JPH10331962A - Change gear control method of automatic transmission for vehicle - Google Patents

Change gear control method of automatic transmission for vehicle

Info

Publication number
JPH10331962A
JPH10331962A JP9137200A JP13720097A JPH10331962A JP H10331962 A JPH10331962 A JP H10331962A JP 9137200 A JP9137200 A JP 9137200A JP 13720097 A JP13720097 A JP 13720097A JP H10331962 A JPH10331962 A JP H10331962A
Authority
JP
Japan
Prior art keywords
command value
speed
oil pressure
pressure command
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9137200A
Other languages
Japanese (ja)
Other versions
JP3486074B2 (en
Inventor
Touzou Kimura
冬三 木村
Katsutoshi Sato
勝利 佐藤
Hiroyuki Nishizawa
博幸 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Central R&D Labs Inc filed Critical Aisin Seiki Co Ltd
Priority to JP13720097A priority Critical patent/JP3486074B2/en
Priority to DE1998122483 priority patent/DE19822483B4/en
Priority to FR9806671A priority patent/FR2764027B1/en
Publication of JPH10331962A publication Critical patent/JPH10331962A/en
Application granted granted Critical
Publication of JP3486074B2 publication Critical patent/JP3486074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0087Adaptive control, e.g. the control parameters adapted by learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/24Inputs being a function of torque or torque demand dependent on the throttle opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed

Abstract

PROBLEM TO BE SOLVED: To prevent change gear feeling from worsening by compensating an initial oil pressure command value supplied to a friction engaging element on high speed side by an evaluation index based on changes of input rotation speed at an initial inertia phase. SOLUTION: For example, when speed is changed from a first speed step to a second speed step, a high speed side oil pressure command value is changed to the maximum oil pressure command value in a condition in which a low speed side oil pressure command value is held to the minimum oil pressure command value. After that, the presence or absence of the occurrence of 'rotation blowing up' is judged based on the already memorized results (S111). When it is judged that it exists, a deviation amount ΔCi from a proper value of an initial oil pressure command value Ci is calculated from the maximum control deviation emax of rotation acceleration of an input shaft at an initial inertia phase (S112). The initial oil pressure command value Ci (n+1) used at the time of next up shift is calculated by adding the deviation amount ΔCi to the initial oil pressure command value Ci (n) and is memorized (S113), and the learning control is done using this value as the initial oil pressure command value at the time of next up shift.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両用自動変速機
の変速制御方法に係り、特に、アップシフト開始時に、
油圧で駆動して高速側変速段を確立させる高速側摩擦係
合要素に油圧を供給して係合を開始させ、所定時間経過
後に、油圧で駆動して低速側変速段を確立させる低速側
摩擦係合要素に供給されている油圧を排除して係合を解
除させ、その後のイナーシャ相にて、歯車変速装置にお
ける入力軸の回転速度の変化率が予め設定した目標変化
率に追従するように前記高速側摩擦係合要素に供給され
る油圧をフィードバック制御して、アップシフトを制御
するようにした車両用自動変速機の変速制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shift control method for an automatic transmission for a vehicle, and more particularly to a shift control method for starting an upshift.
A low-speed friction that is driven by hydraulic pressure to establish a low-speed gear stage after a predetermined time has elapsed by supplying hydraulic pressure to a high-speed friction engagement element that establishes a high-speed gear stage by driving hydraulic pressure. The engagement element is disengaged by removing the hydraulic pressure supplied to the engagement element, and in the subsequent inertia phase, the rate of change of the rotation speed of the input shaft in the gear transmission follows the target change rate set in advance. The present invention relates to a shift control method for an automatic transmission for a vehicle in which an upshift is controlled by feedback-controlling a hydraulic pressure supplied to the high-speed side friction engagement element.

【0002】[0002]

【従来の技術】この種の制御方法においては、アップシ
フト開始時からイナーシャ相に至る間においてはパター
ン制御されるようになっているため、経時変化や初期ば
らつきにより、初期油圧指令値に対する初期油圧値が設
定値より増大した場合には「トルク干渉」を起こし、ま
た初期油圧指令値に対する初期油圧値が設定値より低下
した場合には「回転吹き上がり」を起こして、変速フィ
ーリングを悪化させるという問題がある。
2. Description of the Related Art In this type of control method, pattern control is performed from the start of an upshift to the time of an inertia phase. If the value is larger than the set value, "torque interference" is caused. If the initial oil pressure value with respect to the initial oil pressure command value is lower than the set value, "rotational blow-up" is caused to deteriorate the shift feeling. There is a problem.

