to 100 ° C.), the two kinds of electric insulating oils were heated and heated. Measured continuously. In FIG. 1, the vertical axis represents the number of chemiluminescence Y per unit time, and the horizontal axis represents the measurement temperature. The number of chemiluminescence increases exponentially with an increase in the measurement temperature. The time required for this measurement is about 10 to 20 minutes.

【0015】ここで、電気絶縁油の劣化およびそれに伴
う化学発光について以下に説明する。図2は、電気絶縁
油の主成分である炭火水素の劣化過程である自動酸化の
反応機構を説明する図である。図に示すように、化学反
応は連鎖的に進行し、有機物の酸化反応や過酸化物の酸
素との反応等によって電子励起状態の分子または原子が
生成され、これらが基底状態に戻る際、化学発光が発生
する。この化学発光は、反応過程での現象として考える
と、劣化の前駆現象と言う事ができる。この実施の形態
では、上記の様に電気絶縁油の劣化と相関関係のある化
学発光をとらえて、劣化の度合いを評価するものであ
る。
Here, the deterioration of the electric insulating oil and the accompanying chemiluminescence will be described below. FIG. 2 is a view for explaining a reaction mechanism of autoxidation, which is a process of deteriorating carbon fired hydrogen, which is a main component of electric insulating oil. As shown in the figure, the chemical reaction progresses in a chain, and molecules or atoms in an electronically excited state are generated by an oxidation reaction of an organic substance or a reaction of a peroxide with oxygen. Light emission occurs. When this chemiluminescence is considered as a phenomenon in a reaction process, it can be said that it is a precursor phenomenon of deterioration. In this embodiment, the degree of the deterioration is evaluated by capturing the chemiluminescence having a correlation with the deterioration of the electric insulating oil as described above.

【0016】図3は、図1の横軸を測定温度(絶対温
度)の逆数Xにし、アレニウスプロットに変換したもの
である。図に示すように、アレニウスプロットは、ほぼ
直線に回帰でき、回帰式“Y=A・exp(−BX/
R);Rは気体定数、A,Bは定数”を求め、定数Bを
求める。気体定数R=1.987として、 新油の場合、 Y=3.34×108・exp(−1
1.2×103X/R) 劣化油の場合、Y=3.12×109・exp(−9.
2×103X/R) の直線に回帰できる。このアレニウスプロットによって
得られる回帰式は、アレニウスの式と呼ばれ、化学反応
の速度と温度との関係を示すもので、定数Bは活性化エ
ネルギーを表すものである。すなわち、反応が進行する
ためには活性化エネルギー以上のエネルーを付与する必
要があり、このため、定数Bが小さければ反応が容易に
進行し、劣化しやすい状況にあると言える。
FIG. 3 is a graph obtained by converting the abscissa of FIG. 1 to the reciprocal X of the measured temperature (absolute temperature) and converting it to an Arrhenius plot. As shown in the figure, the Arrhenius plot can be almost linearly regressed, and the regression equation “Y = A · exp (−BX /
R); R is a gas constant, A and B are constants, and a constant B is obtained. As a gas constant R = 1.987, in the case of new oil, Y = 3.34 × 10 8 · exp (−1
1.2 × 10 3 X / R) In the case of deteriorated oil, Y = 3.12 × 10 9 · exp (−9.
(2 × 10 3 X / R). The regression equation obtained from the Arrhenius plot is called the Arrhenius equation, and indicates the relationship between the speed of the chemical reaction and the temperature, and the constant B indicates the activation energy. That is, in order for the reaction to proceed, it is necessary to impart energy equal to or higher than the activation energy. Therefore, it can be said that if the constant B is small, the reaction proceeds easily and is likely to be deteriorated.

