JPH10332279A - Brick for lining for container for molten metal - Google Patents

Brick for lining for container for molten metal

Info

Publication number
JPH10332279A
JPH10332279A JP14045397A JP14045397A JPH10332279A JP H10332279 A JPH10332279 A JP H10332279A JP 14045397 A JP14045397 A JP 14045397A JP 14045397 A JP14045397 A JP 14045397A JP H10332279 A JPH10332279 A JP H10332279A
Authority
JP
Japan
Prior art keywords
brick
tuyere
thermal stress
molten metal
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14045397A
Other languages
Japanese (ja)
Inventor
Minoru Ishikawa
稔 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14045397A priority Critical patent/JPH10332279A/en
Publication of JPH10332279A publication Critical patent/JPH10332279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To relax the generation of a thermal stress due to repetition of heating and cooling by embedding a metallic wire vertically to a contact surface between an internal part and the molten metal, to cause breakage to hardly occur by increasing the strength of a brick, and further to cause a part, to which breakage occurs, to hardly fall even when the breakage occurs. SOLUTION: Metallic wires 1 are embedded at intervals of a specified distance through the overall length in a longitudinal direction of a brick, and an opening part 2 for inserting a tuyere is formed in a central part. In a case of a tuyere brick, since a thermal stress is generated vertical to a working surface, the embedded metallic wires reinforce a brick and prevents breakage of the brick. The material of the brick is not especially limited but may be magnesia carbon, and the other alumina carbon brick may be an alumina-SIC- carbon brick. The material of the embedding metallic wire is especially limited, and preferably a stainless steel being a material, such as SUS304 and SUS410, having high thermal conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は溶融金属の精錬炉、
溶融金属を収容する取鍋等(これらを総称して「溶融金
属用容器」という)の内張り用れんが、より詳述すれ
ば、溶融金属用容器の内張りれんがが受ける熱応力に対
して耐久性の高いれんがに関する。
TECHNICAL FIELD The present invention relates to a furnace for refining molten metal,
The lining brick of a ladle or the like that holds molten metal (collectively referred to as “molten metal container”), more specifically, is resistant to thermal stress applied to the lining brick of the molten metal container. Regarding high brick.

【0002】[0002]

【従来の技術】転炉等の溶融金属の精錬炉の内張りれん
がは、炉全体が精錬時と空炉時の高温状態と低温状態の
繰り返しによって加熱冷却のヒートサイクルを受ける。
またガスを吹き込む羽口を備える場合には、羽口の周囲
のれんがにはガスの冷却効果によって熱応力が発生しや
すい状態に置かれる。さらに、溶融金属を収容する取鍋
の内張りれんがも、同様に使用の繰り返しで加熱冷却の
ヒートサイクルを受けるので、れんがに熱応力が発生し
やすい。
2. Description of the Related Art The lining brick of a refining furnace for molten metal such as a converter is subjected to a heat cycle of heating and cooling by repetition of a high temperature state and a low temperature state during refining and empty furnace.
When a tuyere that blows gas is provided, the brick around the tuyere is placed in a state where thermal stress is likely to be generated due to the gas cooling effect. Furthermore, the lining brick of the ladle containing the molten metal also undergoes a heat cycle of heating and cooling by repeated use, so that the brick is likely to generate thermal stress.

【0003】とくに、転炉の羽口周辺のれんが(以下羽
口れんがという)内の温度勾配は急激であるため、温度
勾配に起因する熱応力が大きくなり、熱応力がしばしば
れんがの強度以上の値となる。その結果羽口れんがに割
れが生じ、一部が脱落するので損耗速度が大きくなると
いう問題が生じる。
In particular, since the temperature gradient in the brick around the tuyere of a converter (hereinafter referred to as tuyere brick) is sharp, the thermal stress caused by the temperature gradient increases, and the thermal stress often exceeds the strength of the brick. Value. As a result, the tuyere brick is cracked and a part of the tuyere brick falls off, resulting in a problem that the wear rate increases.