【0003】かかる問題を解決するために、従来技術
(特開平3−113162)では、イナーシャ相の実測
時間が目標値より短い時には次回のアップシフト時の初
期油圧値を下げるように初期油圧指令値を変更し、また
イナーシャ相の実測時間が目標値より長い時には次回の
アップシフト時の初期油圧値を上げるように初期油圧指
令値を変更することで対応している。また、従来技術
(特開平5−296333)では、基準時点からイナー
シャ相に至る実測時間と所定標準時間との偏差を求め、
求めた偏差に応じて次回のシフトアップ時の高速側摩擦
係合要素への油圧供給速度を補正する、例えば実測時間
が所定標準時間より長い場合には次回のシフトアップ時
の高速側摩擦係合要素への油圧供給速度を上げるように
初期油圧指令値を変更することで対応している。
In order to solve such a problem, in the prior art (Japanese Patent Laid-Open No. 3-113162), when the measured time of the inertia phase is shorter than the target value, the initial oil pressure command value is decreased so as to decrease the initial oil pressure value at the next upshift. And when the measured time of the inertia phase is longer than the target value, the initial oil pressure command value is changed so as to increase the initial oil pressure value at the next upshift. Further, in the related art (Japanese Patent Laid-Open No. 5-296333), a deviation between an actual measurement time from a reference time to an inertia phase and a predetermined standard time is obtained.
The hydraulic supply speed to the high-speed friction engagement element at the next shift-up is corrected according to the obtained deviation. For example, if the measured time is longer than a predetermined standard time, the high-speed friction engagement at the next shift-up is corrected. This is dealt with by changing the initial hydraulic pressure command value so as to increase the hydraulic pressure supply speed to the element.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記した従
来技術(特開平3−113162)では、フィードバッ
ク制御の影響を受けるイナーシャ相の実測時間を評価指
標としているため、実測時間を目標値より短くまたは長
くする原因がフィードバック制御自体にあるような場合
には、「トルク干渉」または「回転吹き上がり」を的確
に解消できなくて、変速フィーリングを良好にできない
場合もある。
In the above-mentioned prior art (JP-A-3-113162), the actual measurement time of the inertia phase affected by the feedback control is used as the evaluation index. If the cause of the increase is due to the feedback control itself, "torque interference" or "rotational blow-up" may not be properly eliminated, and the shift feeling may not be good.

【0005】また、上記した従来技術(特開平5−29
6333)では、上記した偏差の原因を全て初期油圧指
令値と初期油圧値の関係のずれに求めているため、高速
側摩擦係合要素での無効ストロークが大きくなったため
に基準時点からイナーシャ相に至る実測時間が長くなっ
た場合には、初期油圧値が過度に高められて、図8に示
したように、出力軸トルクの変化が破線で示した目標変
速パターン時に比して急激となり、かえって変速フィー
リングを悪化させることがある。
In addition, the above-mentioned prior art (Japanese Patent Laid-Open No. 5-29
In 6333), all the causes of the above-mentioned deviation are determined from the deviation of the relationship between the initial hydraulic pressure command value and the initial hydraulic pressure value. Therefore, since the invalid stroke in the high-speed side frictional engagement element has increased, the inertia phase has changed from the reference time. When the actual measurement time is long, the initial oil pressure value is excessively increased, and as shown in FIG. 8, the change in the output shaft torque becomes sharper than at the time of the target shift pattern shown by the broken line. The shift feeling may be deteriorated.

【0006】[0006]

【課題を解決するための手段】本発明は、イナーシャ相
初期での入力軸の回転速度の変化に基づいた評価指標が
初期油圧指令値の適正値からのずれ量と所定の関係にあ
るとの発明者の知見に基づいて、上記した各問題に対処
すべくなされたものであり、アップシフト開始時に、油
圧で駆動して高速側変速段を確立させる高速側摩擦係合
要素に油圧を供給して係合を開始させ、所定時間経過後
に、油圧で駆動して低速側変速段を確立させる低速側摩
擦係合要素に供給されている油圧を排除して係合を解除
させ、その後のイナーシャ相にて、歯車変速装置におけ
る入力軸の回転速度の変化率が予め設定した目標変化率
に追従するように前記高速側摩擦係合要素に供給される
油圧をフィードバック制御して、アップシフトを制御す
るようにした車両用自動変速機の変速制御方法におい
て、前記イナーシャ相初期での前記入力軸の回転速度の
変化に基づいた評価指標(例えば、図6に示した最大制
御偏差emax)によって、前記所定時間経過後に前記
高速側摩擦係合要素に供給される初期油圧値を得るため
の初期油圧指令値の適正値からのずれ量を求めて、この
ずれ量を補正して得られた初期油圧指令値を次回のアッ
プシフト時の前記初期油圧指令値とする学習制御を行う
ようにしたことに特徴がある。
According to the present invention, an evaluation index based on a change in the rotation speed of an input shaft at the beginning of an inertia phase has a predetermined relationship with a deviation amount of an initial hydraulic pressure command value from an appropriate value. Based on the knowledge of the inventor, it has been made to address the above-described problems, and at the start of an upshift, hydraulic pressure is supplied to a high-speed friction engagement element that is driven by hydraulic pressure to establish a high-speed gear position. After a predetermined time has elapsed, the hydraulic pressure supplied to the low-speed friction engagement element that is driven by the hydraulic pressure to establish the low-speed gear stage is eliminated to release the engagement, and the inertia phase The upshift is controlled by feedback controlling the hydraulic pressure supplied to the high-speed side frictional engagement element so that the change rate of the rotation speed of the input shaft in the gear transmission follows a preset target change rate. Vehicle In the speed change control method for an automatic transmission, the evaluation index (for example, the maximum control deviation emax shown in FIG. 6) based on a change in the rotation speed of the input shaft at the beginning of the inertia phase may be used to set the high speed The amount of deviation of the initial oil pressure command value for obtaining the initial oil pressure value supplied to the side friction engagement element from the appropriate value is obtained, and the initial oil pressure command value obtained by correcting this deviation amount is used for the next upshift. It is characterized in that learning control is performed with the initial hydraulic pressure command value at the time.

