JPH10332528A - Unit for supplying particles into fluid - Google Patents

Unit for supplying particles into fluid

Info

Publication number
JPH10332528A
JPH10332528A JP14205997A JP14205997A JPH10332528A JP H10332528 A JPH10332528 A JP H10332528A JP 14205997 A JP14205997 A JP 14205997A JP 14205997 A JP14205997 A JP 14205997A JP H10332528 A JPH10332528 A JP H10332528A
Authority
JP
Japan
Prior art keywords
pipe
particles
orifice
orifice plate
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14205997A
Other languages
Japanese (ja)
Other versions
JP3408719B2 (en
Inventor
Takashi Uchino
隆 内野
Shinya Urata
信也 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14205997A priority Critical patent/JP3408719B2/en
Publication of JPH10332528A publication Critical patent/JPH10332528A/en
Application granted granted Critical
Publication of JP3408719B2 publication Critical patent/JP3408719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To ensure accurate and efficient observation by disposing a nozzle part having a reverse conical through hole at the point on an orifice plate for supplying particles where the static pressure is lowest and supplying particles smoothly and automatically thereby sustaining high accuracy measurement of flow rate. SOLUTION: Since a nozzle part 11 disposed at the forward end of a branch pipe 10 coupled with a particle container 18 is coupled with the upper wall of an orifice pipe 2 at the lowest static pressure point 9, particles 13 in the particle container 18 are supplied automatically into the pipe 2 through the branch pipe 10 and the nozzle part 11 when a fluid flows through the orifice pipe 2. Since a part inclining at the angle of repose of the particle 13 or above is provided at the nozzle part 11, clogging of particles 13 is suppressed at the nozzle part 11 and the particles 13 are supplied smoothly into the pipe 2. Furthermore, since the nozzle part 11 for throwing the particles 13 is disposed on the downstream side of an orifice plate 3 for measuring the flow rate while being spaced apart sufficiently therefrom, the orifice plate 3 is not clogged with the particles and normal measurement of flow rate can be sustained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体を可視化する
ため等に用いられる流動流体中への粒子供給装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for supplying particles into a flowing fluid used for visualizing a fluid.

【0002】[0002]

【従来の技術】各種流体機械における流体の内部流動
や、飛翔体や橋梁などにおける空気の外部流動の状況を
把握する手段として、それらの縮尺模型を用いた風洞実
験の可視化が有効である。
2. Description of the Related Art As means for grasping the internal flow of fluid in various fluid machines and the external flow of air in flying objects and bridges, it is effective to visualize wind tunnel experiments using these scale models.

【0003】この可視化のための方法としては、タフト
法・トレーサ法・光学的方法とに大別され、その中でも
流れの中に流体によく追従する粒子を直接注入し、物体
周りの粒子の運動を観察することにより流体の動きを観
察する方法がよく用いられている。上記粒子は、流体の
動きの可視化のみではなく、レーザ流速計による流速計
測にも用いられ、粒子を使用する実験は非常に有効で活
用頻度の多いものである。
[0003] Methods for visualization are broadly classified into a tuft method, a tracer method, and an optical method. Among them, particles which follow a fluid well in a flow are directly injected, and particles move around an object. A method of observing the movement of a fluid by observing the movement is often used. The particles are used not only for visualizing the movement of a fluid but also for measuring the flow velocity by a laser anemometer, and experiments using the particles are very effective and frequently used.

【0004】従来の外部流動の可視化のための粒子供給
装置を備えた風洞実験装置について、図3により説明す
る。図3において、01は送風機、02はオリフィス配
管、03は流量計測用オリフィス板、04はオリフィス
板03の前後の圧力検出端014に接続された圧力差検
出器、06はダクト、017は粒子供給管012ととも
に粒子供給装置を形成する容器である。
[0004] A conventional wind tunnel experimental device provided with a particle supply device for visualizing external flow will be described with reference to FIG. In FIG. 3, 01 is a blower, 02 is an orifice pipe, 03 is an orifice plate for measuring flow rate, 04 is a pressure difference detector connected to pressure detection terminals 014 in front and behind the orifice plate 03, 06 is a duct, and 017 is a particle supply. This is a container that forms a particle supply device together with the tube 012.

