JPH10332577A - Correction method for surface effect - Google Patents

Correction method for surface effect

Info

Publication number
JPH10332577A
JPH10332577A JP9138764A JP13876497A JPH10332577A JP H10332577 A JPH10332577 A JP H10332577A JP 9138764 A JP9138764 A JP 9138764A JP 13876497 A JP13876497 A JP 13876497A JP H10332577 A JPH10332577 A JP H10332577A
Authority
JP
Japan
Prior art keywords
light
angle
incident
transmitted light
standard sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9138764A
Other languages
Japanese (ja)
Inventor
Hiroteru Watabe
裕輝 渡部
Debaraji Barashigamani
バラシガマニ・デバラジ
Tetsuya Yuasa
哲也 湯浅
Takao Akatsuka
孝雄 赤塚
Fumio Inaba
文男 稲場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEITAI HIKARIJOHO KENKYUSHO KK
Original Assignee
SEITAI HIKARIJOHO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEITAI HIKARIJOHO KENKYUSHO KK filed Critical SEITAI HIKARIJOHO KENKYUSHO KK
Priority to JP9138764A priority Critical patent/JPH10332577A/en
Publication of JPH10332577A publication Critical patent/JPH10332577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a correction method in which an error can be corrected even when an angle of incidence is changed by a method wherein incident light is incident on the surface of a standard sample from a plurality of angles, transmitted light is measured, the dependence on the angle of a quantity of transmitted light of the standard sample is found and the error which is caused by the angle of incidence on the surface of an object to be measured is corrected on the basis of the dependence on the angle. SOLUTION: In the case of computed tomography, an angle in a case in which light is incident on a part near the center of an object to be measured is different from an angle in a case in which light is incident on a part around its end, and an error which is comtained in a measured value is different in both cases. At this time, an angle which is formed by a perpendicular line with reference to the surface of a standard sample 60 and by the optical path of incident light is designated as θ. The standard sample 60 is turned, a quantity of transmitted light 80 corresponding to various angle θ of incidence is measured by a measuring device 90, and the dependence on the angle of the quantity of transmitted light 80 is obtained. On the basis of the dependence on the angle, an error which is contained in the measured value of the transmitted light is corrected. A continuous function which approximates the measured value of the transmitted light is found. A method in which the error contained in the measured value of the transmitted light is estimated and corrected by using the function is suitable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光CT等において
測定値の誤差を補正する補正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a correction method for correcting an error of a measured value in optical CT or the like.

【0002】[0002]

【従来の技術】従来より、測定対象内部での光の散乱・
吸収等の性質を調べるために、測定対象に光を入射さ
せ、測定対象を透過した光の光量を測定する光計測が知
られている。また、近年では光を用いたコンピュータ断
層撮影法(光CT;光Computed Tomogr
aphy)も盛んに研究されており、この場合には、測
定対象の様々な位置に様々な方向から光を入射し、それ
ぞれに対応する透過光の光量を測定することが必要であ
る。また、これらの光計測においては、測定対象の内部
の状態を表す、測定対象を透過したことによる光の減少
量を知ることが必要である。
2. Description of the Related Art Conventionally, light scattering and
2. Description of the Related Art In order to investigate properties such as absorption, optical measurement is known in which light is incident on a measurement target and the amount of light transmitted through the measurement target is measured. In recent years, computed tomography using light (optical CT; optical computed tomography)
aphy) has also been actively studied. In this case, it is necessary to make light incident on various positions of a measurement object from various directions and measure the amount of transmitted light corresponding to each. In these optical measurements, it is necessary to know the amount of decrease in light due to transmission through the measurement object, which represents the state inside the measurement object.