【0007】[0007]

【発明の作用・効果】本発明による変速制御方法におい
ては、イナーシャ相でのフィードバック制御の影響を殆
ど受けていないイナーシャ相初期での入力軸の回転速度
の変化に基づいた評価指標、例えば図6に示したように
高速側摩擦係合要素の無効ストローク(クラッチピスト
ンクリアランスの基準値からのずれ)の変化の影響を殆
ど受けることなく、初期油圧指令値Ciの適正値からの
ずれ量ΔCiと所定の関係にある入力軸の回転加速度の
最大制御偏差emaxを評価指標としてずれ量ΔCiを
求めているため、イナーシャ相でのフィードバック制御
の影響や高速側摩擦係合要素の無効ストロークの変化の
影響を殆ど受けることなく初期油圧指令値を補正するこ
とができて、次回のアップシフトの制御において適切な
制御を行うことが可能となる。
In the shift control method according to the present invention, the evaluation index based on the change in the rotation speed of the input shaft at the beginning of the inertia phase, which is hardly affected by the feedback control in the inertia phase, for example, FIG. As shown in the above, the deviation ΔCi of the initial oil pressure command value Ci from the appropriate value and the predetermined amount ΔCi are almost unaffected by the change in the invalid stroke (deviation of the clutch piston clearance from the reference value) of the high-speed friction engagement element. Since the deviation ΔCi is obtained using the maximum control deviation emax of the rotational acceleration of the input shaft in the relationship of the evaluation as an evaluation index, the influence of the feedback control in the inertia phase and the influence of the change of the invalid stroke of the high-speed friction engagement element are considered. The initial oil pressure command value can be corrected with almost no reception, and appropriate control can be performed in the next upshift control. It works.

【0008】[0008]

【発明の実施の形態】以下に、本発明の一実施形態を図
面に基づいて説明する。図1に示した車両用自動変速機
は、エンジン(E/G)10の出力軸(図示省略)に接
続されるトルクコンバータ20及び歯車変速装置(A/
T)30(図2参照)と、図2にスケルトンで示した歯
車変速装置30に組み込んだ油圧駆動式の第1クラッチ
C1と第2クラッチC2及び油圧駆動式の第1ブレーキ
B1と第2ブレーキBoとリバース用ブレーキB2の各
作動を制御する周知の油圧制御装置40と、この油圧制
御装置40内の図示省略した複数の電磁弁(油圧指令値
に基づいてデューティ制御される周知の油圧制御弁)の
作動を制御する電子制御装置(ECU)50等によって
構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. The vehicle automatic transmission shown in FIG. 1 includes a torque converter 20 and a gear transmission (A / G) connected to an output shaft (not shown) of an engine (E / G) 10.
T) 30 (see FIG. 2), hydraulically driven first and second clutches C1 and C2, and hydraulically driven first and second brakes B1 and C2 incorporated in the gear transmission 30 shown by a skeleton in FIG. A known hydraulic control device 40 that controls each operation of Bo and the reverse brake B2, and a plurality of solenoid valves (not shown) in the hydraulic control device 40 (a known hydraulic control valve that is duty-controlled based on a hydraulic command value) ) Is configured by an electronic control unit (ECU) 50 or the like that controls the operation of (1).

【0009】歯車変速装置30は、図2に示したよう
に、エンジン10からトルクコンバータ20を介して伝
達される動力を入力軸31にて入力して出力軸32に出
力するものであり、サンギヤ33、キャリヤ34及びリ
ングギヤ35からなる遊星歯車列と、サンギヤ36、キ
ャリヤ37及びリングギヤ38からなる遊星歯車列を有
していて、図3の作動表示図(クラッチ及びブレーキの
作動状態にて○印は作動オン状態を示し無印は作動オフ
状態を示している)に示したように、第1クラッチC1
と第1ブレーキB1が共に作動オン状態とされることに
より1速の変速段が構成され、第2クラッチC2と第1
ブレーキB1が共に作動オン状態とされることにより2
速の変速段が構成され、第1クラッチC1と第2クラッ
チC2が共に作動オン状態とされることにより3速の変
速段が構成され、第2クラッチC2と第2ブレーキBo
が共に作動オン状態とされることにより4速の変速段が
構成されるとともに、第1クラッチC1とリバース用ブ
レーキB2が共に作動オン状態とされることによりリバ
ースの変速段が構成されようになっている。
As shown in FIG. 2, the gear transmission 30 receives the power transmitted from the engine 10 via the torque converter 20 through the input shaft 31 and outputs the power to the output shaft 32. 33, a planetary gear train composed of a carrier 34 and a ring gear 35, and a planetary gear train composed of a sun gear 36, a carrier 37 and a ring gear 38. Indicates an operation-on state, and no mark indicates an operation-off state).
When the first clutch B2 and the first brake B1 are both turned on, the first speed is established, and the second clutch C2 and the first
When both brakes B1 are turned on, 2
A third speed is established by turning on both the first clutch C1 and the second clutch C2, and a third speed is established by the second clutch C2 and the second brake Bo.
Are in the operation-on state, a fourth speed is established, and when both the first clutch C1 and the reverse brake B2 are in the operation-on state, the reverse speed is established. ing.

【0010】電子制御装置50は、マイクロコンピュー
タを備えていて、エンジン10の出力軸の回転数Neを
検出するエンジン回転数センサー(Neセンサー)5
1、歯車変速装置30の入力軸31の回転数(トルクコ
ンバータ20のタービン21の回転数に相当する)Nt
を検出する入力軸回転数センサー(Ntセンサー)5
2、歯車変速機30の出力軸32の回転数(当該車両の
車速に相当する)Noを検出する出力軸回転数センサー
(Noセンサー)53、エンジン10のスロットル開度
(エンジン負荷に相当する)θを検出するスロットル開
度センサー(θセンサー)54にそれぞれ接続されてお
り、図4のフローチャートに対応したプログラムの実行
により、アップシフト時の変速制御を行うとともに、図
5のフローチャートに対応したプログラムの実行によ
り、次回のアップシフト時の初期油圧指令値の学習制御
を行うようになっている。
The electronic control unit 50 includes a microcomputer, and detects an engine speed Ne of an output shaft of the engine 10 (Ne sensor) 5.
1. Rotation speed of input shaft 31 of gear transmission 30 (corresponding to rotation speed of turbine 21 of torque converter 20) Nt
Input shaft speed sensor (Nt sensor) 5 for detecting
2. An output shaft rotation speed sensor (No sensor) 53 for detecting the rotation speed (corresponding to the vehicle speed of the vehicle) No of the output shaft 32 of the gear transmission 30, the throttle opening of the engine 10 (corresponding to the engine load). A throttle opening sensor (θ sensor) 54 for detecting θ is connected to each other, and by executing a program corresponding to the flowchart of FIG. 4, a shift control at the time of upshifting is performed, and a program corresponding to the flowchart of FIG. , The learning control of the initial hydraulic pressure command value at the time of the next upshift is performed.