【0017】さらに、上記回帰式から昇温前の初期温度
t℃における化学発光数Ytを求める。この値Ytは、
低温のため外部から付与されるエネルギーが小さい状態
における化学発光数であり、電気絶縁油の現状(測定時
点)での劣化の度合いを示している。図3の新油および
劣化油におけるアレニウスプロットから求めた定数Bお
よび30℃における化学発光数Y30を、図4の表に示
す。新油と劣化油とを比較すると、図に示すように、新
油の方が定数Bは大きく、Y30は格段と小さい。すなわ
ち、新油の方が、劣化しにくく、現状での劣化の度合い
は格段と小さいことが判る。なお、この場合、Y30を求
めたが、電気絶縁油の現状での劣化の度合いを示す化学
発光数Ytの温度t℃は、電気絶縁油を実用的に用いる
温度でも良く、10〜40℃が適当であるが、特に限定
するものではない。
Further, the chemiluminescence number Yt at the initial temperature t ° C. before the temperature rise is obtained from the regression equation. This value Yt is
This is the number of chemiluminescence in a state where the energy applied from the outside is low due to the low temperature, and indicates the degree of deterioration of the electric insulating oil at the current state (at the time of measurement). The constant B obtained from the Arrhenius plot and the chemiluminescence number Y 30 at 30 ° C. of the new oil and the deteriorated oil of FIG. 3 are shown in the table of FIG. Comparing new oil and the degraded oil, as shown in FIG., The constant B towards new oil is large, Y 30 is as small as much. That is, it can be seen that the new oil is less likely to deteriorate, and the degree of deterioration under the present conditions is much smaller. In this case, Y 30 was determined. The temperature t ° C. of the chemiluminescence number Yt indicating the degree of deterioration of the electric insulating oil at the present time may be a temperature at which the electric insulating oil is practically used. Is suitable, but not particularly limited.

【0018】この実施の形態では、化学発光数の測定が
短時間で行えるため、従来のものに比べ、格段と短時間
で電気絶縁油の劣化の度合いを評価できる。しかも、評
価に要する油量も少量ですみ、また、現状の劣化の度合
いと劣化のし易さとの双方を評価できるため、信頼性の
高い評価が行える。
In this embodiment, the number of chemiluminescence can be measured in a short time, so that the degree of deterioration of the electrical insulating oil can be evaluated in a much shorter time than in the conventional case. In addition, a small amount of oil is required for the evaluation, and both the current degree of deterioration and the ease of deterioration can be evaluated, so that highly reliable evaluation can be performed.

【0019】実施の形態2.次に、この発明の実施の形
態2について説明する。例えば、室温30℃で、電気絶
縁油の劣化の度合いを、上記実施の形態1による回帰式
から導かれる化学発光数Y30および定数Bで評価する。
その際、予め保守基準となる管理値Y30xおよびBxを
設定する。これによって、劣化の度合いが異なる種々の
電気絶縁油について、化学発光数Y30および定数Bをそ
れぞれ求め、それらを管理値Y30xおよびBxと比較す
ることによって評価できる。図5に示すように、管理値
30xおよびBxによって電気絶縁油をA〜Dの4つの
領域に分けることができ、例えば、D領域;正常、B領
域;使用不可、AおよびC領域;要注意として、B領域
にある場合は、使用を中止し、AおよびC領域にある場
合は、継続して監視する必要があるため、通常定期的に
行う評価を頻度を上げて行う等の措置を採る。
Embodiment 2 Next, a second embodiment of the present invention will be described. For example, at a room temperature of 30 ° C., the degree of deterioration of the electric insulating oil is evaluated by the chemiluminescence number Y 30 and the constant B derived from the regression equation according to the first embodiment.
At this time, management values Y 30 x and Bx which are maintenance standards are set in advance. Thus, the various electrical insulating oil different degrees of degradation, respectively determined chemiluminescent number Y 30 and constants B, it can be evaluated by comparing them with the control value Y 30 x and Bx. As shown in FIG. 5, can be by the management value Y 30 x and Bx divide the electrical insulating oil into four areas to D, for example, D region; normal, B region; unusable, A and C region; It is important to note that if it is in area B, use should be discontinued, and if it is in area A and C, it is necessary to continuously monitor it. Take.