【0004】そこで、従来からこのような温度勾配を軽
減するため、羽口とその周辺の羽口れんがとの間に断熱
層を設ける試みがなされている。
Therefore, in order to reduce such a temperature gradient, attempts have been made to provide a heat insulating layer between the tuyere and the tuyere brick around the tuyere.

【0005】特開昭59−20417号公報には、金属
羽口と耐火物製羽口れんがとの間に熱伝導率が小さく、
かつ高強度を有するセラミック材からなるチューブを挿
入介在させることが提案されている。
Japanese Patent Application Laid-Open No. Sho 59-20417 discloses that the thermal conductivity between a metal tuyere and a refractory tuyere brick is small,
In addition, it has been proposed to insert and insert a tube made of a ceramic material having high strength.

【0006】しかしながら、このような構造であって
も、セラミックチューブに発生する熱応力による亀裂は
抑制できず、またその外側の羽口れんがまで亀裂が伝播
するので、亀裂の伝播拡大を阻止することができる抜本
的な対策とはなっていない。また、セラミックチューブ
は衝撃による割れが発生しやすいので取り扱いに注意を
要し、施工に手間がかかるいう問題もある。
However, even with such a structure, the cracks due to the thermal stress generated in the ceramic tube cannot be suppressed, and the cracks propagate to the tuyere brick outside thereof. It is not a drastic measure that can be done. In addition, ceramic tubes are liable to be cracked by impact, so that they need to be handled with care, and there is also a problem that the construction is troublesome.

【0007】さらに、特開平3−211212号公報に
は、羽口外周を黒鉛シートで断熱した構造とすることが
提案されている。しかし、断熱材に黒鉛を使用している
ので、一般的に精錬用ガスとして羽口から吹き込む酸素
または羽口冷却用ガスとして吹き込む二酸化炭素による
酸化損耗、さらに羽口周辺に濃縮されて存在するFeO
系溶融物による酸化損耗などを回避できないという問題
を抱えている。
Further, Japanese Patent Laid-Open Publication No. Hei 3-21212 proposes a structure in which the tuyere outer periphery is insulated with a graphite sheet. However, since graphite is used for the heat insulating material, oxidation loss is generally caused by oxygen blown from the tuyere as a refining gas or carbon dioxide blown as a tuyere cooling gas, and FeO concentrated around the tuyere is present.
There is a problem that oxidation wear and the like due to the system melt cannot be avoided.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、加
熱、冷却の繰り返しによってれんがが受ける熱応力の発
生を緩和させること、またれんがの強度を高くして割れ
を生じにくくさせること、さらに仮に割れが発生しても
割れた部分が脱落しにくいれんがを提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to alleviate the generation of thermal stress applied to a brick by repeated heating and cooling, and to increase the strength of the brick so that cracks are less likely to occur. An object of the present invention is to provide a brick in which the cracked portion is hardly dropped even if the crack occurs.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、溶融金
属を処理する精錬炉および溶融金属を収容する取鍋等溶
融金属容器の内面に内張りするれんがであって、その内
部に溶融金属との接触面(以下稼働面と記す)に対して
垂直に金属線が埋設されているれんがにある。金属線の
埋設角度は、稼働面に対して垂直であることが望ましい
が、垂直から若干傾いていても得られる効果は変わらな
いので、ほぼ垂直に近い角度であればよい。
The gist of the present invention is to provide a smelting furnace for treating molten metal and a brick lined on the inner surface of a molten metal container such as a ladle for accommodating the molten metal. The brick has a metal wire buried perpendicular to the contact surface (hereinafter referred to as the operating surface). The embedding angle of the metal wire is desirably perpendicular to the operating surface. However, even if the metal wire is slightly inclined from the perpendicular, the effect obtained is not changed.

