JP2004191204A - Aperture variable suction nozzle - Google Patents

Aperture variable suction nozzle Download PDF

Info

Publication number
JP2004191204A
JP2004191204A JP2002360066A JP2002360066A JP2004191204A JP 2004191204 A JP2004191204 A JP 2004191204A JP 2002360066 A JP2002360066 A JP 2002360066A JP 2002360066 A JP2002360066 A JP 2002360066A JP 2004191204 A JP2004191204 A JP 2004191204A
Authority
JP
Japan
Prior art keywords
suction
nozzle
suction nozzle
measuring instrument
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002360066A
Other languages
Japanese (ja)
Inventor
Shusuke Yoshiyama
秀典 吉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002360066A priority Critical patent/JP2004191204A/en
Publication of JP2004191204A publication Critical patent/JP2004191204A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To instantaneously and freely change an inlet aperture of a suction nozzle, and to restore a constant suction velocity condition again, while maintaining a constant suction flow rate in a measuring instrument under the condition where the suction nozzle is inserted into a flue or a duct, in response to a change in an exhaust gas flow velocity. <P>SOLUTION: In a dust sample collecting measuring instrument provided with this aperture variable suction nozzle of the present invention, the aperture variable suction nozzle communicated with a dust sample measuring instrument and a suction means is inserted into an inside of an exhaust gas passage or the like, the inlet aperture of the aperture variable suction nozzle is changed freely to maintain the constant suction gas flow rate determined by the dust sample measuring instrument and to bring the suction velocity same to the exhust gas flow velocity, and the exhaust gas sucked through the aperture variable suction nozzle is introduced into the dust measuring instrument. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、環境保全のための煙道排ガス中の粒子状物質(本明細書においては「ダスト」という。)を特定粒径を境に分級し、質量濃度を測定する装置に用いられる吸引ノズルに関する。
【0002】
【従来の技術】
煙道排ガスの質量濃度測定では、排ガスの流速と等速で排ガスを採取する方法が基準とされていたが、特定粒径(PM2.5:気体中に浮遊する粒子の内で直径2.5ミクロン以下のもの)の質量濃度を自動的に測定することはできなかった。特定粒径の質量濃度を測定するには、一定流量で吸引して空気力学的に分級しなければならない。そのためには直径が固定された吸引ノズルを有する装置では等速吸引(本明細書においては「排ガスの流速とノズル内の通過速度を等しい速度で吸引すること」を「等速吸引」という。)と一定吸引流量の両方を可能とする装置が必要になる。
その解決策として、ノズルの口径を変化させる装置が提案された。このノズルの口径を変化させるための装置として、金属製の薄板を円錐形に丸めてノズルを形成し該円錐形の頂点部(ノズル入口)の面積を変える方法が提案された(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2002−340747号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の技術においては、製作が面倒であること及び円錐形の頂点部の面積を正確に把握して制御することができない等の問題を有していた。
本発明は、製作が容易であるとともに正確な制御が可能な吸引口可変ノズルを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため本発明の吸引口可変ノズルは、煙道内で粒子状物質を捕集する吸引ノズルにおいて、ノズル吸引口内に円錐状の制御錐を軸方向に出し入れ自在に設けることにより吸引口の吸引面積を可変とすることを特徴とする。
また、本発明の吸引口可変ノズルは、ノズル吸引口の断面形状を矩形とするとともに制御錐の断面形状を楔状とすることを特徴とする。
【0006】
【発明の実施の形態】
以下、本発明による実施の形態を図1、図2及び図3に基づき説明する。
図1は、本発明の実施の形態の全体構成を示したもので、ダストの粒径分布を測定する煙道1内に吸引口可変ノズル2を臨ませて配置する。吸引口可変ノズル2の後部は接続筒7を介してインパクター方式の分級器8に接続し、該分級器8は適宜の配管を介して吸引ポンプ9に接続される。
【0007】
図2は、吸引口可変ノズル2の第1の実施の形態を示したものである。
吸引口可変ノズル2は、その断面が円形をしており、入り口には円錐状の制御錐3が軸方向に出し入れ自在に設けられている。制御錐3の後部はノズル2の外部に延出され、例えばウオーム・ウオームホイール4及びモータ5によりノズル2の軸方向に前後動される。モータ5は、図1に示した制御器6により制御される。
【0008】
図3は、吸引口可変ノズル2の第2の実施の形態を示したものである。
吸引口可変ノズル2は、その断面が矩形をしており、入り口には楔状の制御錐3が軸方向に出し入れできるように自在に設けられている。制御錐3の後部は、上記第1の実施の形態と同様、ウオーム・ウオームホイール4及びモータ5によりノズル2の軸方向に前後動される。
【0009】
現在、大気中の微粒子の内で、2.5ミクロン以下の粒子(PM2.5)が問題となっており、その測定器が開発、販売されている。この装置においては、吸引流量を16.7リットル/分としている。この吸引流量において煙道1内の排ガス速度が変化する場合の制御錐の出し入れ距離を本発明の第1の実施の形態(吸引口可変ノズル2の断面が円形)の場合について図4に基づいて説明する。
今、吸引流量Q:16700cm3/分、煙道1内の排ガス速度v:6000cm/分、制御錐3の円錐部の長さh:5cm、同円錐部の最大半径r:0.5cm、ノズル2の半径R:1cm、ノズル2の入り口部a−a’における制御錐3の先端からの長さをh、半径をrとする。
【0010】
吸引流量Qは次式で表される。
Q=v(πR−πr )=16700 (1)
r/h=r/h (2)
(1)式に数値を代入すると、
6000(3.14−πr )=16700
∴r ={(3.14−16700/6000)1/π}1/2 =0.337cm
(2)式より、0.5/0.5=0.337/h
∴h =3.37cm
【0011】
次に、vが変化して6500cm/分に増加した場合のhを求める。
上記(1)式より、
6500(3.14−πr )=16700
∴r ={(3.14−16700/6500)1/π}1/2 =0.43cm
(2)式より、0.5/0.5=0.43/h
∴h =4.3cm
【0012】
上記の計算結果から、排ガス速度vが6000cm/分から6500cm/分に変化した場合、図4においてノズル2の入り口部a−a’における制御錐3の先端からの長さをhは、3.37cmから4.3cmとなる。したがって、制御錐3の円錐部を0.9cm前方に出すことにより吸引流量Qを16.7リットル/分に保ったまま等速で吸引できる。
【0013】
上記のように、ノズル2の入り口部a−a’の断面積及びノズル2の入り口部a−a’と交差する制御錐3の断面積は計算できる。また、制御錐3を出し入れする距離hとノズル2の入り口部a−a’の断面積の関係は数値的に求めることが可能である。他方、一定の吸引流量Qと排ガス速度vからノズル2の断面積が計算される。