【0011】次ぎに、電子制御装置50により実行され
るアップシフト時の作動について、1速段から2速段に
シフトアップする場合を例として、図4〜図7を参照し
て説明する。当該自動変速機(製造後あるいはバッテリ
ーへの接続後の初回のシフトアップ時に「回転吹き上が
り」が必ず起こるような設定がなされている)におい
て、1速段から2速段にシフトアップするタイミングと
なり、周知のように変速開始指令信号が出力されると
(図7の変速開始時)、電子制御装置50は図4のステ
ップ100にてプログラムの実行を開始し、ステップ1
01にて低速側摩擦係合要素である第1クラッチC1へ
の供給油圧を保持した状態にて高速側摩擦係合要素であ
る第2クラッチC2への供給油圧を最大速度で上昇させ
るべく、低速側油圧指令値(図7における油圧指令値の
細い実線参照)を最大油圧指令値に保持した状態で高速
側油圧指令値(図7における油圧指令値の太い実線参
照)を最小油圧指令値から最大油圧指令値に変更し、ス
テップ102にてタイマーをスタートさせ、ステップ1
03にてタイマーの計測時間tが所定の先行注入時間t
i(図7の所定時間経過時)に達したか否かを判定す
る。
Next, the operation at the time of an upshift executed by the electronic control unit 50 will be described with reference to FIGS. 4 to 7 by taking as an example the case of shifting up from the first gear to the second gear. The timing for shifting up from the 1st gear to the 2nd gear in the automatic transmission (set so that "rotational blow-up" always occurs at the time of the first upshift after manufacture or connection to the battery). As is well known, when the shift start command signal is output (at the start of the shift in FIG. 7), the electronic control unit 50 starts executing the program in step 100 of FIG.
01, the hydraulic pressure supplied to the second clutch C2, which is the high-speed friction engagement element, is increased at the maximum speed while the hydraulic pressure supplied to the first clutch C1, which is the low-speed friction engagement element, is maintained. The high-speed side hydraulic command value (see the thick solid line of the hydraulic command value in FIG. 7) is changed from the minimum hydraulic command value to the maximum while the side hydraulic command value (the thin solid line of the hydraulic command value in FIG. 7) is held at the maximum hydraulic command value. Change to the oil pressure command value, start the timer in step 102,
At 03, the measurement time t of the timer is equal to the predetermined preceding injection time t.
i (when the predetermined time in FIG. 7 has elapsed).

【0012】また、図4のステップ104にて高速側油
圧指令値を最大油圧指令値から初期油圧指令値Ciに変
更するとともに低速側油圧指令値を最大油圧指令値から
最小油圧指令値に変更し、ステップ105の繰り返し実
行により入力軸回転速度が1速同期回転速度より大きく
なった最大値と大きくなっている間の時間が設定値以上
となったとき「回転吹き上がり」が起こったとして記憶
し、ステップ106にて入力軸回転速度が1速同期回転
速度より所定量低い値になったか否かによって1速段の
同期外れ(イナーシャ相開始)を判定する。なお、所定
の先行注入時間tiに達するより所定時間(例えば、
0.03〜0.05秒間)早く高速側油圧指令値の最大
油圧指令値から初期油圧指令値Ciへの変更を開始し
て、所定の油圧下降勾配にて初期油圧指令値Ciへの変
更を行うようにし、所定の先行注入時間tiに達した時
に的確に初期油圧指令値Ciとなるように変更実施する
ことも可能である。
At step 104 in FIG. 4, the high-speed hydraulic command value is changed from the maximum hydraulic command value to the initial hydraulic command value Ci, and the low-speed hydraulic command value is changed from the maximum hydraulic command value to the minimum hydraulic command value. When the time during which the input shaft rotation speed is higher than the first-speed synchronous rotation speed and the time during which the input shaft rotation speed is higher than the first-speed synchronous rotation speed by the repetition of step 105 is equal to or more than the set value, the "rotational blow-up" is stored. In step 106, it is determined whether or not the first gear is out of synchronization (inertia phase start) based on whether or not the input shaft rotation speed has become a value lower than the first speed synchronization rotation speed by a predetermined amount. It should be noted that a predetermined time (for example,
The change of the high-speed side oil pressure command value from the maximum oil pressure command value to the initial oil pressure command value Ci is started earlier, and the change to the initial oil pressure command value Ci is performed at a predetermined oil pressure decreasing gradient. It is also possible to carry out the modification so that the initial oil pressure command value Ci is accurately obtained when the predetermined preceding injection time ti has been reached.