【0010】金属線を埋設する目的は、れんがの熱伝導
率を高めることによりれんがの温度勾配を小さくして発
生する熱応力を緩和すること、またれんがを補強して強
度向上を図ることにある。さらに、埋設した金属線は、
れんがに割れが発生しても割れた部分のれんがを保持し
て脱落を防止する役割もはたす。
[0010] The purpose of embedding the metal wire is to reduce the temperature gradient of the brick by increasing the thermal conductivity of the brick to reduce the thermal stress generated, and to reinforce the brick to improve the strength. . In addition, the buried metal wire
Even if a crack occurs in the brick, it also plays a role of retaining the brick in the cracked portion and preventing falling off.

【0011】溶融金属用容器の内張り用れんがのうちで
最も温度勾配が大きく、れんがに割れが発生しやすい製
鋼用転炉の羽口れんがについて、亀裂の発生状況を調査
した。羽口れんがには中心に羽口パイプが挿入される。
羽口パイプは二重構造になっており、内管に精錬用の酸
素ガスが、外管に冷却用の二酸化炭素ガス等が流され
る。したがって、羽口パイプと接する羽口れんがの部分
は強い冷却を受けて、稼働面近傍においても500℃程
度の低温度になる。一方羽口パイプとの接触面より離れ
た部分の羽口れんがは、炉内の溶融金属からの熱伝導に
より加熱を受けて高温度になる。この部分の温度は炉内
に近いほど高く、稼働面では溶融金属と同等の1650
℃程度の高温に達し、炉の外側に向かうにしたがって温
度が徐々に降下するパターンとなる。このように、羽口
れんが内には、羽口パイプの近傍の低温度部分とそれ以
外の高温度部分が存在することとなり、この結果れんが
内に温度勾配が形成される。この温度勾配は羽口の先端
部分に近いほど大きくなり、熱応力の発生もこれに比例
する。熱応力の向きは羽口パイプとの接触面と平行、す
なわち稼働面とは垂直になる。発生した熱応力はれんが
強度を超え、このため稼働面から数cmないし数10c
m内部に、稼働面とほぼ平行に割れが発生し、進展す
る。
The state of cracks was investigated for tuyere bricks of steelmaking converters, which have the largest temperature gradient among the bricks for lining of molten metal containers and are liable to crack. A tuyere pipe is inserted into the tuyere brick at the center.
The tuyere pipe has a double structure, in which oxygen gas for refining flows through the inner tube, and carbon dioxide gas or the like flows through the outer tube. Therefore, the tuyere brick portion in contact with the tuyere pipe is subjected to strong cooling, and its temperature is reduced to about 500 ° C. even in the vicinity of the operating surface. On the other hand, the tuyere brick at a portion away from the contact surface with the tuyere pipe is heated by the heat conduction from the molten metal in the furnace to a high temperature. The temperature of this part is higher as it is closer to the inside of the furnace.
The temperature reaches a high temperature of about ° C, and the temperature gradually decreases toward the outside of the furnace. As described above, the tuyere brick has a low-temperature portion near the tuyere pipe and a high-temperature portion other than the tuyere pipe, and as a result, a temperature gradient is formed in the brick. This temperature gradient increases as it approaches the tip of the tuyere, and the generation of thermal stress is proportional to this. The direction of the thermal stress is parallel to the contact surface with the tuyere pipe, that is, perpendicular to the operating surface. The generated thermal stress exceeds the strength of the brick.
A crack is generated in the inside of m and almost parallel to the working surface, and the crack progresses.