【0003】[0003]

【発明が解決しようとする課題】しかし、測定対象を空
気中に置いて光計測を行うと、一般に、測定対象と空気
とは屈折率が大きく異なるので、測定対象の表面におけ
る光の反射、屈折、偏波面の変化等によって透過光量が
大きく減少する。また、その減少量は、透過光量を測定
する光計測において本来得るべき、測定対象内部での光
の散乱・吸収等を表す光の減少量よりもしばしば大きく
なる。さらに、測定対象の表面における光の反射・屈折
等は測定対象への光の入射角度に大きく依存するので、
光CTの様に、光の様々な入射方向や入射位置に応じた
測定値を得る必要がある場合には、測定値に含まれる、
測定対象の表面における光の反射・屈折等による誤差を
補正することは特に困難である。
However, when light measurement is performed by placing the object to be measured in air, the refractive index of the object to be measured is generally different from that of air. , The amount of transmitted light greatly decreases due to a change in the polarization plane, and the like. In addition, the amount of reduction is often larger than the amount of reduction of light that represents scattering or absorption of light inside the measurement target, which should be originally obtained in optical measurement for measuring the amount of transmitted light. Furthermore, since the reflection and refraction of light on the surface of the measurement target greatly depend on the angle of incidence of light on the measurement target,
When it is necessary to obtain a measured value corresponding to various incident directions and positions of light as in the case of the light CT, the measured value is included in the measured value.
It is particularly difficult to correct an error due to light reflection / refraction on the surface of the measurement target.

【0004】本発明は、上記事情に鑑み、測定対象への
光の入射角度が変化する場合であっても測定対象の表面
における光の反射等による誤差を補正することができる
補正方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a correction method capable of correcting an error due to light reflection or the like on the surface of a measurement object even when the angle of incidence of light on the measurement object changes. The purpose is to:

【0005】[0005]

【課題を解決するための手段】上記の目的を達成する本
発明の表面効果補正方法は、入射光を測定対象に入射
し、測定対象を透過した透過光を測定して測定値を得る
ステップと、入射光を、所定の標準試料に、その標準試
料の表面に対し複数の角度それぞれから入射し、各角度
毎の透過光を測定することにより、標準試料の透過光量
の角度依存性を求めるステップと、標準試料の透過光量
の角度依存性に基づいて、上記測定値に含まれる、測定
対象への入射光の、測定対象の表面に対する入射角度に
起因する誤差を補正するステップとを有することを特徴
とする。
According to the present invention, there is provided a method for correcting a surface effect, comprising the steps of: irradiating incident light on a measuring object; measuring transmitted light transmitted through the measuring object to obtain a measured value; Determining the angle dependence of the amount of transmitted light of the standard sample by irradiating the incident light onto a predetermined standard sample at a plurality of angles with respect to the surface of the standard sample and measuring the transmitted light at each angle. And, based on the angle dependence of the amount of transmitted light of the standard sample, included in the measured value, the step of correcting an error caused by the incident angle to the surface of the measurement target, of the light incident on the measurement target. Features.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1は本発明の一実施形態における、測定対
象を透過した透過光の測定値を得るステップを表す図で
ある。円柱状の測定対象10は内部に円柱状の散乱体2
0を1つ有しており、入射光30を測定対象10に当て
ると、まずその表面で入射光の一部が反射等され、残り
が測定対象10内に入る。次に測定対象10内に入った
光は散乱体20まで進み散乱体20内を透過する間に一
部が散乱される。この散乱体20での散乱による光の減
少分を知ることによって測定対象内部の情報を得ること
が光計測の本来の目的である。散乱体20を透過した光
は測定対象10の表面まで進み、その表面で一部が反射
等され、残りが測定対象10の外に出る。入射光30の
うちの、測定対象10によって反射、散乱等を受けなか
った分の光である透過光40を測定器50で測定し測定
値を得る。
Embodiments of the present invention will be described below. FIG. 1 is a diagram illustrating a step of obtaining a measurement value of transmitted light transmitted through a measurement target in one embodiment of the present invention. The cylindrical measuring object 10 has a cylindrical scatterer 2 inside.
When the incident light 30 is applied to the measuring object 10, a part of the incident light is first reflected on the surface thereof, and the rest enters the measuring object 10. Next, the light that has entered the measurement target 10 travels to the scatterer 20 and is partially scattered while passing through the scatterer 20. The primary purpose of optical measurement is to obtain information inside the measurement object by knowing the amount of decrease in light due to scattering by the scatterer 20. The light transmitted through the scatterer 20 travels to the surface of the measurement target 10, a part of which is reflected on the surface, and the rest goes out of the measurement target 10. Of the incident light 30, the transmitted light 40, which is light not reflected or scattered by the measurement object 10, is measured by the measuring device 50 to obtain a measured value.