【0020】また、新油についても、良好な状態にある
事を確認する初期評価を行う必要があり、別途、新油用
の管理値を設けて評価する。この様に、予め保守基準と
なる管理値Y30xおよびBxを設定して、電気絶縁油の
劣化の度合いを評価することによって、評価方法の精度
を向上させる事ができる。
Further, it is necessary to perform an initial evaluation for confirming that the new oil is in a good state, and a new oil control value is separately provided for the evaluation. In this way, by setting the management values Y 30 x and Bx as the maintenance standards in advance and evaluating the degree of deterioration of the electrical insulating oil, the accuracy of the evaluation method can be improved.

【0021】実施の形態3.次に、この発明の実施の形
態3について説明する。油入電気機器の期待寿命は数十
年と長く、このため、使用される電気絶縁油も長期の寿
命が期待されている。また、油入電気機器は定期的にオ
ーバーホール工事等の保守管理が行われており、それに
よって電気絶縁油がさらされる環境が変わり、劣化が促
進される場合があった。このため、電気絶縁油を、使用
条件に応じた劣化促進要因、例えば、銅触媒の添加、空
気雰囲気等の条件下で加速劣化させて、劣化の度合いを
評価する。この場合も上記実施の形態1と同様に、昇温
加熱して化学発光数を測定して、回帰式から化学発光数
30および定数Bを導き、上記実施の形態2と同様に管
理値を設定して評価する。
Embodiment 3 Next, a third embodiment of the present invention will be described. The expected life of oil-filled electrical equipment is as long as several tens of years, and therefore, the electrical insulating oil used is also expected to have a long life. In addition, maintenance work such as overhaul work is regularly performed on oil-filled electric equipment, which changes the environment to which the electric insulating oil is exposed, and sometimes accelerates deterioration. For this reason, the degree of deterioration is evaluated by accelerating and degrading the electrical insulating oil under conditions such as the addition of a copper catalyst and the atmosphere of air in accordance with the use conditions. Similarly to the first embodiment of the case above described, by measuring the chemiluminescence count was heated heating leads to chemiluminescence number Y 30 and the constant B from the regression equation, as in the second embodiment of the control value Set and evaluate.

【0022】この実施の形態では、電気絶縁油における
現状の劣化の度合いと長期間に渡る劣化を想定した劣化
のし易さとを、短時間で少量の電気絶縁油を用いて容易
に評価することができる。
In this embodiment, it is possible to easily evaluate the current degree of deterioration of the electric insulating oil and the easiness of deterioration assuming long-term deterioration by using a small amount of electric insulating oil in a short time. Can be.

【0023】実施の形態4.次に、この発明の実施の形
態4について説明する。電気絶縁油は材料の共存により
劣化が促進されることがある。このため、油入電気機器
への適用に先駆けて、油入電気機器に使用されている他
の材料、例えば、固体絶縁材料、その他の絶縁材料、金
属材料等と共存させて、これらの材料が電気絶縁油の劣
化に与える影響を評価する。油入電気機器に使用されて
いる他の材料と電気絶縁油とを共存させ、上記実施の形
態1と同様に、昇温加熱して化学発光数を測定する。こ
の場合も、回帰式から化学発光数Y30および定数Bを導
き、上記実施の形態2と同様に管理値を設定して評価す
ることができる。
Embodiment 4 Next, a fourth embodiment of the present invention will be described. Degradation of the electric insulating oil may be promoted by the coexistence of the material. For this reason, prior to application to oil-filled electrical equipment, these materials coexist with other materials used in oil-filled electrical equipment, such as solid insulating materials, other insulating materials, and metal materials. Evaluate the effect on electrical insulation oil degradation. Other materials used in the oil-filled electric device are coexisted with the electric insulating oil, and the temperature is increased and heated to measure the number of chemiluminescence as in the first embodiment. Again, lead to chemiluminescent number Y 30 and the constant B from the regression equation can be evaluated by setting the same manner control value and the second embodiment.