したがって、排ガスの速度vに応じたノズル2の入り口部a−a’の断面積となるように制御錐3の出し入れを制御器6で制御すれば良い。
【0014】
【発明の効果】
以上に詳述した本発明の吸引口可変ノズルによれば、分級器の入口前段に吸引口可変ノズルを接続して、この吸引口可変ノズルの吸引面積を、一定の吸引流量を維持したままで、煙道内の排ガスの速度変動に応じて等速吸引ガス流速になるように変化させることにより、瞬時に等速吸引状態を確保できる。
また、本発明によれば、吸引ノズルの断面積を変化させる制御錐が製作容易なソリッド状のものであり、単にノズル内を出し入れすることにより、ノズル入り口部の断面積が計算でき、よって、正確な制御が容易に達成できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る全体構成を示す概略正面図である。
【図2】吸引口可変ノズルの第1の実施の形態を示す概略正面図である。
【図3】吸引口可変ノズルの第2の実施の形態を示す概略正面図である。
【図4】煙道内の排ガス速度が変化する場合の制御錐の出し入れ量を説明するための概略図である。
【符号の説明】
1 煙道
2 吸引口可変ノズル
3 制御錐
4 ウオーム・ウオームホイール
5 モータ
6 制御器
7 接続筒
8 分級器
9 吸引ポンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a suction nozzle used for an apparatus that classifies particulate matter (hereinafter, referred to as "dust") in flue gas for environmental protection based on a specific particle size and measures mass concentration. About.
[0002]
[Prior art]
In the measurement of flue gas mass concentration, the method of collecting flue gas at the same speed as the flue gas flow rate was used as the standard, but the specific particle size (PM2.5: 2.5 microns or less in particles suspended in gas) Was not able to be measured automatically. In order to measure the mass concentration of a specific particle size, it is necessary to suction at a constant flow rate and aerodynamically classify. For this purpose, a device having a suction nozzle with a fixed diameter has a constant-speed suction (in this specification, "suctioning the exhaust gas at a speed equal to the flow velocity of the exhaust gas at the same speed" is referred to as "constant-speed suction"). And a device capable of both a constant suction flow rate.
As a solution, an apparatus for changing the diameter of the nozzle has been proposed. As a device for changing the diameter of the nozzle, there has been proposed a method in which a metal thin plate is rounded into a conical shape to form a nozzle, and the area of the apex (nozzle inlet) of the conical shape is changed (for example, Patent Document 1). 1).
[0003]
[Patent Document 1]
JP 2002-340747 A
[Problems to be solved by the invention]
However, in the above-mentioned conventional technology, there are problems that the manufacture is troublesome and that the area of the apex of the cone cannot be accurately grasped and controlled.
An object of the present invention is to provide a variable suction port nozzle that can be easily manufactured and that can be accurately controlled.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a suction nozzle variable nozzle according to the present invention is a suction nozzle for collecting particulate matter in a flue, wherein a conical control cone is provided in the nozzle suction port so as to be able to freely move in and out in the axial direction. Is characterized in that the suction area is variable.
The variable suction port nozzle of the present invention is characterized in that the cross-sectional shape of the nozzle suction port is rectangular and the control cone is wedge-shaped.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1, 2 and 3. FIG.
FIG. 1 shows an overall configuration of an embodiment of the present invention, in which a suction port variable nozzle 2 is arranged facing a flue 1 for measuring a particle size distribution of dust. The rear part of the variable suction port nozzle 2 is connected to an impactor type classifier 8 via a connection tube 7, and the classifier 8 is connected to a suction pump 9 via an appropriate pipe.
[0007]
FIG. 2 shows a first embodiment of the variable suction port nozzle 2.
The variable suction port nozzle 2 has a circular cross section, and a conical control cone 3 is provided at the entrance so as to be freely inserted and removed in the axial direction. The rear portion of the control cone 3 extends outside the nozzle 2 and is moved back and forth in the axial direction of the nozzle 2 by, for example, a worm / worm wheel 4 and a motor 5. The motor 5 is controlled by the controller 6 shown in FIG.
[0008]
FIG. 3 shows a second embodiment of the variable suction port nozzle 2.