【0013】また、図4のステップ107にて入力軸の
回転速度の変化率(回転加速度)が予め設定した目標変
化率に追従するように高速側油圧指令値を制御する周知
のフィードバック制御が実行され、ステップ108の繰
り返し実行によりイナーシャ相初期(イナーシャ相開始
時からイナーシャ相開始時の入力軸回転速度が所定回転
速度(例えば、入力軸の回転数にして数百回転)低下す
る時までの間)での入力軸の回転加速度の最大制御偏差
emaxを記憶し、ステップ109にて入力軸回転速度
が2速同期回転速度より所定値高い値になったか否かに
よって2速段への同期(イナーシャ相終了)を判定す
る。また、ステップ110にて低速側油圧指令値を最小
油圧指令値に保持した状態で高速側油圧指令値を最大油
圧指令値に変更する。なお、高速側油圧指令値の最大油
圧指令値への変更を所定の油圧上昇勾配にて行うように
して変更実施することも可能である。
In step 107 of FIG. 4, a well-known feedback control for controlling the high-speed side hydraulic command value so that the rate of change (rotational acceleration) of the rotational speed of the input shaft follows a preset target rate of change is executed. The period from the start of the inertia phase to the time when the input shaft rotation speed at the start of the inertia phase decreases by a predetermined rotation speed (for example, several hundred rotations in terms of the number of rotations of the input shaft) by repeatedly executing step 108. ) Is stored, and in step 109, synchronization with the second gear (inertia) is determined based on whether or not the input shaft rotation speed has become a predetermined value higher than the second-gear synchronous rotation speed. Phase end). In step 110, the high-speed side hydraulic command value is changed to the maximum hydraulic command value while the low-side hydraulic command value is held at the minimum hydraulic command value. Note that the change of the high-speed side hydraulic command value to the maximum hydraulic command value may be performed at a predetermined hydraulic pressure rising gradient.

【0014】以上の説明から明らかなように、1速段か
ら2速段へのアップシフト開始時には、作動オン状態の
第1ブレーキB1と協同して2速段を確立させる第2ク
ラッチC2に最大油圧が供給されて第2クラッチC2で
の係合が開始し、所定の先行注入時間ti経過後に、作
動オン状態の第1ブレーキB1と協同して1速段を確立
させる第1クラッチC1に供給されている油圧が排除さ
れて第1クラッチC1での係合が解除され、その後のイ
ナーシャ相にて、入力軸の回転速度の変化率が予め設定
した目標変化率に追従するように第2クラッチC2に供
給される油圧がフィードバック制御されて、1速段から
2速段へのアップシフトが制御される。
As is apparent from the above description, when the upshift from the first gear to the second gear is started, the second clutch C2 which establishes the second gear in cooperation with the first brake B1 in the operation-on state has a maximum. The hydraulic pressure is supplied to start engagement of the second clutch C2, and after a lapse of a predetermined preceding injection time ti, supply to the first clutch C1 which establishes the first gear in cooperation with the first brake B1 in the operation ON state. The applied hydraulic pressure is removed, the engagement in the first clutch C1 is released, and in the subsequent inertia phase, the second clutch is controlled so that the rate of change of the rotational speed of the input shaft follows a preset target rate of change. The hydraulic pressure supplied to C2 is feedback-controlled, and the upshift from the first gear to the second gear is controlled.

【0015】ところで、図4のステップ110の実行後
に実行される図5のステップ111では、図4のステッ
プ105の繰り返し実行によって得られた記憶結果(電
子制御装置50の記憶手段に記憶されている)に基づい
て、「回転吹き上がり」を起こしたか否かが判定され、
「YES」と判定された場合にはステップ112と11
3を実行した後、ステップ114にてプログラムの実行
を終了する。なお、ステップ111にて「NO」と判定
されたときには直ちにステップ114にてプログラムの
実行を終了する。
By the way, in step 111 of FIG. 5 executed after execution of step 110 of FIG. 4, a storage result (stored in the storage means of the electronic control unit 50) obtained by repeatedly executing step 105 of FIG. ), It is determined whether or not a “rotational blow-up” has occurred,
If "YES" is determined, steps 112 and 11
After the execution of step 3, the program execution is terminated in step 114. When it is determined “NO” in step 111, the execution of the program is immediately terminated in step 114.

【0016】図5のステップ112では、図6に示した
関係(電子制御装置50の記憶手段に予め記憶されてい
る)を用いて図4のステップ108の繰り返し実行にて
得られた最大制御偏差emaxより初期油圧指令値Ci
の適正値からのずれ量ΔCiが算出され、またステップ
113では、次回のアップシフト時に用いる初期油圧指
令値Ci(n+1)をステップ104にて用いた初期油
圧指令値Ci(n)にずれ量ΔCiを加えることにより
算出し記憶する。
In step 112 of FIG. 5, the maximum control deviation obtained by repeatedly executing step 108 of FIG. 4 using the relationship shown in FIG. 6 (prestored in the storage means of the electronic control unit 50). Initial hydraulic command value Ci from emax
Is calculated from the appropriate value of .DELTA.Ci. In step 113, the initial oil pressure command value Ci (n + 1) used in the next upshift is shifted from the initial oil pressure command value Ci (n) used in step 104 by .DELTA.Ci. Is calculated and stored.

【0017】このように、本実施形態においては、イナ
ーシャ相でのフィードバック制御の影響を殆ど受けてい
ないイナーシャ相初期での入力軸の回転速度の変化に基
づいた評価指標、すなわち図6に示したように高速側摩
擦係合要素である第2クラッチC2におけるクラッチピ
ストンの無効ストローク(クラッチピストンクリアラン
スの基準値からのずれ)の変化の影響を殆ど受けること
なく、初期油圧指令値Ciの適正値からのずれ量ΔCi
と所定の関係にある最大制御偏差emax自体を評価指
標としてずれ量ΔCiを求めているため、イナーシャ相
でのフィードバック制御の影響や高速側摩擦係合要素で
ある第2クラッチC2におけるクラッチピストンの無効
ストロークの変化の影響を殆ど受けることなく初期油圧
指令値Ciを補正することができて、次回の1速段から
2速段へのアップシフトの制御において適切な制御を行
うことが可能となり、変速フィーリングを向上させるこ
とが可能である。
As described above, in this embodiment, the evaluation index based on the change in the rotation speed of the input shaft at the beginning of the inertia phase, which is hardly affected by the feedback control in the inertia phase, that is, shown in FIG. As described above, the initial hydraulic command value Ci is not affected by the change in the invalid stroke of the clutch piston (deviation from the reference value of the clutch piston clearance) in the second clutch C2 as the high-speed side frictional engagement element. Deviation amount ΔCi
And the maximum control deviation emax itself in a predetermined relationship is used as an evaluation index to determine the deviation amount ΔCi. Therefore, the influence of the feedback control in the inertia phase and the invalidity of the clutch piston in the second clutch C2 which is the high-speed side friction engagement element. The initial hydraulic command value Ci can be corrected almost without being affected by a change in the stroke, and appropriate control can be performed in the next upshift control from the first gear to the second gear, and the shift can be performed. Feeling can be improved.