【0012】れんが割れは、羽口周辺のれんが以外の部
位の内張りれんがにも起こる。この場合は、炉のヒート
サイクルの繰り返しが割れ発生の原因となる。すなわ
ち、れんが稼働面は、炉内に溶融金属が入っている場合
には溶融金属と同等の高温に上昇するが、溶融金属を排
出した後は大気にさらされて冷却される。このような状
況では、れんが稼働面が急激に冷却されるため、内部れ
んがとの間に温度勾配が形成され、稼働面に平行な熱応
力が発生する。発生した熱応力はれんが強度を超え、稼
働面に対して垂直にれんが割れが発生する。
[0012] Brick cracking also occurs in lining bricks in areas other than the brick around the tuyere. In this case, the repetition of the heat cycle of the furnace causes the occurrence of cracks. That is, the operating surface of the brick rises to a high temperature equivalent to the molten metal when the molten metal is contained in the furnace, but is cooled by being exposed to the atmosphere after discharging the molten metal. In such a situation, since the operating surface of the brick is rapidly cooled, a temperature gradient is formed between the operating surface and the brick, and thermal stress parallel to the operating surface is generated. The generated thermal stress exceeds the strength of the brick, causing a brick crack perpendicular to the working surface.

【0013】したがって、これらの内張りれんがの損耗
を防止するためには、急激な温度勾配を生じさせないこ
と、れんがの強度を高めること、また万一割れが発生し
てもれんがの脱落を防止することが必要になる。これら
の条件を満たすためのれんがを種々検討した結果、次の
ようなれんが構造を着想するに至った。
Therefore, in order to prevent the lining brick from being worn out, it is necessary to prevent a sharp temperature gradient from being generated, to increase the strength of the brick, and to prevent the brick from falling off even if a crack occurs. Is required. As a result of various studies on bricks satisfying these conditions, the following brick structure was conceived.

【0014】すなわち、内部に任意本数の金属線を埋設
して、れんがを補強することによって、割れの発生を抑
制し、また、たとえ割れが発生しても金属線による保持
効果によってれんがの脱落を防止する。さらに、金属線
の高熱伝導率を利用して長手方向の冷却を促進し、れん
がの熱勾配を緩和する。これによって羽口れんがおよび
その他の部位に設置する内張りれんがの長寿命化が可能
になることを見いだした。
That is, by arranging an arbitrary number of metal wires inside to reinforce the brick, the generation of cracks is suppressed, and even if cracks occur, the bricks are dropped by the holding effect of the metal wires. To prevent. Furthermore, utilizing the high thermal conductivity of the metal wire, the cooling in the longitudinal direction is promoted, and the thermal gradient of the brick is reduced. It has been found that this makes it possible to extend the life of tuyere bricks and lining bricks installed at other locations.

【0015】[0015]

【発明の実施の形態】図1に、本発明のれんがのうちの
羽口れんがの構造を示す。図1−(a)は平面図を示
し、図1−(b)はA−A′矢視の縦断面を示す。一定
間隔にれんがの長手方向全長にわたって金属線1を埋設
し、中心に羽口挿入用の開孔部2を備えている。羽口れ
んがの場合は、熱応力が稼働面に対して垂直に発生する
ので、埋設した金属線はれんがの補強に役立ってれんが
の割れ防止に効果を発揮する。
FIG. 1 shows the structure of a tuyere brick of the brick of the present invention. FIG. 1A shows a plan view, and FIG. 1B shows a vertical cross section taken along the line AA ′. A metal wire 1 is buried at regular intervals over the entire length of the brick in the longitudinal direction, and an opening 2 for tuyere insertion is provided at the center. In the case of tuyere bricks, thermal stress is generated perpendicular to the working surface, so the buried metal wire serves to reinforce the brick and is effective in preventing cracking of the brick.

【0016】図2には、本発明のれんがのうちのウエア
ーれんがの構造を示す。図2−(a)は平面図を示し、
図2−(b)はA−A′矢視の縦断面を示す。この場合
は、羽口挿入用の開孔部はなく、全体が一定間隔に金属
線が埋設された構造となる。ウエアーれんがの場合は、
熱応力が稼働面に対して平行に発生するので、埋設した
金属線の埋設はれんがの補強ではなく冷却促進に効果を
発揮し、温度勾配を緩和して熱応力の発生を抑制する。
FIG. 2 shows the structure of the wear brick of the brick of the present invention. FIG. 2- (a) shows a plan view,
FIG. 2- (b) shows a vertical section taken along the line AA '. In this case, there is no opening for tuyere insertion, and the whole has a structure in which metal wires are embedded at regular intervals. For wear bricks,
Since the thermal stress is generated in parallel with the operating surface, the burying of the buried metal wire has an effect not to reinforce the brick but to promote the cooling, and to reduce the temperature gradient to suppress the generation of the thermal stress.