【0005】上記において、送風機01を駆動すると、
ダクト06内の空気はオリフィス配管02を介して送風
機01により吸込まれ、オリフィス板03の前後に圧力
差を発生し、ダクト06内に所定の流量Qの風を生ず
る。
In the above, when the blower 01 is driven,
The air in the duct 06 is sucked in by the blower 01 through the orifice pipe 02, and generates a pressure difference between the front and the rear of the orifice plate 03 to generate a wind having a predetermined flow rate Q in the duct 06.

【0006】このとき、ダクト06内の圧力Pは送風機
01の吸込みにより負圧になるため、容器017に溜め
られた粒子010が粒子供給管012を介してダクト0
6内へ供給され、風速と等速でダクト06内を流れ、模
型013の周りに粒子010のフローパターンを形成す
る。そのため、この粒子010のフローパターンを観察
することにより、模型013の周りを流れる流体の動き
を知ることができる。
At this time, the pressure P in the duct 06 becomes a negative pressure due to the suction of the blower 01, so that the particles 010 stored in the container 017 pass through the particle supply pipe 012 to the duct 0.
6, flows through the duct 06 at a constant speed of the wind speed, and forms a flow pattern of the particles 010 around the model 013. Therefore, by observing the flow pattern of the particles 010, the movement of the fluid flowing around the model 013 can be known.

【0007】[0007]

【発明が解決しようとする課題】従来の粒子供給装置を
備えた風洞実験装置においては、ダクト内に供給する粒
子の速度をダクトの風速と等速にするため、前記のよう
に吸込み方式で行っていた。
In a wind tunnel experiment apparatus provided with a conventional particle supply apparatus, in order to make the velocity of the particles supplied into the duct equal to the wind velocity of the duct, a suction method is used as described above. I was

【0008】この吸込み方式の場合、オリフィス配管に
設けられた圧力検出端の粒子による詰まりとオリフィス
板の汚れにより、流量計測に誤差を生じるという課題が
あった。
In the case of the suction system, there is a problem that an error occurs in the flow rate measurement due to clogging of the pressure detecting end provided in the orifice pipe with particles and contamination of the orifice plate.

【0009】この課題を解決するため、吐き出し方式を
採用する場合は、図4に示すように容器017にフロー
メータ016を介してポンプ015を接続し、このポン
プ015により容器017内を加圧してダクト06内に
粒子010を供給する必要があるため、装置が大きくな
り、ダクト06内の流量Qの設定に多くの時間を要する
という課題を生ずる。
In order to solve this problem, when a discharge method is adopted, as shown in FIG. 4, a pump 015 is connected to a container 017 via a flow meter 016, and the inside of the container 017 is pressurized by the pump 015. Since it is necessary to supply the particles 010 into the duct 06, the size of the apparatus becomes large, and the setting of the flow rate Q in the duct 06 requires a lot of time.

【0010】また、流体機械などにおける流体の内部流
動を可視化する場合には、模型の構造が複雑なため、模
型に合わせて粒子供給管012の形状等を換えることが
必要になるという課題を生じる。本発明は上記の課題を
解決しようとするものである。
Further, when visualizing the internal flow of a fluid in a fluid machine or the like, there is a problem that the shape of the particle supply tube 012 needs to be changed according to the model because the structure of the model is complicated. . The present invention seeks to solve the above problems.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