The variable suction port nozzle 2 has a rectangular cross section, and a wedge-shaped control cone 3 is provided at the entrance so as to be freely inserted and removed in the axial direction. The rear portion of the control cone 3 is moved back and forth in the axial direction of the nozzle 2 by a worm / worm wheel 4 and a motor 5 as in the first embodiment.
[0009]
At present, among the fine particles in the atmosphere, particles having a size of 2.5 microns or less (PM2.5) have become a problem, and a measuring instrument has been developed and sold. In this apparatus, the suction flow rate is 16.7 liter / min. With reference to FIG. 4, the insertion / removal distance of the control cone when the exhaust gas velocity in the flue 1 changes at this suction flow rate will be described with reference to FIG. explain.
Now, the suction flow rate Q: 16700 cm 3 / min, the exhaust gas velocity v in the flue 1 v: 6000 cm / min, the length h of the conical portion of the control cone 3: 5 cm, the maximum radius r of the conical portion: 0.5 cm, the nozzle 2 radius R of: 1 cm, a length from the tip of the control cone 3 at the inlet section a-a of the nozzle 2 'h 1, the radius r 1.
[0010]
The suction flow rate Q is represented by the following equation.
Q = v (πR 2 -πr 1 2) = 16700 (1)
r / h = r 1 / h 1 (2)
Substituting a numerical value into equation (1) gives
6000 (3.14-πr 1 2) = 16700
∴r 1 = {(3.14-16700 / 6000) 1 / π} 1/2 = 0.337 cm
From equation (2), 0.5 / 0.5 = 0.337 / h 1
∴h 1 = 3.37cm
[0011]
Next, determine the h 1 when v is increased to 6500 cm / min change.
From the above equation (1),
6500 (3.14-πr 1 2) = 16700
∴r 1 = {(3.14-16700 / 6500 ) 1 / π} 1/2 = 0.43cm
From equation (2), 0.5 / 0.5 = 0.43 / h 1
∴h 1 = 4.3cm
[0012]
From the above calculation results, if the exhaust gas velocity v is changed to 6000 cm / min 6500 cm / min, h 1 the length from the tip of the control cone 3 at the inlet section a-a of the nozzle 2 'in Figure 4, 3.37Cm It becomes 4.3cm from. Therefore, by drawing the conical portion of the control cone 3 forward by 0.9 cm, suction can be performed at a constant speed while maintaining the suction flow rate Q at 16.7 liter / min.
[0013]
As described above, the cross-sectional area of the entrance aa 'of the nozzle 2 and the cross-sectional area of the control cone 3 intersecting the entrance aa' of the nozzle 2 can be calculated. The relationship between the cross-sectional area of the inlet portion a-a distance h 1 and nozzle 2 and out of control cone 3 'can be determined numerically. On the other hand, the sectional area of the nozzle 2 is calculated from the constant suction flow rate Q and the exhaust gas velocity v.
Therefore, the controller 6 may control the entrance and exit of the control cone 3 so that the cross-sectional area of the entrance aa 'of the nozzle 2 according to the velocity v of the exhaust gas.
[0014]
【The invention's effect】
According to the suction port variable nozzle of the present invention described in detail above, the suction port variable nozzle is connected to the front stage of the entrance of the classifier, and the suction area of the suction port variable nozzle is maintained at a constant suction flow rate. By changing the flow rate of the exhaust gas in the flue so as to be a constant-velocity suction gas flow rate, a constant-velocity suction state can be secured instantaneously.
Further, according to the present invention, the control cone for changing the cross-sectional area of the suction nozzle is a solid one that is easy to manufacture, and by simply taking in and out of the nozzle, the cross-sectional area of the nozzle entrance can be calculated. Accurate control can be easily achieved.
[Brief description of the drawings]
FIG. 1 is a schematic front view showing an entire configuration according to an embodiment of the present invention.
FIG. 2 is a schematic front view showing a first embodiment of a suction port variable nozzle.
FIG. 3 is a schematic front view showing a second embodiment of the suction port variable nozzle.
FIG. 4 is a schematic diagram for explaining the amount of taking in and out of a control cone when the exhaust gas speed in the flue changes.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flue 2 Suction port variable nozzle 3 Control cone 4 Worm and worm wheel 5 Motor 6 Controller 7 Connecting cylinder 8 Classifier 9 Suction pump