【0017】れんがの材質に特に限定はない。転炉の羽
口れんが等として一般的に用いられているマグネシアカ
ーボンれんがでよい。そのほか、アルミナカーボンれん
が、アルミナ−SiC−カーボンれんがの使用も可能で
ある。
There is no particular limitation on the material of the brick. Magnesia carbon brick generally used as tuyere brick of a converter may be used. In addition, alumina carbon brick and alumina-SiC-carbon brick can be used.

【0018】埋設する金属線の材質も特に限定はない
が、高温でも酸化、溶融しにくく、かつ強度が高く、ま
た熱伝導率が高い材質が望ましい。例えばSUS30
4、SUS410(JIS G 4309)等のステン
レス鋼が適している。
The material of the metal wire to be buried is not particularly limited, but a material that is hardly oxidized and melted even at a high temperature, has high strength, and has high thermal conductivity is desirable. For example, SUS30
4. Stainless steel such as SUS410 (JIS G 4309) is suitable.

【0019】金属線は、炉外周への抜熱促進方向および
割れ発生時のれんが保持の観点から、稼動面に対して垂
直に埋設する。金属線の長さは、これまでのれんがの割
れ発生が稼働面かられんが長さで60%程度のところま
で到達することから、稼働面かられんが長さで70%以
上とすることが望ましい。
The metal wire is buried perpendicular to the operating surface from the viewpoint of promoting heat removal to the outer periphery of the furnace and holding the brick when a crack occurs. It is desirable that the length of the metal wire be 70% or more in terms of the length of the brick from the operating surface, since cracking of the brick reaches up to about 60% of the length of the brick from the operating surface.

【0020】金属線の中心軸同士の間隔は、10mmか
ら50mmの範囲とするのが望ましい。10mm未満の
場合には、れんがの製造に手間がかかり、50mmを超
えるとれんが内の熱伝導が局所的に増長され、かえって
新たな熱歪が発生するからである。
The distance between the central axes of the metal wires is preferably in the range of 10 mm to 50 mm. If the length is less than 10 mm, it takes time to manufacture the brick, and if it exceeds 50 mm, the heat conduction inside the brick is locally increased, and a new thermal strain is generated instead.

【0021】また金属線の直径は、0.5mmから5m
mの範囲とするのが望ましい。0.5mm未満では切断
しやすく、5mmを超えると接触する溶融金属による溶
損を受けやすくなるからである。
The diameter of the metal wire is 0.5 mm to 5 m.
m is desirable. If it is less than 0.5 mm, it is easy to cut, and if it exceeds 5 mm, it is liable to be damaged by the molten metal in contact.

【0022】図3に、本発明のれんがを用いたガス吹き
込み羽口周辺のれんが積み構造の縦断面の概略図を示
す。鉄皮3の内側にはパーマネントれんが(非消耗れん
が)4を積み、さらに内側にはウエアーれんが(消耗れ
んが)5を積む。ただし羽口パイプ6の周辺の羽口れん
が(消耗れんが)7は、中心に羽口パイプ6を挿入する
貫通孔を開孔する都合上一体構造とし、鉄皮から直接積
み上げる。
FIG. 3 is a schematic view of a vertical section of a brick structure around a gas injection tuyere using the brick of the present invention. Permanent bricks (non-consumable bricks) 4 are piled inside the iron shell 3, and wear bricks (consumable bricks) 5 are piled further inside. However, the tuyere brick (consumable brick) 7 around the tuyere pipe 6 has an integral structure for convenience of opening a through-hole into which the tuyere pipe 6 is inserted at the center, and is directly piled from the iron shell.