【0018】なお、当該自動変速機において、2速段か
ら3速段にシフトアップする場合の作動、及び3速段か
ら4速段にシフトアップする場合の作動は、上述した1
速段から2速段にシフトアップする場合の作動と実質的
に同じであるため説明を省略する。
The operation for shifting up from the second gear to the third gear and the operation for shifting up from the third gear to the fourth gear in the automatic transmission are the same as those described in the first embodiment.
The operation is substantially the same as the operation in the case of shifting up from the second gear to the second gear, so that the description is omitted.

【0019】上記実施形態においては、初期油圧指令値
Ciの適正値からのずれ量ΔCiと所定の関係にある最
大制御偏差emax自体(図6の実線にて示した特性
線)を評価指標としてずれ量ΔCiを求めるようにした
が、図6の仮想線にて示した近似直線(ΔCi=0近傍
の傾きで線形化したもの)を評価指標としてずれ量ΔC
iを求めるようにしてもよく、また体感としては高トル
ク伝達時は多少トルク変化が大きくても問題がないのに
対して、低トルク伝達時には少しのトルク変化で違和感
を感じるため、評価指標を体感に合わせるように、最大
制御偏差emaxをイナーシャ相直前の入力軸トルクT
t(下記式によって算出されるタービントルク)で割っ
たものを評価指標として実施することも可能である。 Tt=τ(e)×C(e)×Ne2 但し、Tt:入力軸トルク(タービントルク) Ne:エンジン回転速度 e=Nt/Ne:トルクコンバータ速度比 Nt:入力軸回転速度(タービン回転速度) τ(e):トルクコンバータトルク比 C(e):トルクコンバータ容量係数 であり、τ(e)とC(e)は実験的に求めたものを用い
る。なお、上記式はマップとして記憶させておくことも
可能である。
In the above embodiment, the initial oil pressure command value
The maximum value that has a predetermined relationship with the deviation amount ΔCi from the appropriate value of Ci.
The large control deviation emax itself (the characteristic indicated by the solid line in FIG. 6)
Line) as an evaluation index to calculate the deviation amount ΔCi.
Is the approximate straight line indicated by the imaginary line in FIG.
The deviation amount ΔC is used as an evaluation index.
i may be required, and as a bodily sensation,
When transmitting torque, there is no problem even if the torque change is slightly large.
On the other hand, when transmitting low torque, a slight change in torque causes a feeling of strangeness
So that the evaluation index matches the experience,
The control deviation emax is calculated as the input shaft torque T immediately before the inertia phase.
divided by t (turbine torque calculated by the following formula)
It is also possible to carry out the evaluation as an evaluation index. Tt = τ (e) × C (e) × NeTwo  Here, Tt: input shaft torque (turbine torque) Ne: engine rotation speed e = Nt / Ne: torque converter speed ratio Nt: input shaft rotation speed (turbine rotation speed) τ (e): torque converter torque ratio C (e) : Capacity coefficient of torque converter τ (e) and C (e) are obtained experimentally.
You. The above equation can be stored as a map.
It is possible.

【0020】また、評価指標には、イナーシャ相初期で
の入力軸の回転速度の変化に基づいた評価指標を用いて
いるので、入力軸回転速度が下降し始めてから数百回転
低下するまでの時間(イナーシャ相初期時間)をイナー
シャ相時間の目標値で割ったものを評価指標としても図
6と同様な関係が得られるため、これを評価指標として
本発明を実施することも可能である。
Further, since an evaluation index based on a change in the rotation speed of the input shaft at the beginning of the inertia phase is used as the evaluation index, the time from when the input shaft rotation speed starts decreasing until the input shaft rotation speed decreases by several hundred rotations is used. The same relationship as in FIG. 6 can be obtained by using a value obtained by dividing the (initial phase of inertia time) by the target value of the inertia phase time as an evaluation index. Therefore, the present invention can be implemented using this as an evaluation index.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 車両用自動変速機の全体構成を示す図であ
る。
FIG. 1 is a diagram showing an overall configuration of an automatic transmission for a vehicle.

【図2】 図1に示したトルクコンバータと歯車変速装
置のスケルトン図である。
FIG. 2 is a skeleton diagram of the torque converter and the gear transmission shown in FIG. 1;

【図3】 図2に示した各クラッチ及び各ブレーキの作
動表示図である。
3 is an operation display diagram of each clutch and each brake shown in FIG. 2;

【図4】 アップシフト時の変速制御手順を示すフロー
チャートである。
FIG. 4 is a flowchart showing a shift control procedure during an upshift.

【図5】 次回のアップシフト時の初期油圧指令値を補
正する学習制御手順を示すフローチャートである。
FIG. 5 is a flowchart showing a learning control procedure for correcting an initial hydraulic pressure command value at the time of the next upshift.