Claims (2)

煙道内で粒子状物質を捕集する吸引ノズルにおいて、ノズル吸引口内に円錐状の制御錐を軸方向に出し入れ自在に設けることにより吸引口の吸引面積を可変とすることを特徴とする吸引口可変ノズル。In the suction nozzle that collects particulate matter in the flue, the suction area of the suction port is variable by providing a conical control cone in the nozzle suction port so that it can be freely inserted and removed in the axial direction. nozzle. ノズル吸引口の断面形状を矩形とするとともに制御錐の断面形状を楔状とすることを特徴とする請求項1記載の吸引口可変ノズル。2. The variable suction port nozzle according to claim 1, wherein the nozzle suction port has a rectangular cross section and the control cone has a wedge-shaped cross section.
JP2002360066A 2002-12-12 2002-12-12 Aperture variable suction nozzle Pending JP2004191204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360066A JP2004191204A (en) 2002-12-12 2002-12-12 Aperture variable suction nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360066A JP2004191204A (en) 2002-12-12 2002-12-12 Aperture variable suction nozzle

Publications (1)

Publication Number Publication Date
JP2004191204A true JP2004191204A (en) 2004-07-08

Family

ID=32759241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360066A Pending JP2004191204A (en) 2002-12-12 2002-12-12 Aperture variable suction nozzle

Country Status (1)

Country Link
JP (1) JP2004191204A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458352A (en) * 2014-12-22 2015-03-25 天津水泥工业设计研究院有限公司 Large-flow sampling device for industrial flue gas particulate matters
CN105258981A (en) * 2015-11-25 2016-01-20 上海电力学院 Smoke dust sampling gun capable of adjusting gun head sampling area
KR20170110156A (en) * 2015-05-04 2017-10-10 트룸프 베르크초이그마쉬넨 게엠베하 + 코. 카게 Cutting gas nozzle with a displaceable sleeve for setting flow characteristics and laser cutting method
CN107350792A (en) * 2017-09-20 2017-11-17 四川长虹智能制造技术有限公司 A kind of Full-automatic screw locking machine of easily switched suction
KR20190026459A (en) * 2017-09-05 2019-03-13 주식회사 정엔지니어링 An exhaust gas continuous isokinetic sampling apparatus with a sectional area adjustment device attached to the suction nozzle
KR20190051308A (en) * 2017-11-06 2019-05-15 한국항공우주연구원 Particle detector and Method of detecting particle for isokinetic sampling of gas pipe