【0023】[0023]

【実施例】【Example】

(実施例1)10t試験転炉の炉底に外径19mmの二
重管羽口を2本設置して、それぞれの周囲には縦150
mm、横150mm、長さ600mmで、材質は炭素を
25%含有するマグネシアカーボンで、かつ内部に長さ
600mm、直径2mmのSUS304製の金属線を2
5mmピッチに長手方向に平行に規則的に埋設した羽口
れんがを設置した。炉底の2本の二重管羽口の外管から
二酸化炭素を1分間あたり標準状態で0.5立方メート
ル、内管から酸素を同じく標準状態で1分間あたり0.
3立方メートル吹き込んだ。
(Example 1) Two double-tube tuyeres having an outer diameter of 19 mm were installed at the bottom of a 10-ton test converter, and each tuyere was surrounded by a vertical
mm, 150 mm in width, 600 mm in length, the material is magnesia carbon containing 25% of carbon, and two metal wires made of SUS304 having a length of 600 mm and a diameter of 2 mm are internally provided.
Tuyere bricks that were regularly buried in parallel with the longitudinal direction at a pitch of 5 mm were installed. 0.5 cubic meters per minute of carbon dioxide per minute from the outer tubes of the two double tube tuyeres at the bottom of the furnace, and oxygen from the inner tube at a standard condition of 0.5 cubic meters per minute.
I blew 3 cubic meters.

【0024】比較例として、内部に金属線を備えない同
材質、同寸法のマグネシアカーボンれんがを羽口れんが
として設置した。底吹きガスは上記条件と同一とした。
As a comparative example, a magnesia carbon brick having the same material and the same dimensions without a metal wire inside was installed as a tuyere brick. The bottom blowing gas was the same as the above conditions.

【0025】以上の設備条件で、10tの溶銑を装入
し、約20分の脱炭精錬をそれぞれ5回繰り返し実施し
た。脱炭精錬終了後の溶鋼温度は1625〜1655
℃、炭素含有量は0.06〜0.08%、スラグ量は溶
鋼tあたり60〜75kgであった。最後の脱炭精錬が
終了してから、底吹き羽口とその周囲の炭素含有量25
%のマグネシアカーボン羽口れんがの損耗量を比較し
た。
Under the above facility conditions, 10 tons of hot metal was charged and decarburization refining was repeated five times for about 20 minutes each. Molten steel temperature after decarburization refining is 1625-1655
C, the carbon content was 0.06 to 0.08%, and the slag amount was 60 to 75 kg per molten steel t. Since the last decarburization refining, the carbon content of the tuyere and the surrounding
% Of magnesia carbon tuyere bricks were compared.

【0026】れんがの内部にSUS304製の金属線を
埋設した羽口れんがを使用した場合の羽口損耗量および
羽口れんが損耗量は脱炭精錬1時間あたりそれぞれ0.
5mm、0.45mmであった。
When a tuyere brick in which a metal wire made of SUS304 is buried inside the brick is used, the tuyere wear amount and the tuyere brick wear amount are each 0.1 hour per hour of decarburization refining.
They were 5 mm and 0.45 mm.

【0027】これに対してれんがの内部にSUS304
製の金属線を埋設しない通常の羽口れんがを使用した場
合の羽口損耗量および羽口れんが損耗量は、脱炭精錬1
時間あたりそれぞれ0.7mm、0.65mmであっ
た。本発明のれんがの適用により、羽口および羽口れん
がの損耗量を約30%抑制できることが明らかである。
On the other hand, SUS304 is placed inside the brick.
Of tuyere and tuyere brick when normal tuyere bricks without embedded metal wire are used are as follows.
They were 0.7 mm and 0.65 mm per hour, respectively. It is clear that the application of the brick of the present invention can reduce the amount of tuyere and tuyere brick wear by about 30%.