【0007】なお、本発明において測定対象の形や散乱
体の数、形、分布等は上記の説明に限られないことは当
然である。また測定対象は、散乱体ではなく吸収体を有
するものであってもよく、散乱体および吸収体を有して
いても良い。いずれの測定対象においても、測定対象の
表面における反射等による光の減少分のみが測定値の誤
差であり、測定対象の表面以外の部分での散乱、吸収等
による光の減少分は本来測定値に反映されるべき分であ
る。
In the present invention, the shape of the object to be measured and the number, shape, distribution, etc. of the scatterers are not limited to the above description. The measurement object may have an absorber instead of a scatterer, and may have a scatterer and an absorber. In any measurement object, only the decrease in light due to reflection or the like on the surface of the measurement object is an error in the measurement value, and the decrease in light due to scattering, absorption, or the like at a portion other than the surface of the measurement object is originally the measurement value It should be reflected in

【0008】光CT等の場合には、測定対象10を平行
移動させたり回転させたりして測定することで断層面の
情報を得る。例えば図1に左右方向の矢印で示したよう
に、入射光30の光路に対して垂直な方向に平行移動さ
せる場合を考えると、測定対象10の中央付近に光が入
射する場合と端の辺りに入射する場合とでは、入射光3
0の光路と測定対象10の表面とのなす角度が大きく異
なっており、表面における光の反射率等も大きく異な
る。従って、測定対象10の中央付近に光が入射する場
合と端の辺りに入射する場合とでは、測定値に含まれる
誤差も大きく異なり、その誤差の変化分は、測定対象の
内部構造に依存する、測定値の変化分をしばしば上回
る。
In the case of optical CT or the like, information on a tomographic plane is obtained by measuring the object 10 by moving it in parallel or rotating it. For example, as shown by a left-right arrow in FIG. 1, when a case is considered in which the light is translated in a direction perpendicular to the optical path of the incident light 30, light is incident near the center of the measurement target 10 and around the end. Incident light, the incident light 3
The angle between the zero optical path and the surface of the measurement target 10 is significantly different, and the light reflectance and the like on the surface are also greatly different. Accordingly, the error included in the measured value differs greatly between the case where light is incident near the center of the measurement target 10 and the case where light is incident near the end, and the change in the error depends on the internal structure of the measurement target. , Often exceeds the change in measured value.

【0009】図2は本実施形態における、標準試料を透
過した透過光の光量の角度依存性を求めるステップを表
す図である。標準試料60は、図1に示す測定対象10
と同一の表面構造を有し内部に散乱体を有さない板状の
試料である。なお本発明において標準試料の形状は、透
過光量の角度依存性を計測するのに適している形状であ
れば板状でなくとも良いのは当然である。また、標準試
料の表面構造は、測定対象の表面が例えば磨りガラス状
であるとすると、一見して同じに見える程度の磨りガラ
ス状をしていれば十分であり、厳密な同一性は不要であ
ることも当然である。また、測定対象が例えば生体等の
場合には、標準試料としては例えば皮膚の一部のよう
な、散乱体等を内部に有する試料であっても良い。
FIG. 2 is a diagram showing steps in the present embodiment for determining the angle dependence of the amount of light transmitted through the standard sample. The standard sample 60 is the measurement target 10 shown in FIG.
This is a plate-shaped sample having the same surface structure as that of Example 1 and having no scatterer inside. In the present invention, the shape of the standard sample need not be a plate as long as the shape is suitable for measuring the angle dependence of the transmitted light amount. Also, assuming that the surface of the measurement sample is, for example, ground glass, the surface structure of the standard sample is sufficient if the surface of the standard sample is ground glass at first glance, and strict identity is not required. Of course there are. When the measurement target is, for example, a living body, the standard sample may be a sample having a scatterer or the like inside, such as a part of the skin.