(1)本発明は、内部に流量計測用オリフィス板が設け
られたオリフィス配管から流出し物体の周りを流動する
流体中へ粒子を供給する粒子供給装置であって、上記流
量計測用オリフィス板の後流側のオリフィス配管内に設
けられた粒子供給用オリフィス板、同オリフィス板の後
流側の静圧最低点の位置のオリフィス配管の上壁に接続
され逆円錐台形状の貫通孔を有するノズル部がその先端
に設けられた分岐管、および同分岐管の後端に接続され
た粒子容器により形成されたことを特徴としている。
(1) The present invention is a particle supply device for supplying particles into a fluid flowing out of an orifice pipe provided with a flow measurement orifice plate therein and flowing around an object. A particle supply orifice plate provided in the orifice pipe on the downstream side, a nozzle having an inverted truncated conical through hole connected to the upper wall of the orifice pipe at the lowest static pressure point on the downstream side of the orifice plate The part is formed by a branch pipe provided at the front end thereof and a particle container connected to the rear end of the branch pipe.

【0012】上記において、粒子供給用オリフィス板の
すぐ近くの後流側には静圧最低点が形成されるため、こ
の位置のオリフィス配管の上壁に設けられたノズル部か
らは、粒子容器内に貯えられた粒子が分岐管を介してオ
リフィス配管内に自動的に供給される。
In the above description, since a static pressure minimum point is formed on the downstream side immediately adjacent to the particle supply orifice plate, the nozzle portion provided on the upper wall of the orifice pipe at this position indicates that the inside of the particle container The particles stored in the orifice pipe are automatically supplied through the branch pipe.

【0013】また、上記ノズル部は、逆円錐台形状の貫
通孔が設けられ、内壁の傾斜部は安息角以上の角度のた
め、粒子はノズル部内での詰まりが抑制され、スムース
にオリフィス配管内に供給される。
In addition, the nozzle portion has an inverted truncated conical through hole, and the inclined portion of the inner wall has an angle greater than the angle of repose, so that clogging of the nozzle portion with the nozzle portion is suppressed, and the orifice pipe is smoothly inserted into the nozzle portion. Supplied to

【0014】更に、ノズル部先端の開口部は、その内径
が小さいため、流量計測用オリフィス板による流体の流
量計測の際に、粒子の影響を無視することができ、ま
た、このノズル部は流量計測用オリフィス板から十分離
れた後流側に設けられているため、このオリフィス板が
粒子で詰まることがなく、高精度の流量計測を続けるこ
とができ、適切な流量制御が可能となる。
Further, since the opening at the tip of the nozzle has a small inner diameter, the influence of particles can be ignored when measuring the flow rate of the fluid with the orifice plate for measuring the flow rate. Since the orifice plate is provided on the downstream side sufficiently distant from the measurement orifice plate, the orifice plate does not become clogged with particles, so that high-accuracy flow measurement can be continued and appropriate flow control can be performed.

【0015】そのため、本発明に係る装置を物体の周り
を流動する流体の可視化等に用いた場合には、流体の流
動状況の観察を的確かつ効率的に実施することが可能と
なる。
Therefore, when the apparatus according to the present invention is used for visualizing a fluid flowing around an object or the like, it is possible to observe the flow state of the fluid accurately and efficiently.

【0016】(2)本発明は、上記発明(1)に記載の
流動流体中への粒子供給装置において、上記粒子供給用
オリフィス板の前流側のオリフィス配管と上記分岐管の
間に接続されたパージ管、および同パージ管に設けられ
たバルブを備えたことを特徴としている。
(2) The present invention provides the apparatus for supplying particles into a flowing fluid according to the invention (1), wherein the apparatus is connected between an orifice pipe upstream of the orifice plate for supplying particles and the branch pipe. And a purge pipe, and a valve provided in the purge pipe.

【0017】上記において,粒子供給用オリフィス板の
前後のオリフィス配管内は圧力差があるため、バルブを
開くとパージ管内を流体が流れ、ノズル部の内壁の傾斜
に沿って噴出する。
In the above, since there is a pressure difference between the orifice pipes before and after the orifice plate for supplying particles, when the valve is opened, the fluid flows through the purge pipe and is ejected along the slope of the inner wall of the nozzle portion.