【0024】なお、この場合、電気絶縁油単独の試料も
昇温加熱して化学発光数を測定することによって、他の
材料と共存させたものと電気絶縁油単独のものとの比較
から、その材料の影響が精度良く評価できる。図6に他
の材料と共存させたものと電気絶縁油単独のものとの化
学発光数の推移を示す。図に示すように、他材料と共存
させた電気絶縁油は、化学発光数が測定時間と共に急速
に増加する。この場合、この材料は、劣化への影響が大
きいと判断できる。劣化への影響が小さい場合は、化学
発光数の増加は緩やかとなる。また、図に示すように、
電気絶縁油単独のものは、化学発光数の増加は極めて緩
やかである。
In this case, the sample of the electric insulating oil alone was heated and heated to measure the number of chemiluminescence. By comparing the sample coexisting with other materials and the electric insulating oil alone, The influence of the material can be accurately evaluated. FIG. 6 shows the transition of the number of chemiluminescence in the case of coexisting with other materials and in the case of using only electric insulating oil. As shown in the figure, in the case of the electric insulating oil coexisting with other materials, the number of chemiluminescence increases rapidly with the measurement time. In this case, it can be determined that this material has a large effect on deterioration. When the influence on the deterioration is small, the increase in the number of chemiluminescence becomes slow. Also, as shown in the figure,
In the case of the electric insulating oil alone, the increase in the number of chemiluminescence is extremely slow.

【0025】また、図6から、測定期間における化学発
光数の積分値を、他材料と共存させたものと電気絶縁油
単独のものとのそれぞれについて求め、その差分から上
記他材料の電気絶縁油の劣化への影響の大きさが判る。
また、この実施の形態では、電気絶縁油は通常新油を用
いるが、それ以外でも評価できる。
Further, from FIG. 6, the integrated value of the number of chemiluminescence during the measurement period was obtained for each of the coexistence with other materials and the one for electric insulating oil alone, and the difference between the values was used as the difference. The magnitude of the influence on the deterioration of the metal is understood.
Further, in this embodiment, a new oil is usually used as the electric insulating oil, but other oils can be evaluated.

【0026】以上の様にこの実施の形態では、電気絶縁
油における共存材料の劣化への影響を、短時間で少量の
電気絶縁油を用いて容易に評価することができる。
As described above, in this embodiment, the effect of the electric insulating oil on the deterioration of the coexisting material can be easily evaluated in a short time by using a small amount of the electric insulating oil.

【0027】[0027]

【発明の効果】以上のようにこの発明によると、電気絶
縁油を昇温加熱して化学発光数を測定し、測定温度(絶
対温度)の逆数Xと化学発光数Yとの関係を満たす回帰
式“Y=A・exp(−BX/R)を求め、所定の温度
tにおける化学発光数Ytと上記定数Bとの大きさから
上記電気絶縁油の劣化の度合いを評価するため、評価に
要する油量も少量ですみ、しかも格段と短時間で容易に
評価できる。また、上記所定温度における劣化の度合い
と劣化のし易さとの双方を評価できるため、信頼性の高
い評価が行える。
As described above, according to the present invention, the number of chemiluminescences is measured by heating and heating the electric insulating oil, and the regression satisfying the relationship between the reciprocal X of the measured temperature (absolute temperature) and the chemiluminescence number Y is obtained. The expression “Y = A · exp (−BX / R)” is obtained, and the degree of deterioration of the electric insulating oil is evaluated from the magnitude of the chemiluminescence number Yt and the constant B at a predetermined temperature t. The oil amount is small, the evaluation can be performed easily in a remarkably short time, and both the degree of deterioration at the predetermined temperature and the easiness of deterioration can be evaluated.