【図6】 回転吹き上がり時における初期油圧指令値C
iの適正値からのずれ量ΔCiとイナーシャ相初期での
入力軸の回転加速度の最大制御偏差emaxとの関係を
示す線図である。
FIG. 6 is an initial hydraulic pressure command value C at the time of rotational upflow.
FIG. 7 is a diagram illustrating a relationship between a deviation amount ΔCi from an appropriate value of i and a maximum control deviation emax of a rotational acceleration of an input shaft at an early stage of an inertia phase.

【図7】 アップシフト時におけるの入力軸回転速度、
クラッチ油圧、油圧指令値、クラッチ伝達トルクの各変
化特性を示す図である。
FIG. 7 shows an input shaft rotation speed during an upshift,
It is a figure which shows each change characteristic of a clutch hydraulic pressure, a hydraulic command value, and a clutch transmission torque.

【図8】 従来装置でのアップシフト時におけるの入力
軸回転速度、摩擦係合要素に供給される油圧、油圧指令
値、出力軸トルクの各変化特性を示す図である。
FIG. 8 is a diagram illustrating respective change characteristics of an input shaft rotation speed, a hydraulic pressure supplied to a friction engagement element, a hydraulic pressure command value, and an output shaft torque during an upshift in a conventional device.

【符号の説明】[Explanation of symbols]

10…エンジン、20…トルクコンバータ、30…歯車
変速装置、31…入力軸、32…出力軸、40…油圧制
御装置、50…電子制御装置、C1…第1クラッチ(高
圧側摩擦係合要素)、C2…第2クラッチ(低圧側摩擦
係合要素)、B1…第1ブレーキ、Bo…第2ブレー
キ、B2…リバース用ブレーキ。
DESCRIPTION OF SYMBOLS 10 ... Engine, 20 ... Torque converter, 30 ... Gear transmission, 31 ... Input shaft, 32 ... Output shaft, 40 ... Hydraulic control device, 50 ... Electronic control device, C1 ... 1st clutch (high pressure side friction engagement element) , C2: second clutch (low-pressure side friction engagement element), B1: first brake, Bo: second brake, B2: reverse brake.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 勝利 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 (72)発明者 西澤 博幸 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Katsutoshi Sato 2-1-1 Asahi-machi, Kariya-shi, Aichi Prefecture Inside Aisin Seiki Co., Ltd. (72) Inventor Hiroyuki Nishizawa 41-41 Of Toyota Central Research Institute, Inc.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アップシフト開始時に、油圧で駆動して
高速側変速段を確立させる高速側摩擦係合要素に油圧を
供給して係合を開始させ、所定時間経過後に、油圧で駆
動して低速側変速段を確立させる低速側摩擦係合要素に
供給されている油圧を排除して係合を解除させ、その後
のイナーシャ相にて、歯車変速装置における入力軸の回
転速度の変化率が予め設定した目標変化率に追従するよ
うに前記高速側摩擦係合要素に供給される油圧をフィー
ドバック制御して、アップシフトを制御するようにした
車両用自動変速機の変速制御方法において、前記イナー
シャ相初期での前記入力軸の回転速度の変化に基づいた
評価指標によって、前記所定時間経過後に前記高速側摩
擦係合要素に供給される初期油圧値を得るための初期油
圧指令値の適正値からのずれ量を求めて、このずれ量を
補正して得られた初期油圧指令値を次回のアップシフト
時の前記初期油圧指令値とする学習制御を行うようにし
たことを特徴とする車両用自動変速機の変速制御方法。
1. At the start of an upshift, hydraulic pressure is supplied to a high-speed friction engagement element for driving to establish a high-speed gear stage by hydraulic pressure to start engagement. The hydraulic pressure supplied to the low-speed friction engagement element that establishes the low-speed gear stage is eliminated to release the engagement, and in the subsequent inertia phase, the rate of change of the rotation speed of the input shaft in the gear transmission is set in advance. In the shift control method for an automatic transmission for a vehicle, wherein an upshift is controlled by feedback-controlling a hydraulic pressure supplied to the high-speed friction engagement element so as to follow a set target change rate. According to an evaluation index based on a change in the rotation speed of the input shaft at an initial stage, whether the initial hydraulic pressure command value for obtaining the initial hydraulic pressure value to be supplied to the high-speed side friction engagement element after the lapse of the predetermined time is appropriate. The vehicle is characterized by performing learning control in which the deviation amount is obtained, and the initial hydraulic pressure command value obtained by correcting the deviation amount is used as the initial hydraulic pressure command value at the time of the next upshift. Shift control method for automatic transmission.
JP13720097A 1997-05-27 1997-05-27 Control device for automatic transmission for vehicles Expired - Fee Related JP3486074B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13720097A JP3486074B2 (en) 1997-05-27 1997-05-27 Control device for automatic transmission for vehicles
DE1998122483 DE19822483B4 (en) 1997-05-27 1998-05-19 Control for operating an automatic transmission for vehicles
FR9806671A FR2764027B1 (en) 1997-05-27 1998-05-27 DEVICE FOR CONTROLLING AN AUTOMATIC GEAR CHANGE SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13720097A JP3486074B2 (en) 1997-05-27 1997-05-27 Control device for automatic transmission for vehicles

Publications (2)

Publication Number Publication Date
JPH10331962A true JPH10331962A (en) 1998-12-15
JP3486074B2 JP3486074B2 (en) 2004-01-13

Family

ID=15193140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13720097A Expired - Fee Related JP3486074B2 (en) 1997-05-27 1997-05-27 Control device for automatic transmission for vehicles

Country Status (3)