【0018】そのため、上記ノズル部に粒子による詰ま
りを生じた場合、バルブを開いてパージ管より流体を噴
出することにより、ノズル部の詰まりを直ちに除去する
ことが可能となる。
Therefore, when the nozzle portion is clogged with particles, the clogging of the nozzle portion can be immediately removed by opening the valve and ejecting the fluid from the purge pipe.

【0019】[0019]

【発明の実施の形態】本発明の実施の一形態に係る流動
流体中への粒子供給装置について、図1及び図2により
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus for supplying particles into a flowing fluid according to an embodiment of the present invention will be described with reference to FIGS.

【0020】なお、本実施形態は、一端に送風機1が接
続され内部に流量計測用オリフィス板3が設けられたオ
リフィス配管2と、同オリフィス配管2の他端に接続さ
れ内部に模型20が配設されるダクト6と、上記流量計
測用オリフィス板3の前後部に接続されその圧力差を検
出する圧力差検出器4を備えた風洞に適用されたもので
ある。
In this embodiment, an orifice pipe 2 provided with a blower 1 at one end and an orifice plate 3 for flow rate measurement provided therein, and a model 20 connected to the other end of the orifice pipe 2 and provided therein. The present invention is applied to a wind tunnel provided with a duct 6 provided and a pressure difference detector 4 connected to the front and rear portions of the orifice plate 3 for measuring flow rate and detecting a pressure difference therebetween.

【0021】また、この風洞は、上記送風機1より供給
されオリフィス配管2及びダクト6内を流れる流体の流
量Qが圧力差検出器4により検出される圧力差により設
定され、上記模型20の周りの流体の流動状況の把握の
ために用いられるものである。
The flow tunnel Q of the fluid supplied from the blower 1 and flowing through the orifice pipe 2 and the duct 6 is set by the pressure difference detected by the pressure difference detector 4. This is used for grasping the flow state of the fluid.

【0022】図1及び図2に示す本実施形態に係る粒子
供給装置は、上記風洞において、流量計測用オリフィス
板3から十分離れた後流側のオリフィス配管2内の位置
に配設された粒子供給用オリフィス板8、同オリフィス
板8のすぐ後の図1(b)に示す静圧最低点の位置のオ
リフィス配管2の上壁にその先端のノズル部11が接続
された分岐管10、同分岐管10の反ノズル部側に設け
られた粒子容器18、および上記オリフィス配管2のオ
リフィス板8より前流側の部分と上記ノズル部11の間
に接続されバルブ17が設けられたパージ管15を備え
ている。
The particle supply device according to the present embodiment shown in FIGS. 1 and 2 is provided with particles arranged in the wind tunnel at a position in the orifice pipe 2 downstream of the flow rate measurement orifice plate 3 and sufficiently downstream. The orifice plate 8 for supply, the branch pipe 10 having the nozzle 11 at the tip thereof connected to the upper wall of the orifice pipe 2 at the position of the lowest static pressure shown in FIG. A particle container 18 provided on the side opposite to the nozzle portion of the branch pipe 10, and a purge pipe 15 connected between the nozzle portion 11 and a portion of the orifice pipe 2 on the upstream side of the orifice plate 8 and provided with a valve 17. It has.

【0023】上記において、オリフィス配管2内を流体
が流れると、粒子供給用オリフィス板8のすぐ近くの後
流側には、図1(b)に示すようにこのオリフィス板8
による縮流により静圧最低点9が形成される。
In the above, when the fluid flows in the orifice pipe 2, the orifice plate 8 is located on the downstream side immediately adjacent to the particle supply orifice plate 8 as shown in FIG.
The static pressure minimum point 9 is formed by the contraction of the pressure.