【0028】またこの発明によると、電気絶縁油の評価
に用いる化学発光数Ytにおける所定の温度tを、電気
絶縁油を実用的に用いる温度、あるいは昇温前の初期温
度に設定するため、化学発光数Ytによって現状の劣化
の度合いが評価でき、信頼性の高い電気絶縁油の評価が
容易に行える。
According to the present invention, the predetermined temperature t in the chemiluminescence number Yt used for evaluating the electric insulating oil is set to a temperature at which the electric insulating oil is practically used or an initial temperature before the temperature rise. The current degree of deterioration can be evaluated by the number of light emission Yt, and highly reliable electric insulating oil can be easily evaluated.

【0029】またこの発明によると、化学発光数Ytお
よび定数Bの保守基準となる管理値を設定し、上記管理
値と比較することによって電気絶縁油の劣化の度合いを
評価するため、高精度で電気絶縁油を評価できる。
According to the present invention, a control value serving as a maintenance standard for the chemiluminescence number Yt and the constant B is set, and the degree of deterioration of the electrical insulating oil is evaluated by comparing the control value with the control value. Can evaluate electrical insulating oil.

【0030】またこの発明によると、電気絶縁油を、使
用条件に応じた劣化促進要因によって加速劣化させる条
件下で、昇温加熱して化学発光数を測定するため、長期
間に渡る劣化を想定した劣化の度合いを、短時間で少量
の電気絶縁油を用いて容易に評価することができる。
According to the present invention, the number of chemiluminescences is measured by heating and heating under a condition in which the electrical insulating oil is acceleratedly degraded by a deterioration accelerating factor in accordance with the use condition. The degree of deterioration can be easily evaluated in a short time using a small amount of electric insulating oil.

【0031】またこの発明によると、電気絶縁油を油入
電気機器に用いられる他材料と共存させた条件下で、昇
温加熱して化学発光数を測定するため、電気絶縁油にお
ける共存材料の劣化への影響を、短時間で少量の電気絶
縁油を用いて容易に評価することができる。
According to the present invention, the number of chemiluminescence is measured by heating and heating under the condition that the electric insulating oil coexists with other materials used for oil-filled electric equipment. The effect on deterioration can be easily evaluated in a short time using a small amount of electric insulating oil.

【0032】またこの発明によると、電気絶縁油を他材
料と共存させたものと、単独のものとをそれぞれ昇温加
熱して化学発光数を測定して比較するため、上記共存材
料による上記電気絶縁油の劣化への影響を高精度に評価
できる。
Further, according to the present invention, the electric insulating oil coexisting with another material and the single oil are separately heated and heated to measure the number of chemiluminescence. The effect on insulation oil deterioration can be evaluated with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1による電気絶縁油の
化学発光数の測定結果を示すグラフである。
FIG. 1 is a graph showing a measurement result of the number of chemiluminescence of an electric insulating oil according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1による電気絶縁油の
劣化過程の反応機構を表の形で説明するものである。
FIG. 2 is a table illustrating a reaction mechanism in a deterioration process of the electric insulating oil according to the first embodiment of the present invention.

【図3】 図1のグラフをアレニウスプロットに変換し
たグラフである。
FIG. 3 is a graph obtained by converting the graph of FIG. 1 into an Arrhenius plot.

【図4】 図3のアレニウスプロットから求めた定数B
および化学発光数Y30を表の形で示すものである。
FIG. 4 shows a constant B obtained from the Arrhenius plot of FIG.
And the number of chemiluminescence Y 30 are shown in the form of a table.

【図5】 この発明の実施の形態2による電気絶縁油の
劣化の区分を示す図である。
FIG. 5 is a diagram showing categories of deterioration of an electric insulating oil according to a second embodiment of the present invention.