【0010】図1に示す、透過光40の測定値を得るス
テップ同様に、標準試料60に入射光70を入射し、透
過光80の光量を測定器90で測定することにより測定
値を得る。ここで、標準試料60の表面に対する垂線と
入射光70の光路がなす角度をθとし、標準試料60を
回転させて様々な入射角度θに対応する透過光80の光
量を測定することにより、透過光80の光量の角度依存
性を得る。
Similar to the step of obtaining the measured value of the transmitted light 40 shown in FIG. 1, the incident light 70 is incident on the standard sample 60, and the measured value is obtained by measuring the amount of the transmitted light 80 with the measuring instrument 90. Here, the angle formed between the perpendicular to the surface of the standard sample 60 and the optical path of the incident light 70 is defined as θ, and the standard sample 60 is rotated to measure the amount of transmitted light 80 corresponding to various incident angles θ. The angle dependence of the light intensity of the light 80 is obtained.

【0011】この角度依存性に基づいて透過光40の測
定値に含まれる誤差を補正する方法としては、後述する
ように、透過光80の測定値を近似する連続的な関数を
求め、この関数を用いて、透過光40の測定値に含まれ
る誤差を見積もり補正する方法が好適である。また、透
過光80の、1つの入射角度に対応する測定値から直
接、その入射角度に対応する透過光40の測定値に含ま
れる誤差を見積もり補正しても良い。
As a method of correcting an error included in the measured value of the transmitted light 40 based on the angle dependency, a continuous function approximating the measured value of the transmitted light 80 is obtained as described later. The method of estimating and correcting the error included in the measurement value of the transmitted light 40 using the above method is preferable. Further, an error included in a measured value of the transmitted light 40 corresponding to the incident angle of the transmitted light 80 may be estimated and corrected directly from a measured value corresponding to one incident angle.

【0012】[0012]

【実施例】以下、上記の実施形態をより具体化した実施
例について説明する。表面をサンドペーパによって磨り
ガラス状にした直径30mmのアクリルの円柱に、直径
12mmの穴を開けて、その中に散乱体として10%の
イントラリピッドの2mg/リットルの溶液を入れたも
のを測定対象とした。
EXAMPLES Examples of the above embodiment will be described below. A 30-mm-diameter acrylic cylinder whose surface was polished with sandpaper and made into a 30-mm-diameter acrylic cylinder, a 12-mm-diameter hole was formed, and a 10-mg intralipid solution of 2 mg / liter was placed as a scatterer in the measurement object. did.

【0013】この測定対象にレーザ光を入射し、透過光
を光へテロダイン法によって測定することにより、入射
されたレーザ光のうち測定対象による光の反射や散乱等
の影響を受けなかった分のみを抽出して測定した。ま
た、測定対象を入射光の光路に対して垂直な方向に少し
ずつ平行移動させ、各入射位置にそれぞれ対応する一連
の測定値を得ることによって、測定対象を1方向から見
たときの投影データを得た。この投影データの一例を、
横軸に入射位置をとり縦軸に透過光量の測定値をとった
グラフで表すと、図4に黒い四角で示される、測定対象
が存在する位置に相当する範囲全体に渡ってほぼ同じ高
さの台形状のグラフとなった。1つの方向から見た投影
データを得た後、測定対象を少し回転させて、上記と同
様の手順によって新たな方向の投影データを得た。これ
らの手順を繰り返すことにより測定対象を各方向から見
た各投影データを得た。これらの投影データをコンピュ
ータで解析することにより後述するような断層面の像を
得た。
A laser beam is incident on the object to be measured, and the transmitted light is measured by a light heterodyne method, so that only the portion of the incident laser light which is not affected by the reflection or scattering of light by the object to be measured. Was extracted and measured. Also, the measurement object is translated a little at a time in a direction perpendicular to the optical path of the incident light, and a series of measurement values corresponding to each incident position is obtained, thereby obtaining projection data when the measurement object is viewed from one direction. I got An example of this projection data is
A graph in which the horizontal axis indicates the incident position and the vertical axis indicates the measured value of the amount of transmitted light indicates that the height is substantially the same over the entire range corresponding to the position where the measurement target is present, as indicated by a black square in FIG. Became a trapezoidal graph. After obtaining the projection data viewed from one direction, the object to be measured was slightly rotated, and the projection data in a new direction was obtained by the same procedure as above. By repeating these procedures, each projection data obtained by viewing the measurement target from each direction was obtained. By analyzing these projection data with a computer, an image of a tomographic plane as described later was obtained.