【0024】粒子容器18が接続された分岐管10の先
端に設けられたノズル部11は、この静圧最低点9の位
置のオリフィス配管2の上壁に接続されているため、オ
リフィス配管2内を流体が流れると、粒子容器18内の
粒子13は、分岐管10及びノズル部11を介してオリ
フィス配管2内に自動的に供給される。
The nozzle portion 11 provided at the tip of the branch pipe 10 to which the particle container 18 is connected is connected to the upper wall of the orifice pipe 2 at the position of the lowest static pressure point 9. When the fluid flows, the particles 13 in the particle container 18 are automatically supplied to the orifice pipe 2 via the branch pipe 10 and the nozzle unit 11.

【0025】また、上記ノズル部11は、図2(a)に
示すように粒子13の安息角以上の角度θの傾斜部19
が設けられているため、ノズル部11内での粒子13の
詰まりは抑制され、オリフィス配管2内への粒子13の
供給はスムースに行われる。なお、上記安息角は通常4
5°〜50°が好ましく、本実施形態においては45°
とした。
As shown in FIG. 2A, the nozzle portion 11 has an inclined portion 19 having an angle .theta.
Is provided, clogging of the particles 13 in the nozzle portion 11 is suppressed, and the supply of the particles 13 into the orifice pipe 2 is performed smoothly. The angle of repose is usually 4
5 ° to 50 ° is preferable, and in this embodiment, 45 °
And

【0026】上記ノズル部11の先端の開口部14は、
その内径が小さく、少しずつ粒子13を排出するため、
流量計測用オリフィス板3による流体の流量計測におい
て、ノズル部11より供給される粒子13の影響を無視
することができる。なお、上記開口部14の直径は約1
mmである。
The opening 14 at the tip of the nozzle 11 is
Because the inside diameter is small and the particles 13 are discharged little by little,
In the flow rate measurement of the fluid by the flow rate measurement orifice plate 3, the influence of the particles 13 supplied from the nozzle unit 11 can be ignored. The diameter of the opening 14 is about 1
mm.

【0027】また、粒子13を投入するノズル部11が
流量計測用オリフィス板3から十分離れた後流側に配設
されているため、上記流量計測用オリフィス板3は粒子
13が詰まることがなく、正常な流量計測を継続するこ
とができる。
Further, since the nozzle portion 11 for introducing the particles 13 is disposed downstream of the orifice plate 3 for measuring the flow rate sufficiently, the orifice plate 3 for measuring the flow rate does not clog the particles 13. , Normal flow measurement can be continued.

【0028】上記オリフィス配管2の粒子供給用オリフ
ィス板8の上流側部分と上記分岐管10の間には、バル
ブ17が設けられたパージ管15が接続されており、上
記バルブ17を開くと、オリフィス板8の前後部の圧力
差により流体がパージ管15内を流れ、ノズル部11の
傾斜部19に沿って噴出する。
A purge pipe 15 provided with a valve 17 is connected between an upstream portion of the orifice plate 8 for supplying particles in the orifice pipe 2 and the branch pipe 10, and when the valve 17 is opened, the purge pipe 15 is opened. The fluid flows through the purge pipe 15 due to the pressure difference between the front and rear portions of the orifice plate 8 and is ejected along the inclined portion 19 of the nozzle portion 11.

【0029】そのため、ノズル部11に粒子13が詰ま
った場合には、バルブ17を開くことにより直ちに粒子
13の詰まりを除去することができる。なお、本実施形
態においては、4本のパージ管15を設け、傾斜部19
のどの部分に粒子13が堆積した場合にも除去できるも
のとしている。
Therefore, if the particles 13 are clogged in the nozzle portion 11, the clogging of the particles 13 can be immediately removed by opening the valve 17. In this embodiment, four purge pipes 15 are provided, and the inclined portions 19 are provided.
It can be removed even if the particles 13 accumulate on any part of the surface.

【0030】本実施形態においては、送風機1より流体
をオリフィス配管2内に吐き出す方式の場合について説
明しているが、送風機1がダクト6の後流側に接続され
てダクト6内より流体を吸込む場合にも、図2に示すよ
うな静圧最低点が形成されるため、吸込み方式の場合に
おいても適用可能である。
In the present embodiment, a case is described in which the fluid is discharged from the blower 1 into the orifice pipe 2. However, the blower 1 is connected to the downstream side of the duct 6 and sucks the fluid from the duct 6. In this case as well, since the static pressure minimum point as shown in FIG. 2 is formed, the present invention can be applied to the suction method.