【図6】 この発明の実施の形態4による電気絶縁油の
化学発光数の測定結果を示すグラフである。
FIG. 6 is a graph showing a measurement result of a chemiluminescence number of the electric insulating oil according to the fourth embodiment of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電気絶縁油を昇温加熱して化学発光数を
測定し、測定温度(絶対温度)の逆数Xと各測定温度に
対応する化学発光数Yとの関係を満たす回帰式“Y=A
・exp(−BX/R);Rは気体定数、A,Bは定
数”を求め、所定の温度tにおける化学発光数Ytと上
記定数Bとの大きさから上記電気絶縁油の劣化の度合い
を評価することを特徴とする電気絶縁油の評価方法。
1. A method for measuring the number of chemiluminescence by heating and heating an electrically insulating oil, and regression equation “Y” satisfying a relationship between a reciprocal X of a measurement temperature (absolute temperature) and a number Y of chemiluminescence corresponding to each measurement temperature. = A
Exp (−BX / R); R is a gas constant, A and B are constants, and the degree of deterioration of the electric insulating oil is determined from the chemiluminescence number Yt at a predetermined temperature t and the above constant B. A method for evaluating an electric insulating oil, characterized by evaluating.
【請求項2】 所定の温度tを、電気絶縁油を実用的に
用いる温度、あるいは昇温前の初期温度に設定すること
を特徴とする請求項1記載の電気絶縁油の評価方法。
2. The method for evaluating an electric insulating oil according to claim 1, wherein the predetermined temperature t is set to a temperature at which the electric insulating oil is practically used or an initial temperature before the temperature is raised.
【請求項3】 化学発光数Ytおよび定数Bの保守基準
となる管理値を設定し、上記管理値と比較することによ
って電気絶縁油の劣化の度合いを評価することを特徴と
する請求項1または2記載の電気絶縁油の評価方法。
3. The method according to claim 1, wherein a control value serving as a maintenance reference for the chemiluminescence number Yt and the constant B is set, and the degree of deterioration of the electric insulating oil is evaluated by comparing the control value with the control value. 2. The method for evaluating an electrical insulating oil according to 2.
【請求項4】 電気絶縁油を、使用条件に応じた劣化促
進要因によって加速劣化させる条件下で、昇温加熱して
化学発光数を測定することを特徴とする請求項1〜3の
いずれかに記載の電気絶縁油の評価方法。
4. The method according to claim 1, wherein the number of chemiluminescence is measured by heating and heating the electric insulating oil under the condition of accelerated deterioration by the deterioration promoting factor according to the use condition. The method for evaluating an electrical insulating oil according to the above.
【請求項5】 電気絶縁油を油入電気機器に用いられる
他材料と共存させた条件下で、昇温加熱して化学発光数
を測定することを特徴とする請求項1〜4のいずれかに
記載の電気絶縁油の評価方法。
5. The method according to claim 1, wherein the number of chemiluminescence is measured by heating and heating under a condition in which the electric insulating oil coexists with another material used for the oil-filled electric device. The method for evaluating an electrical insulating oil according to the above.
【請求項6】 電気絶縁油を油入電気機器に用いられる
他材料と共存させたものと、上記電気絶縁油単独のもの
とをそれぞれ昇温加熱して化学発光数を測定して比較す
ることにより、上記共存材料による上記電気絶縁油の劣
化への影響を評価することを特徴とする請求項1〜4の
いずれかに記載の電気絶縁油の評価方法。
6. A method in which an electric insulating oil is made to coexist with another material used for an oil-filled electric device, and the above-mentioned electric insulating oil alone is heated and heated to measure the number of chemiluminescence and compare. The method for evaluating an electric insulating oil according to any one of claims 1 to 4, wherein the influence of the coexisting material on the deterioration of the electric insulating oil is evaluated.
JP14019297A 1997-05-29 1997-05-29 Method for evaluating electrical insulation oil Pending JPH10332682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14019297A JPH10332682A (en) 1997-05-29 1997-05-29 Method for evaluating electrical insulation oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14019297A JPH10332682A (en) 1997-05-29 1997-05-29 Method for evaluating electrical insulation oil