【0014】上記測定対象に対応する標準試料として、
測定対象同様にサンドペーパで表面を磨りガラス状にし
たアクリル板を用い、図2に示す測定方法により複数の
角度θにそれぞれ対応する、標準試料を透過した透過光
の一連の測定値を得た。この一連の測定値を、透過光量
を縦軸にとり、図2に示す角度θを横軸にとってグラフ
に表すと、図3に白い四角で示すような0ラジアン付近
にピークを持つグラフとなった。本実施例では、この一
連の測定値を図3に実線で示すガウス関数y=−87+
42*exp(−x*x/0.4)で近似し、このガウ
ス関数を用いて上記投影データに含まれる誤差を見積も
り補正した。図4に示す投影データの一例をこのガウス
関数を用いて補正した結果をグラフに表すと、図4に白
い四角で示すように、散乱体が存在する位置に相当する
範囲だけが大きく盛り上がったグラフを得ることができ
た。
As a standard sample corresponding to the above-mentioned measurement object,
Using an acrylic plate whose surface was polished with a sandpaper in the same manner as the measurement object, a series of measurement values of the transmitted light transmitted through the standard sample corresponding to a plurality of angles θ were obtained by the measurement method shown in FIG. When a series of these measured values is plotted on the vertical axis of the amount of transmitted light and the angle θ shown in FIG. 2 on the horizontal axis, a graph having a peak near 0 radians as shown by a white square in FIG. 3 is obtained. In this embodiment, this series of measured values is represented by a Gaussian function y = -87 + indicated by a solid line in FIG.
The approximation was performed by 42 * exp (-x * x / 0.4), and the error included in the projection data was estimated and corrected using this Gaussian function. When a result of correcting the example of the projection data shown in FIG. 4 using this Gaussian function is shown in a graph, as shown by a white square in FIG. 4, only a range corresponding to the position where the scatterer exists is greatly raised. Could be obtained.

【0015】以下、上記投影データおよび補正後の投影
データから再構成された断層面の像を用いて本実施例の
効果を説明する。図5は補正をしない投影データを使っ
て得た断層面の像である。図6は補正をした投影データ
を使って得た断層面の像である。図7は補正をした後ス
ムージングをした投影データを使って得た断層面の像で
ある。
Hereinafter, the effect of the present embodiment will be described using an image of a tomographic plane reconstructed from the projection data and the corrected projection data. FIG. 5 is an image of a tomographic plane obtained using projection data without correction. FIG. 6 is an image of a tomographic plane obtained using the corrected projection data. FIG. 7 is an image of a tomographic plane obtained using projection data that has been corrected and then smoothed.