【0031】[0031]

【発明の効果】本発明の流動流体中への粒子供給装置
は、内部に流量計測用オリフィス板が設けられたオリフ
ィス配管内の同オリフィス板の後流側に設けられた粒子
供給用オリフィス板と、同粒子供給用オリフィス板の後
流側のオリフィス配管の上壁に接続されたノズル部がそ
の先端に設けられた分岐管と、同分岐管の後端に接続さ
れた粒子容器とにより形成されたものとしたことによっ
て、粒子供給用オリフィス板により形成される静圧最低
点の位置に分岐管のノズル部が配設されるため、また、
このノズル部は逆円錐台形状の貫通孔が設けられている
ため、粒子容器内の粒子を分岐管及びノズル部を介して
オリフィス配管内にスムースに自動供給することが可能
となり、上記ノズル部の開口部の内径が小さいため、ま
た、上記流量計測用オリフィス板はノズル部から離れて
前流側に位置して粒子が詰まることがないため、流体の
高精度の流量計測を継続することができ、適切な流量制
御が可能となり、本発明に係る装置を流動する流体の可
視化等に用いた場合には、流体の流動状況の的確かつ効
率的な観察が可能となる。
According to the present invention, there is provided an apparatus for supplying particles into a flowing fluid, comprising an orifice plate provided on the downstream side of the orifice plate in an orifice pipe having an orifice plate for measuring flow therein. A nozzle part connected to the upper wall of the orifice pipe on the downstream side of the particle supply orifice plate is formed by a branch pipe provided at the tip thereof, and a particle container connected to the rear end of the branch pipe. Since the nozzle portion of the branch pipe is disposed at the position of the lowest static pressure formed by the orifice plate for supplying particles,
Since this nozzle portion is provided with an inverted truncated conical through hole, particles in the particle container can be smoothly and automatically supplied to the orifice pipe via the branch pipe and the nozzle portion, and Since the inner diameter of the opening is small, and the orifice plate for flow measurement is located on the upstream side away from the nozzle and is not clogged with particles, high-precision flow measurement of the fluid can be continued. In addition, when the apparatus according to the present invention is used for visualization of a flowing fluid or the like, appropriate and efficient observation of the flow state of the fluid becomes possible.

【0032】また、上記オリフィス配管の粒子供給用オ
リフィス板より前流側の部分と上記分岐管の間に接続さ
れたパージ管と、同パージ管に設けられたバルブを備え
たものとしたことによって、上記ノズル部に粒子による
詰まりを生じた場合には、バルブを開くことにより直ち
に詰まりを除去することが可能となる。
Also, a purge pipe connected between a portion of the orifice pipe upstream of the particle supply orifice plate and the branch pipe, and a valve provided in the purge pipe are provided. If the nozzle portion is clogged with particles, the clogging can be immediately removed by opening the valve.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係る流動流体中への粒
子供給装置の説明図で、(a)は側面図、(b)は静圧
最低点の説明図である。
FIG. 1 is an explanatory view of an apparatus for supplying particles into a flowing fluid according to an embodiment of the present invention, wherein (a) is a side view and (b) is an explanatory view of a static pressure minimum point.

【図2】上記一実施形態に係るノズル部の拡大図で、
(a)は側面図、(b)は(a)のA−A矢視図であ
る。
FIG. 2 is an enlarged view of a nozzle unit according to the embodiment,
(A) is a side view, (b) is an AA arrow view of (a).

【図3】従来の粒子供給装置を備えた風洞実験装置の説
明図である。
FIG. 3 is an explanatory diagram of a wind tunnel experimental device provided with a conventional particle supply device.