【0028】(実施例2)10t試験転炉の炉腹に縦1
50mm、横150mm、長さ600mmのサイズで、
炭素を15%含有するマグネシアカーボンの材質で、長
さ500mm、直径1.5mmのSUS410製の金属
線を30mmピッチに長手方向に平行に規則的に埋設し
たウエアーれんがを、縦3列横3段の合計9本を部分的
に設置した。2本の二重管底吹き羽口から二酸化炭素を
1分間あたり標準状態で0.5立方メートル、酸素を標
準状態で1分間あたり0.3立方メートル吹き込んだ。
(Example 2) A 1-ton vertical shaft was placed on the belly of a 10-ton test converter.
50mm, 150mm wide, 600mm long,
Wear brick made of magnesia carbon material containing 15% carbon and having a length of 500 mm and a diameter of 1.5 mm and made of SUS410 metal wire buried regularly in parallel with the longitudinal direction at a pitch of 30 mm in three rows and three rows. Were installed partially. Carbon dioxide was blown at 0.5 cubic meters per minute under standard conditions and oxygen was blown at 0.3 cubic meters per minute under standard conditions from the two double tube bottom tuyeres.

【0029】比較として底吹き条件は同等で、炉腹の同
位置にウエアーれんがとして金属線を内部に埋設しない
同材質、同寸法のマグネシアカーボンれんがを同じ位置
に設置した。
As a comparison, magnesia carbon bricks of the same material and the same dimensions as those of wear bricks, which are not buried with metal wires inside, were installed at the same position on the furnace belly under the same bottom blowing conditions.

【0030】以上の設備条件で、10tの溶銑を装入
し、約20分の脱炭精錬をそれぞれ5回繰り返し実施し
た。脱炭精錬終了後の溶鋼温度は1620〜1650
℃、炭素含有量は0.06〜0.09%、スラグ量は溶
鋼tあたり55〜65kgであった。最後の脱炭精錬が
終了してから、前記位置に設置した9本のれんがの損耗
量を比較した。
Under the above facility conditions, 10 tons of hot metal was charged, and decarburization refining was repeated five times for about 20 minutes each. Molten steel temperature after decarburization refining is 1620-1650
C, the carbon content was 0.06 to 0.09%, and the slag amount was 55 to 65 kg per molten steel t. After the last decarburization refining was completed, the amount of wear of the nine bricks installed at the positions was compared.

【0031】れんがの内部にSUS410製の金属線を
埋設したれんがを使用した場合のれんが損耗量は脱炭精
錬1時間あたり0.35mmであった。
When a brick in which a metal wire made of SUS410 was embedded was used, the amount of wear of the brick was 0.35 mm per hour for decarburization and refining.

【0032】これに対してれんがの内部にSUS410
製の金属線を埋設しない通常のれんがを使用した場合の
れんが損耗量は脱炭精錬1時間あたりそれぞれ0.60
mmであった。本発明のれんが適用により、炉腹れんが
の損耗量を約40%抑制できることが明かである。
On the other hand, SUS410 is placed inside the brick.
When ordinary bricks without embedded metal wires are used, the amount of brick wear is 0.60 per hour per hour of decarburization and refining.
mm. It is clear that the amount of wear of the furnace belly brick can be suppressed by about 40% by applying the brick of the present invention.

【0033】[0033]

【発明の効果】本発明のれんがは、金属線が内部に埋設
されているので、れんがに割れが発生しにくく、仮に割
れが発生して脱落がおこりにくい。また、炉内からの抜
熱が促進されるので熱応力の発生が抑制される。この結
果、羽口れんが、ウエアれんがの寿命を大幅に延長させ
ることが可能となる。
According to the brick of the present invention, since the metal wire is buried inside, the brick is hardly cracked, and it is hard to crack and drop off. Further, since heat removal from the furnace is promoted, generation of thermal stress is suppressed. As a result, the tuyere brick can greatly extend the life of the wear brick.