【0016】これらの断層面の像に共通する外周を成す
黒い正方形に内接している円内が、コンピュータによっ
て計算された画像範囲であり、その内接円の外側の黒い
部分は物理的な意味を持たない。また、画面が白い部分
ほど強く散乱等する部分であることを示している。上記
の3つの図を比較すると、まず図5には明らかな白い環
状の像が現れており、これは測定対象の表面に相当する
部分である。また、白い環状の像の内側には構造らしき
ものはほとんど確認できない。これに対して、図6で
は、測定対象の表面に相当する部分はほとんど判別でき
ず、画面の中央付近に測定対象の直径の約3分の1程度
の直径の明確な白く丸い像が現れており、これは散乱体
に相当する部分である。さらに、図7では、散乱体の像
のみが白く明確に現れており、散乱体以外の部分はほぼ
一様に黒くなっている。
The inside of a circle inscribed in the black square forming the outer periphery common to the images of these tomographic planes is an image range calculated by the computer, and the black part outside the inscribed circle is a physical meaning. Do not have. Also, the whiter part of the screen indicates that the part is more strongly scattered. Comparing the above three figures, FIG. 5 first shows a clear white ring-shaped image, which corresponds to the surface of the measurement object. In addition, there is almost no structure-like thing inside the white ring-shaped image. On the other hand, in FIG. 6, the portion corresponding to the surface of the measurement target is hardly discriminated, and a clear white round image having a diameter of about one third of the diameter of the measurement target appears near the center of the screen. And this is the part corresponding to the scatterer. Further, in FIG. 7, only the image of the scatterer clearly appears in white, and portions other than the scatterer are almost uniformly black.

【0017】このように本実施例によって、測定対象の
表面での反射等による誤差を補正することができた。
As described above, according to the present embodiment, errors due to reflection on the surface of the object to be measured and the like can be corrected.

【0018】[0018]

【発明の効果】上記の説明のように、本発明の表面効果
補正方法によれば、測定対象への光の入射角度が変化す
る場合であっても測定対象の表面における光の反射等に
よる誤差を補正することができる。
As described above, according to the surface effect correction method of the present invention, even if the angle of incidence of light on the object to be measured changes, the error due to the reflection of light on the surface of the object to be measured, etc. Can be corrected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における、測定対象を透過
した透過光の測定値を得るステップを表す図である。
FIG. 1 is a diagram illustrating a step of obtaining a measurement value of transmitted light transmitted through a measurement target according to an embodiment of the present invention.

【図2】本発明の一実施形態における、標準試料を透過
した透過光の角度依存性を求めるステップを表す図であ
る。
FIG. 2 is a diagram illustrating a step of obtaining an angle dependency of transmitted light transmitted through a standard sample in one embodiment of the present invention.

【図3】標準試料を透過した透過光の光量の角度依存性
を示すグラフである。
FIG. 3 is a graph showing the angle dependence of the amount of transmitted light transmitted through a standard sample.

【図4】測定対象の投影データの一例を示すグラフであ
る。
FIG. 4 is a graph showing an example of projection data of a measurement target.

【図5】補正をしない投影データを使って得た断層面の
像である。
FIG. 5 is an image of a tomographic plane obtained using projection data without correction.

【図6】補正をした投影データを使って得た断層面の像
である。
FIG. 6 is an image of a tomographic plane obtained using corrected projection data.

【図7】補正をした後スムージングをした投影データを
使って得た断層面の像である。
FIG. 7 is an image of a tomographic plane obtained using projection data that has been corrected and then smoothed.

【符号の説明】[Explanation of symbols]

10 測定対象 30,70 入射光 40,80 透過光 60 標準試料 10 Measurement target 30,70 Incident light 40,80 Transmitted light 60 Standard sample

フロントページの続き (72)発明者 赤塚 孝雄 山形県山形市松栄2丁目2番1号 株式会 社生体光情報研究所内 (72)発明者 稲場 文男 仙台市太白区八木山香澄町35−1 東北工 業大学内Continuing from the front page (72) Inventor Takao Akatsuka 2-2-1 Matsuei, Yamagata City, Yamagata Prefecture Inside the Bio-Optical Information Laboratory Co., Ltd. (72) Inventor Fumio Inaba 35-1 Kasumi-cho, Yagiyama, Taishiro-ku, Sendai College of business