【図4】従来の吐き出し方式の場合に適用される粒子供
給装置の説明図である。
FIG. 4 is an explanatory diagram of a particle supply device applied in the case of a conventional discharge method.

【符号の説明】[Explanation of symbols]

1 送風機 2 オリフィス配管 3 流量計測用オリフィス板 4 圧力差検出器 6 ダクト 8 粒子供給用オリフィス板 9 静圧最低点 10 分岐管 11 ノズル部 13 粒子 14 開口部 15 パージ管 17 バルブ 18 粒子容器 20 模型 REFERENCE SIGNS LIST 1 blower 2 orifice pipe 3 flow rate measurement orifice plate 4 pressure difference detector 6 duct 8 particle supply orifice plate 9 static pressure lowest point 10 branch pipe 11 nozzle part 13 particle 14 opening 15 purge pipe 17 valve 18 particle container 20 model

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内部に流量計測用オリフィス板が設けら
れたオリフィス配管から流出し物体の周りを流動する流
体中へ粒子を供給する粒子供給装置であって、上記流量
計測用オリフィス板の後流側のオリフィス配管内に設け
られた粒子供給用オリフィス板、同オリフィス板の後流
側の静圧最低点の位置のオリフィス配管の上壁に接続さ
れ逆円錐台形状の貫通孔を有するノズル部がその先端に
設けられた分岐管、および同分岐管の後端に接続された
粒子容器により形成されたことを特徴とする流動流体中
への粒子供給装置。
1. A particle supply device for supplying particles into a fluid flowing out of an orifice pipe provided with a flow measurement orifice plate therein and flowing around an object, the particle supply device being a wake of the flow measurement orifice plate. The orifice plate for particle supply provided in the orifice pipe on the side, the nozzle part having a through-hole in the shape of an inverted truncated cone connected to the upper wall of the orifice pipe at the position of the static pressure lowest point on the downstream side of the orifice plate An apparatus for supplying particles into a flowing fluid, comprising: a branch pipe provided at a front end thereof; and a particle container connected to a rear end of the branch pipe.
【請求項2】 請求項1に記載の流動流体中への粒子供
給装置において、上記粒子供給用オリフィス板の前流側
のオリフィス配管と上記分岐管の間に接続されたパージ
管、および同パージ管に設けられたバルブを備えたこと
を特徴とする流動流体中への粒子供給装置。
2. An apparatus for supplying particles into a flowing fluid according to claim 1, wherein said purge pipe is connected between an orifice pipe upstream of said particle supply orifice plate and said branch pipe. An apparatus for supplying particles into a flowing fluid, comprising a valve provided in a pipe.
JP14205997A 1997-05-30 1997-05-30 Particle supply device for flowing fluid for fluid visualization and flow measurement Expired - Fee Related JP3408719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14205997A JP3408719B2 (en) 1997-05-30 1997-05-30 Particle supply device for flowing fluid for fluid visualization and flow measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14205997A JP3408719B2 (en) 1997-05-30 1997-05-30 Particle supply device for flowing fluid for fluid visualization and flow measurement

Publications (2)

Publication Number Publication Date
JPH10332528A true JPH10332528A (en) 1998-12-18
JP3408719B2 JP3408719B2 (en) 2003-05-19

Family

ID=15306471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14205997A Expired - Fee Related JP3408719B2 (en) 1997-05-30 1997-05-30 Particle supply device for flowing fluid for fluid visualization and flow measurement

Country Status (1)