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458352A (en) * 2014-12-22 2015-03-25 天津水泥工业设计研究院有限公司 Large-flow sampling device for industrial flue gas particulate matters
US10603745B2 (en) 2015-05-04 2020-03-31 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Cutting gas nozzle and laser cutting method having a displaceable sleeve for setting the flow characteristics
US11135675B2 (en) 2015-05-04 2021-10-05 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Gas nozzle having a displaceable valve sleeve
KR20170110156A (en) * 2015-05-04 2017-10-10 트룸프 베르크초이그마쉬넨 게엠베하 + 코. 카게 Cutting gas nozzle with a displaceable sleeve for setting flow characteristics and laser cutting method
US10751836B2 (en) 2015-05-04 2020-08-25 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Gas nozzle having a displaceable valve sleeve
KR101893319B1 (en) * 2015-05-04 2018-08-29 트룸프 베르크초이그마쉬넨 게엠베하 + 코. 카게 Cutting gas nozzle with a displaceable sleeve for setting flow characteristics and laser cutting method
CN105258981B (en) * 2015-11-25 2018-07-20 上海电力学院 A kind of flue dust sampling gun of adjustable pipette tips Sampling Area
CN105258981A (en) * 2015-11-25 2016-01-20 上海电力学院 Smoke dust sampling gun capable of adjusting gun head sampling area
WO2019050220A1 (en) * 2017-09-05 2019-03-14 주식회사 정엔지니어링 Continuous isokinetic sampling device for stack gas having suction nozzle to which sectional area control device is attached, and automatic continuous measurement system for fine dust in stack gas comprising same combined therewith
KR102002967B1 (en) 2017-09-05 2019-10-01 주식회사 정엔지니어링 An exhaust gas continuous isokinetic sampling apparatus with a sectional area adjustment device attached to the suction nozzle
KR20190026459A (en) * 2017-09-05 2019-03-13 주식회사 정엔지니어링 An exhaust gas continuous isokinetic sampling apparatus with a sectional area adjustment device attached to the suction nozzle
US11137325B2 (en) 2017-09-05 2021-10-05 Chung Engineering Co. Ltd Continuous isokinetic sample device for stack gas having suction nozzle to which sectional area control device is attached, and automatic continuous measurement system for fine dust in stack gas comprising same combined therewith
CN107350792A (en) * 2017-09-20 2017-11-17 四川长虹智能制造技术有限公司 A kind of Full-automatic screw locking machine of easily switched suction
CN107350792B (en) * 2017-09-20 2023-07-07 四川长虹智能制造技术有限公司 Full-automatic screw locking machine of easily switched suction nozzle
KR20190051308A (en) * 2017-11-06 2019-05-15 한국항공우주연구원 Particle detector and Method of detecting particle for isokinetic sampling of gas pipe
KR102133482B1 (en) * 2017-11-06 2020-07-13 한국항공우주연구원 Particle detector and Method of detecting particle for isokinetic sampling of gas pipe

Similar Documents

Publication Publication Date Title
JP3673854B2 (en) Dust sampling device with variable aperture suction nozzle
Marple et al. Impactor design
JP2004045419A (en) Particle sensing system and its method
US6431014B1 (en) High accuracy aerosol impactor and monitor
US9506843B2 (en) Personal nanoparticle respiratory depositions sampler and methods of using the same
EP1757921A2 (en) Aerosol measurement by dilution and particle counting
CN110998276A (en) Continuous automatic measuring device for fine powder in chimney waste gas
JP2004191204A (en) Aperture variable suction nozzle
KR101146302B1 (en) Device for measuring size distribution of fine particles
Haglund et al. A circumferential slot virtual impactor
US5958111A (en) Method for sampling aerosols
TW386275B (en) Particle measuring device having cyclone -shaped collector for semiconductor cleanroom application
EP3950090A1 (en) Microparticle-trapping device
US3823602A (en) Sampling device
JP2004089898A (en) Method and apparatus for isolating suspended particle in fluid
JP2004077137A (en) Suction nozzle apparatus used for dust sample collecting apparatus
JP6558686B2 (en) Separation device
Zhou et al. Evaluation of a novel personal nanoparticle sampler
Bernstein et al. A high-volume sampler for the determination of particle size distributions in ambient air
Kim et al. Design and performance evaluation of an aerosol separator
JP3501421B2 (en) Air flow classification device
JP3696436B2 (en) Method for classifying particles in airflow and measuring particle size distribution
JP2945499B2 (en) Exhaust gas constant flow sampling method and variable venturi constant flow measurement control device
Eleftheriadis et al. The particle collection efficiency of rectangular strips by inertial impaction
JPH0719590Y2 (en) Airflow classifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Effective date: 20060627

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20061114

Free format text: JAPANESE INTERMEDIATE CODE: A02