【図面の簡単な説明】[Brief description of the drawings]

【図1】金属線を埋設した羽口れんがの構造を示す図
で、(a)は平面図、(b)は(a)のA−A’矢視縦
断面図である。
FIG. 1 is a view showing a structure of a tuyere brick in which a metal wire is embedded, (a) is a plan view, and (b) is a vertical sectional view taken along the line AA ′ of (a).

【図2】金属線を埋設したウエアーれんがの構造を示す
図で、(a)は平面図、(b)は(a)のA−A’矢視
縦断面図である。
FIGS. 2A and 2B are diagrams showing a structure of a wear brick in which a metal wire is embedded, wherein FIG. 2A is a plan view and FIG. 2B is a vertical sectional view taken along line AA ′ of FIG.

【図3】ガス吹き込み羽口周辺のれんが積み構造を示す
概略縦断面図である。
FIG. 3 is a schematic vertical sectional view showing a brick structure around a gas injection tuyere.

【符号の説明】[Explanation of symbols]

1:金属線 2:羽口パイプ挿入用貫通孔 3:鉄皮 4:パーマネントれんが 5:ウエアーれんが 6:羽口パイプ 7:羽口れんが 1: Metal wire 2: Through hole for tuyere pipe insertion 3: Iron shell 4: Permanent brick 5: Wear brick 6: Tuyere pipe 7: Tuyere brick

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】れんがの内部に溶融金属との接触面に対し
て垂直に埋設された金属線を備えることを特徴とする溶
融金属用容器の内張り用れんが。
1. A brick for lining a container for a molten metal, comprising a metal wire buried perpendicular to a contact surface with the molten metal inside the brick.
JP14045397A 1997-05-29 1997-05-29 Brick for lining for container for molten metal Pending JPH10332279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14045397A JPH10332279A (en) 1997-05-29 1997-05-29 Brick for lining for container for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14045397A JPH10332279A (en) 1997-05-29 1997-05-29 Brick for lining for container for molten metal

Publications (1)

Publication Number Publication Date
JPH10332279A true JPH10332279A (en) 1998-12-15

Family

ID=15268976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14045397A Pending JPH10332279A (en) 1997-05-29 1997-05-29 Brick for lining for container for molten metal

Country Status (1)

Country Link
JP (1) JPH10332279A (en)

Similar Documents

Publication Publication Date Title
US20170280519A1 (en) Inert gas blanketing of electrodes in an electric arc furnace
TW202041680A (en) Method for modifying steelmaking slag, and lance
JPH10332279A (en) Brick for lining for container for molten metal
US4238121A (en) Hearth structure of an oxygen-bottom-blowing converter
US4462824A (en) Annular tuyere
JP5463623B2 (en) Brick structure of converter bottom blowing tuyere
JPS6324008A (en) Gas blowing plug
US4477279A (en) Annular tuyere and method
JP5489568B2 (en) Gas injection nozzle
JP4172299B2 (en) Brick bottom structure of a converter with bottom-blown tuyere
JP3852261B2 (en) Metal smelting furnace
JP3398986B2 (en) Metal smelting tuyere
JPH1047861A (en) Electric furnace
JPS6223052B2 (en)
JPH07292403A (en) Brick structure of iron tapping hole of blast furnace
JP3662094B2 (en) Alumina-plug for carbonaceous gas injection
JPH017704Y2 (en)
JP2536793Y2 (en) Peripheral structure of gas nozzle for electric furnace gas injection
JP4211631B2 (en) Method for preventing melting of metal hearth of converter reactor
JPH11217261A (en) Molten metal-holding vessel
JPS61106704A (en) Single-tubed tuyere of steel manufacturing vessel
JPS6043417A (en) Operating method of furnace
JP2002012910A (en) Method for protecting refractory lined inside converter
JP2000073110A (en) Stave cooler for blast furnace
JP3922231B2 (en) Vacuum refining ladle lid