Country Link
JP (1) JP3408719B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620904A (en) * 2012-03-27 2012-08-01 中国矿业大学 Experimental device for flow field display
CN103308276A (en) * 2013-06-17 2013-09-18 内蒙古科技大学 High-pressure powder supply device
CN103471809A (en) * 2013-09-12 2013-12-25 中国科学院工程热物理研究所 Ultrahigh frequency response plasma flow measurement device
CN105387988A (en) * 2015-10-21 2016-03-09 南车青岛四方机车车辆股份有限公司 Pore plate air flue experimental device
CN106323582A (en) * 2016-08-30 2017-01-11 上海交通大学 Ultramicro-size aircraft wind tunnel experiment table device
CN107389304A (en) * 2017-08-14 2017-11-24 上海卫星装备研究所 A kind of positive pressure measuring device of aperture water conservancy diversion and its measuring method
WO2021036501A1 (en) * 2019-08-29 2021-03-04 浙江大学 Tracer particle spreading device for flat-plate boundary layer flow visualization experiment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620904A (en) * 2012-03-27 2012-08-01 中国矿业大学 Experimental device for flow field display
CN102620904B (en) * 2012-03-27 2014-08-20 中国矿业大学 Experimental device for flow field display
CN103308276A (en) * 2013-06-17 2013-09-18 内蒙古科技大学 High-pressure powder supply device
CN103471809A (en) * 2013-09-12 2013-12-25 中国科学院工程热物理研究所 Ultrahigh frequency response plasma flow measurement device
CN103471809B (en) * 2013-09-12 2015-10-28 中国科学院工程热物理研究所 A kind of ultrahigh frequency response plasma flow measurement device
CN105387988A (en) * 2015-10-21 2016-03-09 南车青岛四方机车车辆股份有限公司 Pore plate air flue experimental device
CN106323582A (en) * 2016-08-30 2017-01-11 上海交通大学 Ultramicro-size aircraft wind tunnel experiment table device
CN107389304A (en) * 2017-08-14 2017-11-24 上海卫星装备研究所 A kind of positive pressure measuring device of aperture water conservancy diversion and its measuring method
WO2021036501A1 (en) * 2019-08-29 2021-03-04 浙江大学 Tracer particle spreading device for flat-plate boundary layer flow visualization experiment
US11953405B2 (en) 2019-08-29 2024-04-09 Zhejiang University Tracer particle spreading device for a boundary layer flow visualization experiment based on a flat plate

Also Published As

Publication number Publication date
JP3408719B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
CN102243797B (en) smoke detector
JPH10332528A (en) Unit for supplying particles into fluid
JPH05196487A (en) Method and apparatus for measuring flow rate of fluidized powder
CN201732006U (en) Testing platform for air curtain type spray lance spraying gas and liquid two-phase flow system
JP2004198430A (en) Liquid flow proximity sensor for use in immersion lithography
CN108627673B (en) PIV trace particle wall surface scattering device
Meier New optical tools for fluid mechanics
CN110411710A (en) A kind of Boundary Layer on Flat Plate FLOW VISUALIZATION experiment trace particle sowing apparatus
CN106004044B (en) Ink measuring system and printing device
CN103940581B (en) A kind of experimental technique of monitoring trace gas concentration value measurement jet entrainment amount
US5256375A (en) Mixing device
Galli et al. Control of forced shock-wave oscillations and separated boundary layer interaction
US20150346173A1 (en) Total pressure and total temperature measurement in wet gas condition
JP2019010681A (en) Work device and work method
CN216639752U (en) Foreign fiber removing device for foreign fiber removing machine
JP3600952B2 (en) Oxygen concentration measuring device in furnace
JP2004191204A (en) Aperture variable suction nozzle
US20190285596A1 (en) Wetting test apparatus and method for gas sensor
CN106179104B (en) Automatic color regulating devices and methods therefor
CN218847309U (en) Ring pipe pressure taking rapid purging anti-blocking device
JP4026996B2 (en) Powder sampling device
JPH0586467U (en) Air-blast device
JP2006349414A (en) Device and method for measuring charged amount distribution
Griffin Design and performance of flueric shock position sensor for a mixed-compression supersonic inlet
SE463525B (en) PRESSURE SEATING DEVICE IN CONTAINER / TRANSPORT PIPE CONTAINING A PRESSURE MEDIUM MIXED WITH SOLID MATERIAL

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030204

LAPS Cancellation because of no payment of annual fees