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入射光を測定対象に入射し、該測定対象
を透過した透過光を測定して測定値を得るステップと、 入射光を、所定の標準試料に、該標準試料の表面に対し
複数の角度それぞれから入射し、各角度毎の透過光を測
定することにより、該標準試料の透過光量の角度依存性
を求めるステップと、 前記標準試料の透過光量の角度依存性に基づいて、前記
測定値に含まれる、前記測定対象への入射光の、該測定
対象の表面に対する入射角度に起因する誤差を補正する
ステップとを有することを特徴とする表面効果補正方
法。
1. A step of irradiating incident light on a measurement target and measuring a transmitted light transmitted through the measurement target to obtain a measurement value; and transmitting the incident light to a predetermined standard sample and to a surface of the standard sample. Incident from each of a plurality of angles, measuring the transmitted light at each angle, to determine the angle dependence of the transmitted light amount of the standard sample, based on the angle dependence of the transmitted light amount of the standard sample, Correcting an error caused by an incident angle of the incident light on the measurement target with respect to the surface of the measurement target, which is included in the measurement value.
JP9138764A 1997-05-28 1997-05-28 Correction method for surface effect Pending JPH10332577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9138764A JPH10332577A (en) 1997-05-28 1997-05-28 Correction method for surface effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9138764A JPH10332577A (en) 1997-05-28 1997-05-28 Correction method for surface effect

Publications (1)

Publication Number Publication Date
JPH10332577A true JPH10332577A (en) 1998-12-18

Family

ID=15229651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9138764A Pending JPH10332577A (en) 1997-05-28 1997-05-28 Correction method for surface effect

Country Status (1)

Country Link
JP (1) JPH10332577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123147A1 (en) * 2009-04-23 2010-10-28 株式会社アドバンテスト Housing, housing placement method, and measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123147A1 (en) * 2009-04-23 2010-10-28 株式会社アドバンテスト Housing, housing placement method, and measurement method
US8378703B2 (en) 2009-04-23 2013-02-19 Advantest Corporation Container, a method for disposing the same, and a measurement method
JP5274654B2 (en) * 2009-04-23 2013-08-28 株式会社アドバンテスト Container, container arrangement method and measurement method

Similar Documents

Publication Publication Date Title
US10041874B2 (en) Optical measurement method and appartus
US10481110B2 (en) Radiographic image generating device
US9784640B2 (en) Method and apparatus for determining object characteristics
Foschum et al. Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media
US20090273792A1 (en) Robust three-dimensional shape acquisition method and system
US20070127036A1 (en) Interference measurement system self-alignment method
JP2002365023A (en) Apparatus and method for measurement of liquid level
US20090080726A1 (en) Method and apparatus for measuring collagen thickness
JP6542906B2 (en) Method and apparatus for determining surface data and / or measurement data associated with the surface of an at least partially transparent object
JP2018515747A5 (en)
US20090214135A1 (en) Correcting axial tilt based on object positions in axial slices of three dimensional image
KR20230136291A (en) Method for assessing 3D mesh quality using structural similarity of projective space, apparatus and computer program for performing the method
EP2577265B1 (en) Apparatus and method for locating the centre of a beam profile
JPH10332577A (en) Correction method for surface effect
EP2113767A1 (en) Computed tomography systems and related methods involving localized bias
JP6900702B2 (en) Measuring device and measuring method
JPH09164127A (en) Method for evaluating light transmissivity of skin and apparatus therefor
US10656086B2 (en) Measurement apparatus
JP2666032B2 (en) Measurement method of scattering light and scattering angle distribution
CN109613462A (en) A kind of scaling method of CT imaging
KR101645346B1 (en) Tomography apparaus and method for geometric calibration thereof
Ijaz et al. Multidirectional Scattering Models for 3‐Dimensional Ultrasound Imaging
CN118111951A (en) Non-contact measurement method, device and equipment for concentration of ethanol solution
JPH11230897A (en) Method for measuring transmissivity distribution and method for forming ct image
JP2838187B2 (en) Optical CT measurement method