Publications (1)

Publication Number Publication Date
JPH10332682A true JPH10332682A (en) 1998-12-18

Family

ID=15263059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14019297A Pending JPH10332682A (en) 1997-05-29 1997-05-29 Method for evaluating electrical insulation oil

Country Status (1)

Country Link
JP (1) JPH10332682A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844881A1 (en) * 2002-09-19 2004-03-26 Bosch Gmbh Robert Apparatus for determination of the condition of oil, namely lubricating oil for an internal combustion engine, determines the concentration of volatile components of the oil
US20160041219A1 (en) * 2013-04-16 2016-02-11 Megger Ltd. Method and device for determining power system parameters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844881A1 (en) * 2002-09-19 2004-03-26 Bosch Gmbh Robert Apparatus for determination of the condition of oil, namely lubricating oil for an internal combustion engine, determines the concentration of volatile components of the oil
US20160041219A1 (en) * 2013-04-16 2016-02-11 Megger Ltd. Method and device for determining power system parameters

Similar Documents

Publication Publication Date Title
Tseng et al. Using degradation data to improve fluorescent lamp reliability
JP4873433B2 (en) Diagnostic method for oil-filled electrical equipment
JP4121430B2 (en) Insulation diagnosis method for electrical equipment
Bruce et al. Effects of electron withdrawing and donating groups on the efficiency of tris (2, 2′-bipyridyl) ruthenium (II)/tri-n-propylamine electrochemiluminescence
Al-Ghamdi et al. Electrochemical studies of new pyridazinium-based ionic liquid and its determination in different detergents
JPH10332682A (en) Method for evaluating electrical insulation oil
JP4994899B2 (en) Flow electrification diagnosis method for oil-filled electrical equipment
JP2001004565A (en) Analytical method for metal in petroleum-based lubricating oil
Bosworth et al. Pulsed amperometric detection of furan compounds in transformer oil
Tanmaneeprasert et al. Electrical treeing and ageing characteristics in cavities of low density polyethylene dielectrics on partial discharge measurements
Kuwana Photonometric Titration of Dissolved Oxygen and Cu (II).
JP2006024955A (en) Method of diagnosing deterioration of voltage application device using oil immersion paper
JP2010230483A (en) Insulation deterioration diagnosis method of insulating oil in electric apparatus
De Maria et al. Frequency dielectric spectroscopy and an innovative optical sensor to assess oil-paper degradation
JP2018124185A (en) Estimation method of generation condition of organic copper compound and copper sulfide in oil-filled cable by analysis of insulation oil and diagnostic method of risk of abnormality generation of oil-filled cable
Aarathy et al. Spectral analysis for condition assessment of Transformer oil under different aging conditions
Proctor et al. Electron spectroscopic (ESCA) studies of platinum surfaces used for enzyme electrodes
Sabau et al. The electrochemical stability of mineral insulating oils
JPS6196475A (en) Screening method of ceramic capacitor
Tsuchie Recent diagnostic technology on oil-immersed power transformers in Japan
JP3923257B2 (en) Insulation deterioration diagnosis method
CN114113850B (en) Crosslinked polyethylene cable insulation life prediction method and system based on consumption dynamics model
Asserghine et al. In situ detection of reactive oxygen species spontaneously generated on lead acid battery anodes: a pathway for degradation and self-discharge at open circuit
Sabau¹ The Electrochemical Stability of Mineral Insulating Oils Reference: Sabau, J., Stokhuyzen, R.," The Electrochemical Stability of Mineral Insulating Oils," Electrical Insulating Materials: International Issues, ASTM STP 1376, MM Hirschler, Ed., American Society of Testing and Materials, West Conshohocken
Danylov et al. An experimental assessment of the intermittent heating and cooling operation effect on power transformer insulation