Country Link
JP (1) JP3486074B2 (en)
DE (1) DE19822483B4 (en)
FR (1) FR2764027B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962552B2 (en) 2001-08-01 2005-11-08 Toyota Jidosha Kabushiki Kaisha Vehicle shift control device and control method therefor
DE102008002051A1 (en) 2007-05-29 2008-12-04 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Control device for a motor vehicle automatic transmission
JP2010209948A (en) * 2009-03-06 2010-09-24 Nissan Motor Co Ltd Control apparatus for automatic transmission
EP2381141A1 (en) 2010-04-21 2011-10-26 JATCO Ltd Automatic transmission and hydraulic control method therefor
US8280597B2 (en) 2009-03-06 2012-10-02 Nissan Motor Co., Ltd. Control apparatus of automatic transmission
US8406967B2 (en) 2009-03-02 2013-03-26 Nissan Motor Co., Ltd. Control apparatus and method for automatic transmission system
US8428834B2 (en) 2009-03-06 2013-04-23 Nissan Motor Co., Ltd. Control system of automatic transmission
US8465395B2 (en) 2009-03-06 2013-06-18 Nissan Motor Co., Ltd. Control apparatus and method for automatic transmission

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113162A (en) 1987-10-26 1989-05-01 Ee M Technol:Kk Production for fiber reinforced composite casting body
JP2847802B2 (en) * 1989-09-28 1999-01-20 三菱自動車工業株式会社 Shift initial hydraulic pressure setting method for automatic transmission for vehicles
JP2687734B2 (en) * 1990-05-01 1997-12-08 日産自動車株式会社 Transmission control device for automatic transmission
US5086665A (en) * 1991-06-27 1992-02-11 Saturn Corporation Adaptive shift pressure characterization of an electronically controlled automatic transmission
JP2773531B2 (en) * 1992-04-16 1998-07-09 三菱自動車工業株式会社 Shift control method for automatic transmission for vehicle
DE69315155T2 (en) * 1992-09-16 1998-05-20 Hitachi Ltd Driving force control for a vehicle
JPH07119820A (en) * 1993-10-20 1995-05-12 Mazda Motor Corp Speed change controller for automatic transmission
DE19511897C2 (en) * 1995-03-31 1999-06-02 Daimler Chrysler Ag Method for controlling an engaging and disengaging frictional connection in a circuit device of an automatic step transmission of a motor vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962552B2 (en) 2001-08-01 2005-11-08 Toyota Jidosha Kabushiki Kaisha Vehicle shift control device and control method therefor
DE102008002051A1 (en) 2007-05-29 2008-12-04 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Control device for a motor vehicle automatic transmission
US8538646B2 (en) 2007-05-29 2013-09-17 Toyota Jidosha Kabushiki Kaisha Control device for vehicular automatic transmission
DE102008002051B4 (en) 2007-05-29 2022-04-21 Toyota Jidosha Kabushiki Kaisha Control device for an automotive automatic transmission
US8406967B2 (en) 2009-03-02 2013-03-26 Nissan Motor Co., Ltd. Control apparatus and method for automatic transmission system
JP2010209948A (en) * 2009-03-06 2010-09-24 Nissan Motor Co Ltd Control apparatus for automatic transmission
US8280597B2 (en) 2009-03-06 2012-10-02 Nissan Motor Co., Ltd. Control apparatus of automatic transmission
US8364359B2 (en) 2009-03-06 2013-01-29 Nissan Motor Co., Ltd. Control apparatus and method for automatic transmission
US8428834B2 (en) 2009-03-06 2013-04-23 Nissan Motor Co., Ltd. Control system of automatic transmission
US8465395B2 (en) 2009-03-06 2013-06-18 Nissan Motor Co., Ltd. Control apparatus and method for automatic transmission
EP2381141A1 (en) 2010-04-21 2011-10-26 JATCO Ltd Automatic transmission and hydraulic control method therefor
US8560195B2 (en) 2010-04-21 2013-10-15 Jatco Ltd Automatic transmission and hydraulic control method therefor

Also Published As

Publication number Publication date
FR2764027B1 (en) 2002-12-06
DE19822483B4 (en) 2009-06-18
JP3486074B2 (en) 2004-01-13
FR2764027A1 (en) 1998-12-04
DE19822483A1 (en) 1999-02-25

Similar Documents

Publication Publication Date Title
JP4604951B2 (en) Control device for automatic transmission
US5647819A (en) Speed change control method for an automatic transmission
JP4593654B2 (en) Stepped automatic transmission
JP3269333B2 (en) Transmission control device for automatic transmission
US20030027685A1 (en) Shift control apparatus of automatic transmission of motor vehicle
JP3722023B2 (en) Shift control device for automatic transmission for vehicle
JP3472439B2 (en) Shift control device for automatic transmission for vehicle
JPH10331962A (en) Change gear control method of automatic transmission for vehicle
JP5103833B2 (en) Vehicle control device, control method, program for causing computer to execute the control method, and recording medium recording program
JPH09264410A (en) Shift control device for automatic transmission
JP2001124193A (en) Hydraulic control device of automatic transmission
EP1188958B1 (en) Apparatus and method of determining completion of piston stroke in automatic transmission
JP3692980B2 (en) Shift control device for automatic transmission for vehicle
JP4140871B2 (en) Automatic transmission
JP2009243492A (en) Control device for automatic transmission
JP5047738B2 (en) Control device for automatic transmission for vehicle
JP2002130453A (en) Control device for automatic transmission
JP2000008901A (en) Integrated control device of prime mover and automatic transmission
JP4924060B2 (en) Control device for automatic transmission
JP4281766B2 (en) Vehicle control device
JP2011247227A (en) Vehicle control apparatus
JP4811195B2 (en) Vehicle control device
JP4881822B2 (en) Control device for automatic transmission for vehicle
JP2000120854A (en) Hydraulic control device of automatic transmission
JPH0242253A (en) Total control device for reduction of power train speed-change shock

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees