JPH10331281A - External facing type heat-insulating structure for roof floor of building for cold reserving and execution method thereof - Google Patents

External facing type heat-insulating structure for roof floor of building for cold reserving and execution method thereof

Info

Publication number
JPH10331281A
JPH10331281A JP14127097A JP14127097A JPH10331281A JP H10331281 A JPH10331281 A JP H10331281A JP 14127097 A JP14127097 A JP 14127097A JP 14127097 A JP14127097 A JP 14127097A JP H10331281 A JPH10331281 A JP H10331281A
Authority
JP
Japan
Prior art keywords
heat insulating
fixed frame
layer
roof
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14127097A
Other languages
Japanese (ja)
Other versions
JP2939452B2 (en
Inventor
Tsunetoshi Tanabe
常利 田邊
Osamu Toyoda
治 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BRIDGESTONE TECHNO SYST KK
YASHIMA KK
YASHIMA PRODUCTS
Sankyo Kogyo Co Ltd
Original Assignee
BRIDGESTONE TECHNO SYST KK
YASHIMA KK
YASHIMA PRODUCTS
Sankyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BRIDGESTONE TECHNO SYST KK, YASHIMA KK, YASHIMA PRODUCTS, Sankyo Kogyo Co Ltd filed Critical BRIDGESTONE TECHNO SYST KK
Priority to JP14127097A priority Critical patent/JP2939452B2/en
Publication of JPH10331281A publication Critical patent/JPH10331281A/en
Application granted granted Critical
Publication of JP2939452B2 publication Critical patent/JP2939452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lightweight roof-floor surface heat-insulating structure, in which in-place foaming is omitted or kept within a small range, the scattering of a foamed resin and blowing pressure are removed and a rigid surface material is lightened while waterproof and vaporproof functions are improved and which abounds in durability. SOLUTION: The heat-insulating structure has a heat-insulating layer 2 using a molded heat-insulating board made of a foamed synthetic resin material, a rigid board- shaped surface material 4 covering the upper side of the heat-insulating layer 2 and having water resistance and water resistance and waterproof layers for waterproofness and vaporproofness inteerposed between the heat-insulating layer 2 and a building and between the heat-insulating layer 2 and the surface material 4. A fixing frame member 3 controlling expansion and contraction due to the thermal change of the molded heat-insulating board in the direction along a roof-floor surface and fixing the molded heat-insulating board onto a building roof floor is buried into the heat- insulating layer 2, and the surface material 4 is fixed onto the building roof floor through the fixing frame member 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として耐荷重能
力の小さい陸屋根構造で、その屋根の構成体がALC
板、PC板、及びRC構造等からなる既設の冷凍庫、冷
蔵庫などの、低温に維持される保冷用の建造物を施工対
象とし、その建造物の屋上防熱の補修を目的とした保冷
用建造物の屋上用外装式断熱構造、及びその施工方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a flat roof structure having a small load-carrying capacity, wherein the roof is composed of ALC.
Buildings for cold storage, such as existing freezers, refrigerators, etc., made of boards, PC boards, and RC structures, etc., intended to be constructed, and for the purpose of repairing the rooftop heat insulation of those buildings The present invention relates to an exterior heat-insulating structure for a roof, and a method for constructing the same.

【0002】[0002]

【従来の技術】建造後10数年以上経過した冷蔵庫は、
庫内の断熱層の高温側に配置された防水・防湿層の機能
の低下、防湿層の不適切な配置、断熱材の機能の低下、
あるいは建造物自体の老朽化による湿気や雨水等の侵入
等、種々の要因が複合的に作用し、その機能が低下する
ことがある。このため、電気代がかさんだり、内部の結
氷が著しくなり、場合によっては断熱層が剥がれて落下
するなどの不都合が発生することがある。この低下した
断熱機能を回復させるには、その建造物の内部に施工さ
れていた古い断熱層を撤去して新しく断熱層を施工し直
せばよいが、現実には、ごく部分的な補修は別として、
建造物内部の断熱層についての大規模な補修工事は行わ
れないのが実情である。その理由としては、次のような
ものが考えられる。つまり、断熱層の撤去とその処分に
費用がかさむこと。また、昇温の際に激しい結露が生
じ、なかなか乾燥せず、その結露水が改修をしていない
他の断熱層区域に侵入して、その区域の断熱層までが機
能低下を生じる可能性がある。しかも、工事期間中、冷
却貨物を他の冷蔵庫に移して保管しなければならないた
め、その費用が膨大なものとなる。また、改修期間中、
倉庫機能が損なわれることが顧客の散逸につながる等で
ある。
2. Description of the Related Art Refrigerators that have been built for more than 10 years have been
Deterioration of the function of the waterproof / moisture-proof layer placed on the high-temperature side of the heat-insulating layer in the refrigerator, inappropriate placement of the moisture-proof layer, deterioration of the function of the heat-
Alternatively, various factors such as intrusion of moisture or rainwater due to aging of the building itself may act in combination, and its function may be reduced. For this reason, the electricity bill becomes large, the freezing inside becomes remarkable, and in some cases, inconvenience such as the heat insulating layer being peeled off and falling may occur. In order to recover this deteriorated insulation function, the old insulation layer built inside the building can be removed and a new insulation layer can be installed, but in reality, only a partial repair is required. As
In fact, large-scale repair work on the insulation layer inside the building is not performed. The following can be considered as the reason. In other words, the cost of removing and disposing of the insulation layer is high. In addition, severe dew condensation occurs when the temperature rises, it is difficult to dry, and the dew condensation water may enter another uninsulated insulation layer area, causing the insulation layer in that area to lose its function. is there. In addition, during the construction period, the refrigerated cargo must be transferred to another refrigerator and stored, so that the cost becomes enormous. Also, during the renovation period,
Impaired warehouse functions can lead to customer dissipation.

【0003】したがって機能の低下した冷蔵庫を稼働し
ながら改修し、機能を回復、向上させるには、屋上外部
より断熱を施す手段を採らざるを得ない。この種の屋上
用外装式断熱構造として施工されたものの実例として
は、下記の(1)〜(4)に記載のものが従来より知ら
れている。 (1)建造物の屋根に断熱材としてスチロール、ウレタ
ン等の発泡プラスチック成形板を敷並べ、上部を防水の
上、押えコンクリートを打設する方法(図9(イ)参
照)。 (2)現場発泡ウレタンを、吹き付け法で屋上面に直接
吹き付け、継目のない一体の断熱層を形成した後、その
断熱層の表面に耐水性、耐候性を有する塗膜を施工する
方法(図9(ロ)参照)。 (3)耐水合板、鋼板、及び、各種のサンドイッチパネ
ルを表面材として用い、これを屋上躯体に対して、支持
材を介して取付け、その表面材と屋上躯体との間に形成
される中空部に、現場発泡ウレタン注入法で一体の断熱
層を形成し、かつ、前記表面材の表面または目地部を防
水処理する方法(図9(ハ参照))。 (4)断熱層として、スチロール、ウレタン等の発泡プ
ラスチック成形板を用い、これを屋上躯体に溶融アスフ
ァルト等の接着材で取付けた上に防水シートを施工する
方法(図9(ニ)参照)。
[0003] Therefore, in order to repair and improve the function while operating a refrigerator with a reduced function, it is necessary to employ means for providing heat insulation from outside the roof. The following (1) to (4) are conventionally known as examples of this type of roof-type exterior insulation structure. (1) A method in which a foamed plastic plate such as styrene or urethane is laid as a heat insulating material on the roof of a building, the upper part is waterproofed, and a holding concrete is poured (see FIG. 9A). (2) A method of spraying urethane foam in-situ directly on the roof surface by a spraying method to form a seamless integral heat-insulating layer and then applying a water-resistant and weather-resistant coating film on the surface of the heat-insulating layer (see FIG. 9 (b)). (3) Waterproof plywood, steel plate, and various sandwich panels are used as surface materials, which are attached to a rooftop body via a support material, and a hollow portion formed between the surface material and the rooftop body. Next, a method of forming an integral heat-insulating layer by in-situ urethane foam injection and waterproofing the surface or joint of the surface material (see FIG. 9 (c)). (4) A method of using a foamed plastic molded plate of styrene, urethane or the like as a heat insulating layer, attaching it to a rooftop body with an adhesive such as molten asphalt, and then applying a waterproof sheet (see FIG. 9 (d)).

【0004】[0004]

【発明が解決しようとする課題】上記(1)に記載の従
来の構造によれば、断熱性、耐候性とも良好な断熱構造
を得ることが可能であるが、押えコンクリートを用いて
断熱層を固定保持するものであるため、その重量が20
0〜250kg/m2程度の相当大きな重量になる。このた
め、老朽化した建造物等では、耐荷重能力の関係から適
用できない場合が多く、汎用性に欠けるという問題があ
る。
According to the conventional structure described in the above (1), it is possible to obtain a heat insulating structure having good heat insulating properties and weather resistance. Since it is fixed and held, its weight is 20
The weight becomes considerably large, about 0 to 250 kg / m 2 . For this reason, aged buildings and the like often cannot be applied due to load bearing capacity, and thus have a problem of lack of versatility.

【0005】上記(2)に記載の従来の構造によれば、
ウレタン吹き付けによる現場発泡によって断熱層を形成
するものであるから、被施工面である屋上躯体との接着
が良好に維持され、かつ、不陸面にも対応して隙間のな
い断熱層を構成することができる。したがって、例え
ば、所定厚さの断熱発泡樹脂製の成形品を溶融アスファ
ルト等で単に固定だけを目的とした貼付け方法で屋上面
に敷き詰め、上面に接着性シート類、ルーフィング等で
防水する場合に比べては隣接成形品どうしの間、及び成
形品と被加工面との間の隙間がなく、断熱性能のよい施
工を行える点で有用なものである。しかしながら、この
従来構造によると、断熱層表面を覆う耐候層としては、
充分な強度や重量を有した構成を採用することができ
ず、単なる塗膜によって構成されるので、次のような問
題がある。すなわち、施工後の屋上面は直接日射しや風
雨に晒されることになり、建物内部に存在する場合に比
べて厳しい自然条件を直接受けることになる。つまり、
屋上表面は日中の日射しによる輻射熱を受けて表面材温
度は気温よりも高くなる傾向にあり、逆に夜間の放射冷
却現象が現れたときは表面材温度は気温よりも低くなる
傾向にある。たとえば、東京の日中と夜間の平均的な気
温の差は一年を通じて約8℃前後であるが、屋上表面の
1日の温度差は約26〜44℃にも達することが確かめ
られている。このような温度変化が毎日繰り返され、そ
の都度表面材は膨張収縮を繰り返している。例えば、表
面材をポリウレタンフォームで構成した場合、温度差4
4℃として1m当たりの理論的な膨張量を求めてみる
と、 α;ポリウレタンフォームの線膨張係数=7×10-5 Δt;温度差=44℃ L0 ;基準長さ=100cm として、膨張量(L=α・Δt・L0)は、 L=(7×10-5)×44×100=0.308cm となり、一辺が40mの屋上を考えると約12cmの伸縮
を繰り返すことになる。そして、現場発泡吹き付け法で
成形されたポリウレタンフォームの表面状態は完全な平
滑面とはならず、凹凸を有した面となり、厚さも不均一
である。このようなところへウレタンフォームの膨張収
縮に追随する弾力性を有し、かつ耐候性と耐水性を考慮
された塗膜が施工されているが、表面の凹凸のうち、凸
状態の箇所は塗膜施工時の粘稠な液にもかかわらずダレ
がでて薄い膜となり、反対に凹状態の箇所は厚い膜とな
る塗りムラが生じる。この厚みの不均一な塗膜に対し
て、前記の熱膨張による伸縮作用が加えられると、その
塗膜の薄い部分により大きな伸縮作用が働いて、この薄
い部分の劣化が早められる傾向がある。また、前記の凹
状態の箇所では、前述の塗膜の厚みは厚くなっても、ポ
リウレタンフォーム自体の施工厚みは薄くなる。この箇
所へ降雨や結露などの水が滞留し、日光が当たればレン
ズ効果が生じて、その水溜り部分が昇温し、ポリウレタ
ンフォームの劣化が促進されることになる。そのうえ、
そのような水溜り部分が存在すると、鳥類、主としてカ
ラスの被害がある。これは表面の凹部に溜っている水を
飲みにきて、くちばしで水溜りの底をつつき、防水膜が
破られるような事態を招くことがある。しかも、ウレタ
ンフォームは、施工中、ウレタン樹脂の微細粒が飛散
し、近くに駐車している車輌や建物等に付着することが
あるので、その飛散を防止するための対策に多大な手数
を要し、また、施工後の養生にも多大な手数を要する。
According to the conventional structure described in the above (2),
Since the heat insulation layer is formed by in-situ foaming by urethane spraying, good adhesion to the rooftop body, which is the work surface, is maintained, and a heat insulation layer without gaps is formed even on uneven surfaces. be able to. Therefore, for example, compared to a case where a molded article made of a heat insulating foamed resin having a predetermined thickness is laid on the rooftop surface by a sticking method only for fixing purpose with molten asphalt or the like, and the upper surface is waterproofed with an adhesive sheet, roofing or the like. In other words, there is no gap between adjacent molded products and between the molded product and the surface to be processed, which is useful in that construction with good heat insulating performance can be performed. However, according to this conventional structure, as the weather-resistant layer covering the heat-insulating layer surface,
A structure having a sufficient strength and weight cannot be adopted, and is constituted by a mere coating film. Therefore, there are the following problems. That is, the roof surface after the construction is directly exposed to the sun and the wind and rain, and directly receives severe natural conditions as compared with the case where the roof surface exists inside the building. That is,
The surface of the rooftop tends to be higher in temperature than the air temperature due to the radiant heat of daytime sunlight. Conversely, when the radiation cooling phenomenon at night appears, the temperature of the surface material tends to be lower than the air temperature. For example, the average temperature difference between Tokyo during the day and night is about 8 ° C throughout the year, but it has been confirmed that the daily temperature difference on the rooftop surface can reach about 26-44 ° C. . Such a temperature change is repeated every day, and the surface material repeats expansion and contraction each time. For example, if the surface material is made of polyurethane foam, a temperature difference of 4
When the theoretical expansion amount per meter is calculated at 4 ° C., α: linear expansion coefficient of polyurethane foam = 7 × 10 −5 Δt; temperature difference = 44 ° C. L0; reference length = 100 cm, expansion amount ( L = α · Δt · L0) is L = (7 × 10 −5 ) × 44 × 100 = 0.308 cm, and when a rooftop having a side of 40 m is considered, expansion and contraction of about 12 cm is repeated. The surface state of the polyurethane foam formed by the in-situ foam spraying method is not a completely smooth surface, but a surface having irregularities, and the thickness is also non-uniform. A coating film that has elasticity that follows the expansion and contraction of the urethane foam and that takes into account weather resistance and water resistance is applied to such places. In spite of the viscous liquid at the time of film application, dripping occurs and a thin film is formed, and conversely, a coating in which a concave portion becomes a thick film causes uneven coating. When the expansion and contraction effect due to the thermal expansion is applied to the coating film having a non-uniform thickness, the thin portion of the coating film exerts a large expansion and contraction effect, and the thin portion tends to deteriorate earlier. In addition, in the above-mentioned concave portion, the thickness of the polyurethane foam itself is reduced even though the thickness of the coating film is increased. Water such as rainfall or dew stagnates at this location, and when exposed to sunlight, a lens effect occurs, the temperature of the water pool increases, and deterioration of the polyurethane foam is accelerated. Besides,
The presence of such puddles can damage birds, mainly crows. This may lead to a situation in which the water that has accumulated in the concave portions on the surface comes to be drunk and the bottom of the puddle is poked with a beak, and the waterproof film is broken. In addition, urethane foam can cause tiny particles of urethane resin to scatter during construction and adhere to nearby vehicles and buildings, so a great deal of work is needed to prevent such scattering. In addition, a great deal of trouble is required for curing after construction.

【0006】上記(3)に記載の従来技術によれば、表
面材に耐久性、信頼性のある表面材、すなわち、各種の
サンドイッチパネル、耐水合板、及び鋼板等を採用し、
これを支持材を介して屋上躯体側に固定して取付け、そ
の表面材と屋上躯体との間の中空層に、現場発泡注入法
でポリウレタンフォームを充填し、一体の断熱層を形成
するものであるから、塗膜の耐候性、耐水性にその断熱
機能を全て依存する前記(2)の方法に比べて、表面材
の信頼性は高く、被施工面とも良く接着する。また吹き
付けによる施工ではなく、注入発泡による施工であるか
ら、ウレタン樹脂の微細粒の飛散もなく、これらの点で
は有用なものであるが、その反面、次のような問題あ
る。すなわち、現在、ウレタン現場発泡は、一般にイソ
シアネート成分を主成分とするA液と、ポリオール成分
に発泡剤を付加したB液とを混合させて用いている。こ
の発泡剤として、旧来、一般的に使用されていた「フロ
ン11(トリクロロフルオロメタン(ccl3F))」が、
近年のフロンガスの規制強化にともなって製造中止とな
り、最近では発泡剤として「フロン141b(1,1-ジ
クロロ-1-フルオロエタン(ccl2FcH3))」が用いられ
るようになってきた。このフロン141bは、旧来のフ
ロン11が、約24℃で気化するものであったのに対
し、約48℃程度にまで昇温しないと気化しない性質が
ある。このため、冬期などは発泡装置ならびに施工対象
の作業領域の全体ならびに作業工程の全体にわたって厳
密な温度管理行うことが望まれるが、現実問題として
は、施工対象物体の昇温を行うこと等は、経済的にも困
難であり、かなり施工条件の低劣な環境下でも作業が行
われることがある。その結果、発泡装置から昇温されて
送り出された2成分が急激に温度の低い箇所へ注入さ
れ、部分的に冷却度合に差が生じて、発泡倍率に部分的
なムラが多い発泡バランスの悪い断熱層が形成される虞
がある。そして、この工法のように、周辺(四周及び上
面)の5辺を囲った空間への注入法を採用すると、前述
の発泡バランスの問題の他にも、発泡圧力及び収縮歪に
対応するために、パネルまたは表面材はかなりの厚みが
必要となる。このため、重量の増加、コストの高騰を招
き易い。パネル、表面材の厚みが薄い場合は、発泡圧力
に対してはコンクリート型枠のように補強手段を講じれ
ば発泡可能であるが、収縮歪は防止できず、仕上がり表
面は痩せ馬状といわれる波形の表面となってしまう。ま
た、注入法の特性から連続的に大量の発泡材を注入して
の施工を行うことは困難であり、1日当たりの施工量が
割合に制限され易い、などの問題がある。
According to the prior art described in the above (3), a durable and reliable surface material, that is, various kinds of sandwich panels, water-resistant plywood, steel plates, and the like are used as the surface material.
This is fixed and attached to the rooftop body side via a support material, and the hollow layer between the surface material and the rooftop body is filled with polyurethane foam by in-situ foam injection method to form an integral heat insulating layer. As a result, the reliability of the surface material is higher than that of the method (2) in which the heat insulating function depends on the weather resistance and water resistance of the coating film, and the coating material adheres well to the work surface. Further, since the construction is not injection spraying but injection foaming, there is no scattering of fine particles of urethane resin, which is useful in these respects. However, it has the following problems. That is, at present, urethane in-situ foaming generally uses a mixture of solution A containing an isocyanate component as a main component and solution B obtained by adding a foaming agent to a polyol component. As this foaming agent, “Freon 11 (trichlorofluoromethane (ccl 3 F))” which has been generally used in the past,
Production has been discontinued due to the recent tightening of regulations on Freon gas, and recently "Flon 141b (1,1-dichloro-1-fluoroethane (ccl 2 FcH 3 ))" has been used as a blowing agent. The Freon 141b has a property that the conventional Freon 11 vaporizes at about 24 ° C., but does not vaporize unless the temperature is raised to about 48 ° C. For this reason, it is desired to perform strict temperature control over the entirety of the foaming device and the work area to be constructed and the entire work process in winter and the like, but as a practical matter, it is necessary to raise the temperature of the construction target object, etc. It is economically difficult, and work may be performed even in an environment where construction conditions are extremely low. As a result, the two components that have been heated and sent out from the foaming device are rapidly injected into a low-temperature portion, resulting in a partial difference in the degree of cooling, and a large unevenness in the foaming ratio and a poor foaming balance. There is a possibility that a heat insulating layer is formed. Then, when the injection method into the space surrounding five sides of the periphery (four circumferences and the upper surface) is adopted as in this method, in addition to the foaming balance problem described above, in order to cope with the foaming pressure and shrinkage strain, , Panels or facings require considerable thickness. Therefore, an increase in weight and an increase in cost are likely to occur. When the thickness of panels and surface materials is thin, foaming is possible if reinforcement measures are taken like a concrete formwork against foaming pressure, but shrinkage distortion cannot be prevented, and the finished surface is a thin horse-like wave Surface. In addition, it is difficult to perform construction by continuously injecting a large amount of foamed material due to the characteristics of the injection method, and there is a problem that the amount of construction per day is easily limited to a ratio.

【0007】上記(4)に記載の従来技術のように、成
形板を敷並べて上部を防水する方法は、一般建築物の屋
上に厚みが10〜15mm程度の比較的薄く面材が防水紙
等のサンドイッチパネルを、溶融アスファルトで完全に
接着し、上部にアスファルト防水を施したものは数多く
みられるが、冷蔵庫の断熱を目的とするならば必要な断
熱層の厚みが増し、多層の断熱板を積層することにな
る。この場合、各積層断熱板どうしを溶融アスファルト
で完全に接着することは、溶融温度などで断熱板の物性
上無理があり、固定を目的とした局部接着にならざるを
得ない。このような接着施工を施した断熱層の上部表面
に防水層を施しても、前述の日射受熱による膨張および
放射冷却による収縮の繰り返しにより、絶えず運動を行
うので、断熱層は寿命の短いものとなっている。
As in the prior art described in the above (4), a method of laying out molded boards and waterproofing the upper part is based on a comparatively thin face material having a thickness of about 10 to 15 mm made of waterproof paper or the like on the roof of a general building. Many sandwich panels are completely glued with molten asphalt and asphalt waterproofing has been applied to the upper part.However, if the purpose is to insulate the refrigerator, the thickness of the necessary heat insulating layer increases, It will be laminated. In this case, completely bonding the laminated heat insulating plates with the molten asphalt is impossible due to the physical properties of the heat insulating plates due to the melting temperature and the like, and there is no choice but to local bonding for the purpose of fixing. Even if a waterproofing layer is applied to the upper surface of the heat-insulating layer that has been subjected to such bonding, the heat-insulating layer has a short life because the repetition of the expansion due to the above-mentioned solar radiation and the shrinkage due to the radiant cooling constantly moves. Has become.

【0008】結局、既設の屋上用外装式断熱構造、及び
その施工方法に関しての課題を総括すると、次の〜
に記載のようになる。 屋上表面を断熱し、熱定常状態になれば、従来の屋
上面は温度が下がり、マイナス温度になることもある。
このため、もとの屋上面は大気中の水蒸気が侵入可能な
気圧条件になり、水蒸気が侵入すればもとの屋上面に氷
層または水層となって蓄積する虞がある。したがって、
表面および端部より透水、透湿を可能な限り防止する構
造とすること。 降雪による重量(正圧)や、風圧(主に負圧)に対
しての強度を保持し、かつ、老朽化した既設の建造物屋
上にも適用できるように、可能な限り軽量な構造とする
こと。 表面の温度条件、紫外線、各種酸性物質などに耐え
得る表面材の選定を行い、かつ、表面材、支持材、断熱
材の膨張係数が異なり、夫々運動量、歪応力等も異なる
ので、これらを考慮して、熱影響による破損や耐久性低
下を生じ難い構造とすること。 工事期間中の降雨、早朝の放射冷却現象による結露
や着霜を考慮した構造とすること。 表面材と断熱材の空間は、放射冷却現象により空間
下部の断熱材表面に結露を発生させる可能性があるの
で、できるだけ小さくする構造であること。
[0008] After all, the problems concerning the existing roof-type exterior heat-insulating structure and its construction method are summarized as follows.
It becomes as described in. If the rooftop surface is insulated and the thermal steady state is reached, the temperature of the conventional rooftop surface decreases, and the temperature may become negative.
For this reason, the original roof surface is in a pressure condition in which water vapor in the atmosphere can enter, and if the water vapor invades, there is a possibility that the water will accumulate as an ice layer or a water layer on the original roof surface. Therefore,
The structure shall prevent water permeation and moisture permeation from the surface and the end as much as possible. The structure is as light as possible to maintain the strength against the weight (positive pressure) and the wind pressure (mainly negative pressure) due to snowfall and to be able to be applied to the roof of an existing building that has been deteriorated. thing. Select surface materials that can withstand surface temperature conditions, ultraviolet rays, various acidic substances, etc.Also, the expansion coefficients of the surface materials, support materials, and heat insulation materials are different, and the momentum, strain stress, etc., are also different. And a structure that does not easily cause breakage or deterioration in durability due to heat. The structure shall take into account rainfall during the construction period and condensation and frost formation due to the radiant cooling phenomenon in the early morning. The space between the surface material and the heat insulating material must be as small as possible because condensation may occur on the surface of the heat insulating material below the space due to the radiation cooling phenomenon.

【0009】本発明の目的は、既設の建造物の屋上に対
する断熱構造及びその施工方法を得るにあたり、現場発
泡を省略、または極限られた小範囲のみで行うようにし
て、発泡樹脂の飛散を回避するとともに、発泡圧力を受
けない状態で、耐水・耐候性に優れた硬質の表面材を耐
候層として採用し、断熱層の厚みを所要断熱性能を満た
すように厚くすることが可能でありながら、全体として
は軽量であるように構成して、屋上用として好適な断熱
構造、ならびにその施工方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to avoid the scattering of foamed resin by omitting foaming on site or performing the foaming only in a very small area in order to obtain a heat insulating structure and a construction method for the roof of an existing building. In addition, while not receiving foaming pressure, it is possible to adopt a hard surface material excellent in water resistance and weather resistance as a weather layer, and to make the thickness of the heat insulation layer thicker to satisfy the required heat insulation performance, An object of the present invention is to provide a heat insulating structure suitable for a rooftop and a construction method thereof, which is configured to be lightweight as a whole.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に講じた本発明における屋上用外装式断熱構造の技術手
段は、発泡合成樹脂材料製の成形断熱板を用いた断熱層
と、その断熱層の上側を覆う耐候性・耐水性を有した硬
質板状の表面材と、前記断熱層と建造物との間に設ける
防水・防湿用の下側防水層、ならびに前記断熱層と表面
材との間に介装する防水・防湿用の上側防水層とを備え
るとともに、前記断熱層中に、屋上面に沿う方向での成
形断熱板の熱変化による伸縮を規制するとともに、成形
断熱板を建造物屋上に対して上方側への離反を規制した
状態に固定する固定枠部材を埋設し、この固定枠部材を
介して前記表面材を建造物屋上に固定していることであ
る。請求項2に記載のように、前記固定枠部材として
は、木材または軽量鋼材で構成され、平面視で屋上面を
多数の小区画に区分する形状に形成されているととも
に、断熱層の上部近くに位置して、建造物屋上に連結固
定されているものを採用するとよい。請求項3に記載の
ように、前記固定枠部材は、建造物の屋上に固定された
第1固定枠と、前記表面材が連結された第2固定枠とを
上下に重ねて配置し、かつ、互いに連結固定されている
ものを採用してもよい。請求項4に記載のように、前記
断熱層を構成する成形断熱板としては、前記固定枠部材
を構成する第1固定枠と第2固定枠との境界で、上下で
分離された複数の成形断熱板で構成されているものを採
用するとよい。請求項5に記載のように、前記断熱層に
は、その厚さ方向で中間位置にも、防水・防湿用の中間
防水層を設けてもよい。
In order to achieve the above object, the technical means of the exterior heat insulating structure for a roof according to the present invention comprises a heat insulating layer using a molded heat insulating plate made of a foamed synthetic resin material, and a heat insulating layer for the heat insulating layer. A hard plate-shaped surface material having weather resistance and water resistance covering the upper side of the layer, a lower waterproof layer for waterproofing and moistureproofing provided between the heat insulating layer and the building, and the heat insulating layer and the surface material And an upper waterproof layer for waterproofing / moistureproof interposed therebetween, and in the heat insulating layer, the expansion and contraction due to the thermal change of the formed heat insulating plate in a direction along the roof surface is regulated, and the formed heat insulating plate is constructed. In other words, a fixing frame member for fixing in a state in which upward separation from the roof of the article is restricted is embedded, and the surface material is fixed to the building roof via the fixing frame member. As described in claim 2, the fixed frame member is made of wood or lightweight steel, is formed into a shape that divides the roof surface into a number of small sections in plan view, and is near the upper part of the heat insulating layer. It is good to adopt what is connected and fixed on the building rooftop. As described in claim 3, the fixed frame member is arranged such that a first fixed frame fixed to the roof of a building and a second fixed frame to which the surface material is connected are vertically stacked, and Alternatively, those connected and fixed to each other may be adopted. According to a fourth aspect of the present invention, as the formed heat insulating plate forming the heat insulating layer, a plurality of formed heat insulating plates vertically separated at a boundary between the first fixed frame and the second fixed frame forming the fixed frame member. It is good to adopt what is constituted by a heat insulation board. As described in claim 5, the heat insulating layer may be provided with an intermediate waterproof layer for waterproofing and moistureproofing at an intermediate position in the thickness direction.

【0011】また、本発明の屋上用外装式断熱構造の施
工方法における技術手段は、請求項6に記載のように、
下記[イ] 〜[ヘ] に記載の各工程を記載順に行うことであ
る。 [イ] 建造物の屋上躯体にアンカーを打ち込み、そのアン
カーに対してスタッドボルトなどの支持部材を立設し、
この支持部材の上端部にレベル調整可能なホルダーを設
ける支持部材取付工程。 [ロ] 前記支持部材の上端部に設けられたホルダーを用い
てレベル調整し、このホルダーに固定枠部材を取り付け
る固定枠部材敷設工程。 [ハ] 屋上面の不陸を調整するように建造物の屋上躯体表
面にゴムアスファルトエマルジョンと無機水硬性粉体と
を混合した速乾型下地調整材兼防水材を塗布し、この速
乾型下地調整材兼防水材によって下側防水層を形成する
下側防水層施工工程。 [ニ] 下側防水層の上に成形断熱板を、その上面が固定枠
部材の上縁近くに位置する程度の高さまで敷き詰めると
ともに、固定枠部材と前記成形断熱板との水平方向の隙
間に、現場発泡による断熱材を充填して、前記成形断熱
板を固定枠部材に固定する断熱層形成工程。 [ホ] 断熱層及び固定枠部材の上側に防水シートを敷設し
て上側防水層を形成する上側防水層施工工程。 [ヘ] 上側防水層の上に表面材としての金属板を、隣合う
ものどうしが部分的に重合する状態に敷き詰めて、その
重合部分をコーキングするとともに、この表面材を前記
固定枠部材に固定する耐候層取付工程。また、請求項7
に記載のように、下記[イ] 〜[リ] に記載の各工程を記載
順に行う施工方法を採用してもよい。 [イ] 建造物の屋上躯体にアンカーを打ち込み、そのアン
カーに対してスタッドボルトなどの支持部材を立設し、
この支持部材の上端部にレベル調整可能なホルダーを設
ける支持部材取付工程。 [ロ] 前記支持部材の上端部に設けられたホルダーを用い
てレベル調整し、このホルダーに固定枠部材の第1固定
枠を取り付ける第1固定枠取付工程。 [ハ] 屋上面の不陸を調整するように建造物の屋上躯体表
面にゴムアスファルトエマルジョンと無機水硬性粉体と
を混合した速乾型下地調整材兼防水材を塗布し、この速
乾型下地調整材兼防水材によって下側防水層を形成する
下側防水層塗布工程。 [ニ] 下側防水層の上に成形断熱板によって構成される第
1成形断熱板を敷き詰め、その第1成形断熱板の上に、
その上面が第1固定枠の上縁近くに位置する程度の高さ
まで第2成形断熱板を敷き詰めるとともに、固定枠部材
と前記各断熱板との水平方向の隙間に、現場発泡による
断熱材を充填して、前記成形断熱板を固定枠部材に固定
する断熱層下部形成工程。 [ホ] 第2成形断熱板及び第1固定枠の上側に中間防水シ
ートを敷設して中間防水層を形成する中間防水層敷設工
程。 [ヘ] 中間防水層の上から格子状の第2固定枠を、その一
部が第1固定枠と交差する状態で取り付ける第2固定枠
取付工程。 [ト] 中間防水層の上側に成形断熱板によって構成される
第3成形断熱板を敷き詰める断熱層上部形成工程。 [チ] 第3成形断熱板ならびに第2固定枠の上に上側防水
層としての防水シートを敷設する上側防水層敷設工程。 [リ] 上側防水層の上に表面材としての金属板を、隣合う
ものどうしが部分的に重合する状態に敷き詰めて、その
重合部分をコーキングするとともに、この表面材を前記
固定枠部材に固定する耐候層取付工程。
Further, the technical means in the construction method of the roof exterior heat-insulating structure of the present invention is as follows.
Each of the following steps [A] to [F] is performed in the order described. [B] An anchor is driven into the rooftop of the building, and support members such as stud bolts are erected on the anchor,
A supporting member mounting step of providing a holder whose level can be adjusted at the upper end of the supporting member. [B] A fixed frame member laying step of adjusting a level using a holder provided at an upper end of the support member and attaching a fixed frame member to the holder. [C] Apply a quick-drying type base adjustment material and a waterproofing material, which is a mixture of rubber asphalt emulsion and inorganic hydraulic powder, to the rooftop surface of the building so that unevenness on the roof surface is adjusted. A lower waterproof layer construction step of forming a lower waterproof layer with a base adjustment material and a waterproof material. [D] Spread the molded heat insulating plate on the lower waterproof layer to a height such that the upper surface thereof is located near the upper edge of the fixed frame member, and fill the horizontal gap between the fixed frame member and the formed heat insulating plate. A heat insulating layer forming step of filling the heat insulating material by in-situ foaming and fixing the formed heat insulating plate to the fixing frame member. [E] An upper waterproof layer construction step of laying a waterproof sheet above the heat insulating layer and the fixed frame member to form an upper waterproof layer. [F] A metal plate as a surface material is laid on the upper waterproof layer in such a manner that adjacent ones partially overlap, and the overlapping portion is caulked, and the surface material is fixed to the fixing frame member. Weatherproof layer mounting process. Claim 7
As described in above, a construction method in which the following steps [1] to [4] are performed in the stated order may be adopted. [B] An anchor is driven into the rooftop of the building, and support members such as stud bolts are erected on the anchor,
A supporting member mounting step of providing a holder whose level can be adjusted at the upper end of the supporting member. [B] A first fixed frame attaching step of adjusting a level using a holder provided at an upper end portion of the support member and attaching a first fixed frame of the fixed frame member to the holder. [C] Apply a quick-drying type base adjustment material and a waterproofing material, which is a mixture of rubber asphalt emulsion and inorganic hydraulic powder, to the rooftop surface of the building so that unevenness on the roof surface is adjusted. A lower waterproof layer coating step of forming a lower waterproof layer with a base adjustment material and a waterproof material. [D] Spread a first molded heat insulating plate composed of a molded heat insulating plate on the lower waterproof layer, and on the first molded heat insulating plate,
The second molded heat insulating plate is spread all the way up to a height such that its upper surface is located near the upper edge of the first fixed frame, and the horizontal gap between the fixed frame member and each of the heat insulating plates is filled with a heat insulating material by foaming in the field. Then, a lower heat insulating layer forming step of fixing the formed heat insulating plate to a fixed frame member. [E] An intermediate waterproof layer laying step of laying an intermediate waterproof sheet above the second molded heat insulating plate and the first fixed frame to form an intermediate waterproof layer. [F] A second fixed frame attaching step of attaching a grid-shaped second fixed frame from above the intermediate waterproof layer so that a part of the second fixed frame intersects the first fixed frame. [G] An upper heat insulating layer forming step in which a third formed heat insulating plate composed of a formed heat insulating plate is spread over the intermediate waterproof layer. [H] An upper waterproof layer laying step of laying a waterproof sheet as an upper waterproof layer on the third molded heat insulating plate and the second fixed frame. [I] A metal plate as a surface material is laid on the upper waterproof layer in such a manner that adjacent ones partially overlap, and the overlapping portion is coked, and the surface material is fixed to the fixing frame member. Weatherproof layer mounting process.

【0012】〔作用〕上記の技術手段を講じたことによ
る本発明の作用は次の通りである。 a.断熱層の形成にあたり、その全体を発泡合成樹脂材
料の吹き付けや現場注入発泡によって形成するのではな
く、発泡合成樹脂材料製の成形断熱板を積層して用いて
いる。したがって、発泡合成樹脂材料の微粉の飛散を招
くことがなく、また、表面材として大きな発泡注入圧に
耐え得る構造を必要とするものではない。 b.断熱層の上側を覆う耐候性・耐水性を有した耐候層
として、断熱層の表面に塗布された塗膜によるのではな
く、建造物屋上に固定された固定枠部材を介して硬質板
状の表面材を固定したものであり、しかも、前記固定枠
部材が、前記断熱層中に埋設され、屋上面に沿う方向で
の成形断熱板の熱変化による伸縮を規制するとともに、
成形断熱板を建造物屋上に対して上方側への離反を規制
した状態に固定するものであるから、固定枠部材で、断
熱層の熱収縮の規制と、断熱層の固定と、表面材の固定
とを行うことができる。 c.断熱層と建造物躯体との間に設ける防水・防湿用の
下側防水層、ならびに前記断熱層と表面材との間に介装
する防水・防湿用の上側防水層とを備えることにより、
断熱層の上側からの防水・防湿のみならず、断熱層の下
側の既設建造物の屋上躯体側から外装断熱層側への防水
・防湿も図られている。 d.請求項2に記載のように、前記固定枠部材として平
面視で屋上面を区画する形状の木材または軽量鋼材を採
用し、これを断熱層に埋め込み状態で位置させることに
より、断熱層の熱収縮を屋上面に沿うあらゆる方向で抑
制し、かつ、その固定枠部材を断熱層の上部近くに位置
させて、断熱層全体の固定と、表面材の固定とを、効果
的に行えるようにしてある。 e.請求項3に記載のように、前記固定枠部材を、建造
物の屋上に固定された第1固定枠と、前記表面材が連結
された第2固定枠との組合せで構成すると、作業工程の
細分化が容易で、下層からの段階的な施工が容易に行い
易い。 f.請求項4に記載のように、前記断熱層を構成する成
形断熱板を、固定枠部材を構成する第1固定枠と第2固
定枠との境界で、上下で分離された複数の成形断熱板で
構成すると、第1固定枠よりも下方側の成形断熱板を第
1固定枠で固定し、それよりも上方の成形断熱板を第2
固定枠で固定するというように、作業工程の途中での成
形断熱板の固定を確実に行える。 g.請求項5に記載のように、断熱層の厚さ方向での中
間位置にも、防水・防湿用の中間防水層を設けると、万
一、断熱層の上側あるいは下側の防水・防湿層に亀裂が
生じても、中間の防水・防湿層で他側への水分の浸透を
抑制することが可能となる。
[Operation] The operation of the present invention by taking the above technical means is as follows. a. In forming the heat insulating layer, the whole is not formed by spraying the foamed synthetic resin material or in-situ injection foaming, but by laminating molded heat insulating plates made of the foamed synthetic resin material. Therefore, the fine powder of the foamed synthetic resin material is not scattered, and the surface material does not need a structure capable of withstanding a large foaming injection pressure. b. As a weather-resistant layer having weather resistance and water resistance covering the upper side of the heat-insulating layer, instead of using a coating film applied on the surface of the heat-insulating layer, a hard plate-shaped through a fixed frame member fixed on a building roof. A surface material is fixed, and the fixed frame member is buried in the heat insulating layer to regulate expansion and contraction due to a thermal change of the formed heat insulating plate in a direction along the roof surface,
Since the molded heat insulating plate is fixed in a state in which the upward separation from the building roof is restricted, the fixing frame member controls the heat shrinkage of the heat insulating layer, fixes the heat insulating layer, and fixes the surface material. Can be fixed. c. By providing a waterproof and moisture-proof lower waterproof layer provided between the heat insulating layer and the building body, and a waterproof and moisture-proof upper waterproof layer interposed between the heat insulating layer and the surface material,
In addition to waterproofing and moisture-proofing from the upper side of the heat-insulating layer, waterproofing and moisture-proofing from the roof frame side of the existing building below the heat-insulating layer to the exterior heat-insulating layer side is also attempted. d. As described in claim 2, the fixed frame member is made of wood or lightweight steel having a shape that divides the roof surface in a plan view, and is placed in a state of being embedded in the heat insulating layer, whereby the heat shrinkage of the heat insulating layer is reduced. Is suppressed in all directions along the roof surface, and the fixing frame member is located near the upper portion of the heat insulating layer, so that the entire heat insulating layer and the surface material can be effectively fixed. . e. As described in claim 3, when the fixed frame member is configured by a combination of a first fixed frame fixed to the roof of a building and a second fixed frame to which the surface material is connected, It is easy to subdivide, and it is easy to perform stepwise construction from the lower layer. f. As described in claim 4, the molded heat insulating plate constituting the heat insulating layer is formed of a plurality of molded heat insulating plates which are vertically separated at a boundary between a first fixed frame and a second fixed frame which constitute a fixed frame member. In this configuration, the formed heat insulating plate below the first fixed frame is fixed by the first fixed frame, and the formed heat insulating plate above it is fixed to the second fixed frame.
As in the case of fixing with a fixed frame, the molded heat insulating plate can be reliably fixed in the middle of the working process. g. If an intermediate waterproof layer for waterproofing and moistureproofing is provided also at an intermediate position in the thickness direction of the thermal insulating layer as described in claim 5, the waterproofing and moistureproofing layer above or below the thermal insulating layer should be provided. Even if a crack occurs, it is possible to suppress the penetration of moisture to the other side by the intermediate waterproof / moisture-proof layer.

【0013】h.請求項6に記載の施工方法を採用する
ことにより、発泡合成樹脂材料の微粉の飛散を招くこと
がなく、かつ、大きな発泡圧が作用することもないとこ
ろの、発泡合成樹脂材料製の成形断熱板の積層を主とし
て断熱層を構成し、かつ、耐候層として耐候性・耐水性
に優れた硬質の表面材の選択を可能にすることを、断熱
層となる成形断熱板を固定するための部材と、表面材取
付のための部材とを、断熱層上部に設けた固定枠部材で
兼用することにより、断熱構造全体の重量増を抑制した
状態で断熱構造を構成することができる。 i.請求項7に記載の施工方法を採用することにより、
上記h.に記載のものと同様の作用に加え、次の作用が
ある。つまり、成形断熱板の積層で構成される断熱層
と、上下で別々の固定枠を組合せて構成される固定枠部
材とを併用し、これらの上下方向での分割面を共通にす
ることで、ここに中間防水層を形成することが容易に行
える。そして、この中間の防水層は、上下の断熱層を隔
てて上側防水層、及び下側防水層とともに、堅牢な防水
構造を得ることになる。また、下側防水層を、屋上の不
陸を減少させるように水平面に沿ってゴムアスファルト
エマルジョンと無機水硬性粉体とを混合した速乾型下地
調整材兼防水材を塗布することによって構成するので、
防水・防湿の機能に加えて、屋上面に敷設される成形断
熱板と防水・防湿層との密着度合を高め、相互の接着も
良好に行われ易い。
H. By adopting the construction method according to claim 6, the molded heat insulating material made of the foamed synthetic resin material does not cause scattering of the fine powder of the foamed synthetic resin material and does not act on a large foaming pressure. A member for fixing a molded heat insulating plate to be a heat insulating layer, which mainly constitutes a heat insulating layer by laminating the boards, and that it is possible to select a hard surface material having excellent weather resistance and water resistance as a weather layer. And a member for attaching the surface material is also used by the fixed frame member provided above the heat insulating layer, whereby the heat insulating structure can be configured in a state where the weight increase of the entire heat insulating structure is suppressed. i. By adopting the construction method according to claim 7,
H. In addition to the actions similar to those described above, the following actions are provided. In other words, by using a heat insulating layer formed by laminating formed heat insulating plates and a fixed frame member formed by combining separate fixed frames in the upper and lower directions, and by dividing these vertical surfaces in common, Here, an intermediate waterproof layer can be easily formed. Then, the intermediate waterproof layer, together with the upper waterproof layer and the lower waterproof layer, separates the upper and lower heat insulating layers to obtain a robust waterproof structure. Further, the lower waterproof layer is constituted by applying a quick-drying type base adjustment material and a waterproof material in which a rubber asphalt emulsion and an inorganic hydraulic powder are mixed along a horizontal plane so as to reduce roof unevenness. So
In addition to the functions of waterproofing and moistureproofing, the degree of adhesion between the molded heat insulating plate laid on the roof surface and the waterproofing and moistureproofing layers is increased, and mutual adhesion is easily performed easily.

【0014】[0014]

【発明の実施の形態】以下に、本発明の実施の形態を図
面の記載に基づいて説明する。 <外装式断熱構造全体の構成>図1〜図4は、本発明の
屋上用外装式断熱構造の組み上げ状態を示す。この屋上
用外装式断熱構造は、既設の保冷用建造物の屋上に対す
る外装式の断熱構造として用いるに好適なものであり、
図では、その既設の保冷用建造物の屋上躯体1に対して
施工した状態を示している。この屋上用外装式断熱構造
は、発泡合成樹脂材料製の成形断熱板を用いた断熱層2
と、その断熱層2の上側を覆う耐候性・耐水性を有した
硬質板状の表面材4と、前記断熱層2と建造物との間に
設ける防水・防湿用の下側防水層51、ならびに前記断
熱層2と表面材4との間に介装する防水・防湿用の上側
防水層53とを備えている。そして前記断熱層中には、
建造物の屋上面に沿う方向での成形断熱板の熱変化によ
る伸縮を規制するとともに、成形断熱板を建造物屋上に
対して上方側への離反を規制した状態に固定する固定枠
部材3を埋設し、この固定枠部材3を介して前記表面材
4を建造物屋上に固定している。
Embodiments of the present invention will be described below with reference to the drawings. <Construction of Entire Exterior Insulation Structure> FIGS. 1 to 4 show the assembled state of a roof exterior insulation structure of the present invention. This roof exterior heat insulation structure is suitable for use as an exterior heat insulation structure for the roof of an existing cold storage building,
The figure shows a state where the construction is performed on the roof frame 1 of the existing cooling structure. This roof-type exterior heat-insulating structure is a heat-insulating layer 2 using a molded heat-insulating plate made of a foamed synthetic resin material.
A weather-resistant and water-resistant hard plate-shaped surface material 4 covering the upper side of the heat-insulating layer 2, a waterproof / moisture-proof lower waterproof layer 51 provided between the heat-insulating layer 2 and the building, And a waterproof / moisture-proof upper waterproof layer 53 interposed between the heat insulating layer 2 and the surface material 4. And in the heat insulation layer,
A fixed frame member 3 that regulates expansion and contraction due to thermal change of the formed heat insulating plate in a direction along the roof surface of the building and that fixes the formed heat insulating plate to the building roof in a state in which separation to the upper side is restricted. The surface material 4 is buried, and the surface material 4 is fixed on the building roof via the fixing frame member 3.

【0015】<固定枠部材の構成>前記固定枠部材3
は、建造物の屋上躯体1にアンカー61打ちされたステ
ンレス製の断熱ボルト62と、その断熱ボルト62に装
着されたホルダー63とで構成される支持部材6に対し
て固定されている。この固定枠部材3は、前記ホルダー
63に載置して固定された第1固定枠31と、表面材4
を連結する第2固定枠32との組合せで構成されてい
る。前記第1固定枠31は、断面が50mm角の木材から
なり、建造物屋上の水勾配に沿う方向(以下、便宜上、
Y方向と呼ぶ)に長尺方向を向けて延設され、かつ、隣
合う第1固定枠31どうしが互いにほぼ平行であるよう
に、所定間隔を隔てて配設されている。この第1固定枠
31を構成する木材は、その延設方向であるY方向での
断熱ボルト62の配設ピッチと同程度の長さの短尺の木
材を、各断熱ボルト62の上端に螺合されたホルダー6
3に載置した状態で止め付け、かつ、延設方向の端部ど
うしを互いに接合して一連の長尺の第1固定枠31を構
成している。この第1固定枠31の屋上面に対する高さ
は、前記断熱ボルト62に対するホルダー63の高さ調
節によって、その下縁側に入り込む状態で設ける下層の
第1成形断熱板21の厚みと同程度に設定され、隣合う
位置の第1固定枠31との間隔Lは、前記下層の第1成
形断熱板21のY方向に直交する方向(以下、便宜上、
X方向と呼ぶ)の幅W1と同程度、あるいはそれよりも
やや大きく、かつ、互いに隣合う第1固定枠31どうし
の間に介装される中間層の第2成形断熱板22のY方向
の幅W2と同程度、もしくはそれよりもやや大きめな間
隔に設定されている。
<Structure of Fixed Frame Member> The Fixed Frame Member 3
Are fixed to a support member 6 composed of a stainless heat-insulating bolt 62 anchored to the rooftop frame 1 of the building and a holder 63 attached to the heat-insulating bolt 62. The fixed frame member 3 includes a first fixed frame 31 mounted and fixed on the holder 63 and a surface material 4.
And a combination with the second fixed frame 32 for connecting. The first fixed frame 31 is made of wood having a cross section of 50 mm square and has a direction along a water gradient on a building roof (hereinafter, for convenience,
(Referred to as the Y direction) in the longitudinal direction, and are arranged at predetermined intervals so that adjacent first fixed frames 31 are substantially parallel to each other. The wood forming the first fixed frame 31 is formed by screwing a short piece of wood having a length substantially equal to the pitch of the heat insulating bolts 62 in the Y direction, which is the direction in which the first fixing frame 31 extends, to the upper end of each heat insulating bolt 62. Holder 6
3 and are joined together at the ends in the extending direction to form a series of long first fixing frames 31. The height of the first fixed frame 31 with respect to the roof surface is set to be substantially the same as the thickness of the lower first molded heat insulating plate 21 provided so as to enter the lower edge side thereof by adjusting the height of the holder 63 with respect to the heat insulating bolts 62. The distance L between the adjacent first fixed frame 31 and the first fixed frame 31 is in a direction perpendicular to the Y direction of the lower first heat insulating plate 21 (hereinafter, for convenience,
(Referred to as the X-direction), which is approximately the same as or slightly larger than the width W1 of the second molded heat insulating plate 22 of the intermediate layer interposed between the first fixed frames 31 adjacent to each other in the Y-direction. The interval is set to be approximately equal to or slightly larger than the width W2.

【0016】前記第2固定枠32は、前記第1固定枠3
1と同様な、断面が50mm角の木材からなり、前記第1
固定枠31の延設方向であるY方向と直交して、X方向
に連続する長尺方向を向けた第2固定枠長尺体32a
と、前記第1固定枠31の延設方向と同方向であるY方
向に長手方向を向けて相隣る第2固定枠長尺体32aの
間に介在させた第2固定枠短尺体32bとで、平面視格
子状に配置して、これらを互いに接合することにより格
子状枠体を構成している。この第2固定枠32の格子状
の区画を構成する状態で隣合うものどうしの、X方向お
よびY方向での間隔の寸法は、その格子状の区画内に後
述する最上層の第3成形断熱板23が入り込むように、
第3成形断熱板23のX方向の長さ、およびY方向の幅
寸法と同一、もしくはそれよりもやや大きく構成されて
いる。上記第2固定枠32と前記第1固定枠31とは、
連結手段として第2固定枠32の上側から捩込んだコー
ススレッドスクリュー33(ネジピッチが長くネジ山が
高い木用ネジ)により互いに固定連結されている。
The second fixed frame 32 is provided with the first fixed frame 3.
1 is made of wood having a cross section of 50 mm square.
A second fixed frame elongated body 32a that is oriented in the elongated direction that is continuous in the X direction, orthogonal to the Y direction that is the direction in which the fixed frame 31 extends.
And a second fixed frame short body 32b interposed between adjacent second fixed frame elongated bodies 32a whose longitudinal directions are oriented in the Y direction which is the same direction as the direction in which the first fixed frame 31 extends. Thus, they are arranged in a lattice shape in a plan view, and are joined to each other to form a lattice frame. The size of the interval in the X direction and the Y direction between adjacent ones of the second fixed frame 32 forming a lattice-shaped section is determined by the third molded heat insulating layer of the uppermost layer described later in the lattice-shaped section. So that the plate 23 enters
The third formed heat insulating plate 23 has the same length as the length in the X direction and the width in the Y direction, or is slightly larger than the length. The second fixed frame 32 and the first fixed frame 31 are
Coarse thread screws 33 (wood screws having a long screw pitch and a high screw thread) screwed in from above the second fixed frame 32 as connecting means are fixedly connected to each other.

【0017】<断熱層の構成>断熱層2は、発泡合成樹
脂材料製の各成形断熱板、つまり、最下層の第1成形断
熱板21と、中間層の第2成形断熱板22と、最上層の
第3成形断熱板23とを用い、かつ、各成形断熱板2
1,22,23どうしの隙間を埋める充填断熱材24と
の組合せで構成されている。最下層の第1成形断熱板2
1は、建造物の屋上面から前記第1固定枠31の下縁ま
での距離とほぼ等しい厚さ、つまり、各成形断熱板2
1,22,23のうちで最も厚い約100mmの厚さを有
し、かつ、そのY方向長さが1820mm、X方向の幅が
910mmに設定された市販の発泡ポリスチレンによって
構成されている。また、中間層の第2成形断熱板22
は、前記第1固定枠31の上下厚みとほぼ等しい厚さ、
つまり、約50mmの厚さを有し、かつ、そのY方向長さ
が1820mm、X方向の幅が910mmに設定された市販
の発泡ポリスチレンによって構成されている。最上層の
第3成形断熱板23は、前記第2固定枠32の上下厚み
とほぼ等しい厚さ、つまり、約50mmの厚さを有し、か
つ、そのX方向およびY方向の長さが、前記第2固定枠
32の格子状の区画のX方向ならびにY方向の間隔内に
納まるように、市販の発泡ポリスチレンを切除して、一
辺の長さが910mmの矩形、あるいはそれよりも小さく
設定されている。
<Structure of Heat Insulation Layer> The heat insulation layer 2 is formed of a foamed synthetic resin material, that is, the first heat insulation plate 21 of the lowermost layer, the second heat insulation plate 22 of the intermediate layer, and the second heat insulation plate 22 of the intermediate layer. Using the upper third heat insulating plate 23 and each of the heat insulating plates 2
It is composed of a combination with a filled heat insulating material 24 that fills a gap between the components 1, 22, and 23. Lowermost first molded heat insulating plate 2
1 is a thickness substantially equal to the distance from the roof surface of the building to the lower edge of the first fixed frame 31, that is, each molded heat insulating plate 2
It is made of commercially available expanded polystyrene having a thickness of about 100 mm, which is the thickest of 1, 22, and 23, a length in the Y direction of 1820 mm, and a width in the X direction of 910 mm. Further, the second molded heat insulating plate 22 of the intermediate layer
Has a thickness substantially equal to the vertical thickness of the first fixed frame 31,
That is, it is made of commercially available expanded polystyrene having a thickness of about 50 mm, a length in the Y direction of 1820 mm, and a width in the X direction of 910 mm. The uppermost third molded heat insulating plate 23 has a thickness substantially equal to the vertical thickness of the second fixed frame 32, that is, a thickness of about 50 mm, and the length in the X direction and the Y direction is The commercially available expanded polystyrene is cut off so as to be within the intervals in the X direction and the Y direction of the lattice-shaped section of the second fixed frame 32, and the length of each side is set to a rectangle of 910 mm or smaller. ing.

【0018】第1成形断熱板21どうしの間、ならびに
第2成形断熱板22と第1固定枠31との間に形成され
る間隙部分Sには、これら相互の接着も兼ねて、発泡ウ
レタン樹脂を、現場発泡吹き付け法により隙間なく充填
している。このような吹き付け施工を部分的に行うもの
ではあるが、発泡樹脂を充填する空間は、幅10cm前後
の狭い空隙であり、スプレーガンの先端を隙間に差し込
んで移動させながら発泡を行うことができるので、発泡
ウレタン樹脂の飛散汚染は皆無である。隙間から多少溢
れ出たり盛り上がった発泡樹脂は、固化後、カッターで
削り取るなどして均せばよい。前記第3成形断熱板23
は、第2固定枠32の格子間隔に対して嵌め込まれるも
のであり、格子間隔との間に隙間がある部分では、その
隙間に、予め切断してある小幅の成形断熱板切断片25
を嵌め込んでいる。
A gap S formed between the first heat-insulating plates 21 and between the second heat-insulating plate 22 and the first fixing frame 31 is formed of urethane foam resin. Is filled without gaps by the on-site foam spraying method. Although such spraying is partially performed, the space filled with the foaming resin is a narrow space with a width of about 10 cm, and the foaming can be performed while inserting and moving the tip of the spray gun into the space. Therefore, there is no scattering contamination of the urethane foam resin. The foamed resin slightly overflowing or rising from the gaps may be solidified and then leveled by shaving off with a cutter. The third molded heat insulating plate 23
Are fitted into the grid spacing of the second fixed frame 32, and in a portion where there is a gap between the grid spacing and the gap, the small-width molded heat insulating plate cut piece 25 cut in advance into the gap.
Is fitted.

【0019】<防水層の構成>防水層は、前記断熱層2
と建造物との間に設ける防水・防湿用の下側防水層5
1、ならびに前記断熱層2と表面材4との間に介装する
防水・防湿用の上側防水層53と、断熱層2の厚さ方向
での中間位置に設けた防水・防湿用の中間防水層52と
で構成されている。
<Structure of waterproof layer>
Waterproof and moistureproof lower waterproof layer 5 provided between the building and the building
A waterproof / moisture-proof upper waterproof layer 53 interposed between the heat-insulating layer 2 and the surface material 4, and a waterproof / moisture-proof intermediate waterproof layer provided at an intermediate position in the thickness direction of the heat-insulating layer 2. And a layer 52.

【0020】前記下側防水層51は、建造物の屋上躯体
1表面における断熱層2敷設範囲のうち、その外周縁か
ら少し外へはみ出す範囲と、外周縁から1m程度敷設範
囲の中央側へ寄った範囲のとの幅で、断熱層敷設範囲の
全周にわたって、ゴムアスファルトエマルジョンと無機
水硬性粉体とを混合した速乾型下地調整材兼防水材を塗
布することによって形成されている。前記の塗布範囲よ
りも断熱層2敷設範囲の中央側に位置する箇所では、屋
上面の凹凸箇所に対して不陸を減少させるように、前記
速乾型下地調整材兼防水材を塗布してあり、この上に載
置して配設される第1成形断熱板21に対する密着性を
高めるように塗布されている。前記中間防水層52は、
アルミ箔付きゴムアスファルト防水シートからなり、前
記第1固定枠31と第2固定枠32との境界に設け、そ
の周端縁部分は、図2および3に示すように、断熱層2
の周縁の外側で、屋上躯体1に固定されている。この中
間防水層52は、前記第1固定枠31と第2固定枠32
との境界に相当するレベルで、断熱層2の厚さ方向中間
位置を横切る状態に、つまり、第2成形断熱板22の上
面と、第3成形断熱板23の下面との間に位置して、断
熱層2の全面にわたって設けられている。この中間防水
層52に対してその上側に位置する第2固定枠32は、
中間防水層52の押え部材としても機能している。前記
上側防水層53は、アルミ箔付きゴムアスファルト防水
シートからなり、前記第2固定枠32及び第3成形断熱
板23と、これらに対向する状態で上側に配置される表
面材4との間に設け、かつ、その周端縁部分は、図2,
3に示すように、断熱層2の周縁の外側で、屋上躯体1
に固定されている。
The lower waterproof layer 51 is located on the surface of the rooftop frame 1 of the building where the heat insulating layer 2 is laid, the area slightly protruding from the outer peripheral edge, and the center of the laid area about 1 m from the outer peripheral edge. It is formed by applying a quick-drying type base adjustment material / waterproof material in which a rubber asphalt emulsion and an inorganic hydraulic powder are mixed over the entire circumference of the heat insulating layer laying range. At a position located on the center side of the heat insulating layer 2 laying range from the coating range, the quick-drying type base adjustment material and waterproofing material are applied so as to reduce unevenness on the irregularities on the roof surface. In addition, it is applied so as to enhance the adhesion to the first molded heat insulating plate 21 placed and disposed thereon. The intermediate waterproof layer 52,
It is made of a rubber asphalt waterproof sheet with an aluminum foil, and is provided at the boundary between the first fixed frame 31 and the second fixed frame 32. The peripheral edge portion thereof is, as shown in FIGS.
Is fixed to the roof frame 1 outside the periphery of the roof frame. The intermediate waterproof layer 52 includes the first fixed frame 31 and the second fixed frame 32.
At a level corresponding to the boundary between the upper and lower surfaces of the second formed heat insulating plate 22 and the lower surface of the third formed heat insulating plate 23 in a state crossing the middle position in the thickness direction of the heat insulating layer 2. , Provided over the entire surface of the heat insulating layer 2. The second fixing frame 32 located above the intermediate waterproof layer 52 is
It also functions as a holding member for the intermediate waterproof layer 52. The upper waterproof layer 53 is made of a rubber asphalt waterproof sheet with an aluminum foil, and is provided between the second fixed frame 32 and the third molded heat insulating plate 23 and the surface material 4 disposed on the upper side in a state facing these. Provided, and the peripheral edge portion thereof is shown in FIG.
As shown in FIG. 3, outside the periphery of the heat insulating layer 2, the roof frame 1
It is fixed to.

【0021】<表面材の構成>断熱層2の上側を覆う表
面材4は、厚さが0.3〜1.0mm程度で、角波状に形
成されたガルバリウム鋼板から構成され、角波の溝方向
が屋上の水勾配に沿う方向、すなわち前記Y方向に設定
されている。この表面材4は、第2固定枠32および第
3成形断熱板23の上部を覆う上側防水層53としての
アルミ箔付きゴムアスファルト防水シートの上面で、前
記第2固定枠32のうちのX方向に連続する長尺方向を
向けた第2固定枠長尺体32aの上部に相当する箇所
に、さらに重ねて貼られた自己復元性のあるリボン状防
水シート53aの上から取り付けられる。各表面材4ど
うしは、図8(イ),(ロ)に示すように、隣合う側辺
部分を相互に重合させて、重合部にコーキング材41を
設けて接合されている。この表面材4は、固定枠部材3
に対して、角波取付用ビス42を介して連結固定されて
いる。この角波取付用ビス42は、六角頭、ワッシャー
一体型で、頭部がステンレス被覆されたものが望まし
い。断熱構造の周辺に相当する端部の表面材4は、図2
および図3に示すように、断面クランク状のガルバリウ
ム鋼板からなる端部支持体45を介して屋上躯体1に連
結固定されている。端部支持体45の上端側と表面材4
とはコーキング材41で一体化してあり、端部支持体4
5の下端側は屋上躯体1にアンカー止めされ、かつ、周
辺をコーキング44してある。図2における符号43
は、前記端部支持体45と表面材4の上面側とにわたっ
て設けたガルバリウム鋼板製の端部押え体であり、表面
材4及び端部支持体45に対してコーキング材41で一
体化されている。
<Structure of Surface Material> The surface material 4 covering the upper side of the heat insulating layer 2 is formed of a galvalume steel plate having a thickness of about 0.3 to 1.0 mm and formed in a square wave shape, and has a groove of the square wave. The direction is set to the direction along the rooftop water gradient, that is, the Y direction. The surface material 4 is an upper surface of a rubber asphalt waterproof sheet with aluminum foil as an upper waterproof layer 53 covering the upper portions of the second fixed frame 32 and the third molded heat insulating plate 23, and is in the X direction of the second fixed frame 32. Is attached to a portion corresponding to the upper part of the second fixed frame elongated body 32a facing the elongated direction from above on the self-restoring ribbon-shaped waterproof sheet 53a which is further superimposed. As shown in FIGS. 8A and 8B, the surface members 4 are joined together by overlapping adjacent side portions and providing a caulking material 41 in the overlapped portion. This surface material 4 is used for fixing frame member 3.
Are connected and fixed to each other via a square wave mounting screw 42. This square wave mounting screw 42 is preferably a hexagonal head and a washer integrated type, and the head is coated with stainless steel. The surface material 4 at the end corresponding to the periphery of the heat insulating structure is shown in FIG.
3, as shown in FIG. 3, it is connected and fixed to the roof frame 1 through an end support 45 made of a galvalume steel plate having a crank-shaped cross section. Upper end side of end support 45 and surface material 4
And the end support 4
The lower end of 5 is anchored to the roof frame 1 and the periphery is caulked 44. Reference numeral 43 in FIG.
Is an end holder made of a galvalume steel plate provided over the end support 45 and the upper surface side of the surface material 4, and is integrated with the surface material 4 and the end support 45 by the caulking material 41. I have.

【0022】<実施形態の作用>断熱層2の上部と下部
とでは、上部に比べて下部側ではあまり大きな温度変化
がない。これは断熱層2上部が外気温に対するある程度
の温度遮断機能を有し、保冷室内部は常にほぼ一定の低
温に維持されていることによる。そして、断熱層2の上
部では、年間で最大50℃程度の温度差があるが、この
ときの各部の温度の影響をみると次の通りである。
<Operation of the Embodiment> In the upper part and the lower part of the heat insulating layer 2, the temperature does not change so much on the lower part as compared with the upper part. This is because the upper part of the heat insulating layer 2 has a certain degree of temperature blocking function against the outside air temperature, and the inside of the cold storage room is always maintained at a substantially constant low temperature. The upper part of the heat insulating layer 2 has a temperature difference of about 50 ° C. at the maximum every year. The influence of the temperature of each part at this time is as follows.

【0023】すなわち、断熱発泡樹脂材(例えばポリウ
レタンフォーム)の線膨張係数は5〜7×10-5mm℃で
あり、50℃の温度差が生じると、 7×10-5×50(℃)×100(cm)=0.35cm であり、1mあたり、最大約0.35cm動くことにな
る。これは比率にして0.35%である。これに対し
て、固定枠部材3を構成する木材の長さ方向での線膨張
係数は0.3〜0.5×10-5mm℃であり、50℃の温
度差が生じると、 0.5×10-5×50(℃)×100(cm)=0.02
5cm であり、1mあたり、最大約0.075cm動くことにな
る。つまり、木材は断熱発泡樹脂材の1/15〜1/20
しか収縮しない。したがって、断熱層の上部では、木材
と断熱発泡樹脂材との間で、1mあたり、0.35−
0.025=0.325cmの線膨張量の差が生じること
になる。しかしながら、断熱発泡樹脂材の線膨張にとも
なう応力は約20kg/m2であり、木材の応力は約5
50kg/m2である。この熱による線膨張量が少なくて
応力の大なる格子状の木材が断熱発泡樹脂材の伸縮を規
制することになる。前記断熱発泡樹脂材の弾性限界は約
3%であり、前記0.35%の線膨張が生じようとして
も、その動きは、格子状の木材に規制されて、少しの応
力は生じているが、ほぼ原型を保っている。尚、断熱層
の上部に配置される防水シートは、伸び率約28%程度
の弾力性があるので、断熱発泡樹脂材や木材の線膨張に
よって破損するものではない。金属板からなる表面材の
線膨張係数は木材に近い値であるため、両者間での線膨
張量の差は特に考慮する必要はない。
That is, the thermal expansion resin material (for example, polyurethane foam) has a coefficient of linear expansion of 5 to 7 × 10 −5 mm ° C., and when a temperature difference of 50 ° C. occurs, 7 × 10 −5 × 50 (° C.) × 100 (cm) = 0.35 cm 2, which means that a maximum movement of about 0.35 cm per meter. This is a ratio of 0.35%. On the other hand, the coefficient of linear expansion in the length direction of the wood constituting the fixed frame member 3 is 0.3 to 0.5 × 10 −5 mm ° C., and when a temperature difference of 50 ° C. occurs, 0. 5 × 10 −5 × 50 (° C.) × 100 (cm) = 0.02
5 cm 2, which means that a maximum of about 0.075 cm moves per meter. In other words, wood is 1/15 to 1/20 of the heat-insulating foam resin material.
Only shrinks. Therefore, in the upper part of the heat insulating layer, between the wood and the heat insulating foamed resin material, 0.35-
There will be a difference in the amount of linear expansion of 0.025 = 0.325 cm. However, the stress accompanying the linear expansion of the heat insulating foamed resin material is about 20 kg / m 2 , and the stress of the wood is about 5 kg / m 2.
It is 50 kg / m 2 . The lattice-shaped wood having a small amount of linear expansion due to the heat and having a large stress regulates expansion and contraction of the heat insulating foamed resin material. The elastic limit of the heat-insulating foamed resin material is about 3%. Even if the linear expansion of 0.35% is to occur, the movement is restricted by the lattice-like wood and a little stress is generated. , Almost intact. The waterproof sheet disposed on the heat insulating layer has elasticity with an elongation of about 28%, and is not damaged by linear expansion of the heat insulating foamed resin material or wood. Since the coefficient of linear expansion of the surface material made of a metal plate is close to that of wood, it is not particularly necessary to consider the difference in the amount of linear expansion between the two.

【0024】断熱構造全体としての重量を考えてみる
と、本発明のものでは、 成形断熱板(200mm) ; 7.0kg/m2 防水シート(1mm×2層) ; 2.4kg/m2 木材(50mm角 約3m) ; 0.5kg/m2 表面材(0.4mmガルバリウム鋼板); 4.5kg/m2 下地調整材、及びコーキング等 ; 1.5kg/m2 で計約16kg/m2であり、従来の、屋上に補修用の断熱
層を形成して、その上からさらに押えコンクリートを打
設した場合のような200〜250kg/m2もの重量が作
用することを避けられることは勿論、成形断熱板を用い
ずに、現場発泡で断熱層を形成する場合に比べても、さ
らに重量軽減を図ることが可能となっている。つまり、
現場発泡の場合 注入ウレタン(200mm) ; 8.0kg/m2 支持部材(C型鋼およびボルト等) ; 4.5kg/m2 表面材(0.8mm鋼板) ;10.3kg/m2 となり、本願のものは、約30%軽くなっている。これ
は、前述したように、発泡圧に抗する強度が必要で表面
材重量が大きくなるためである。
Considering the weight of the heat insulation structure as a whole, in the case of the present invention, a molded heat insulation board (200 mm); 7.0 kg / m 2 waterproof sheet (1 mm × 2 layers); 2.4 kg / m 2 wood (50 mm square, about 3 m); 0.5 kg / m 2 surface material (0.4 mm galvalume steel plate); 4.5 kg / m 2 ground conditioning material, caulking, etc .; 1.5 kg / m 2 for a total of about 16 kg / m 2 As a matter of course, it is possible to avoid a weight of as much as 200 to 250 kg / m 2 acting as in the case where a conventional heat insulating layer is formed on a rooftop and a pressing concrete is further poured thereon. In addition, it is possible to further reduce the weight as compared with a case where a heat insulating layer is formed by foaming in place without using a molded heat insulating plate. That is,
In case of in-situ foaming Injected urethane (200 mm); 8.0 kg / m 2 support member (C-type steel and bolts); 4.5 kg / m 2 surface material (0.8 mm steel plate); 10.3 kg / m 2 Is about 30% lighter. This is because, as described above, the strength against the foaming pressure is required and the surface material weight increases.

【0025】<施工方法>本発明における保冷用建造物
の屋上用外装式断熱構造の施工方法は次の通りである。 [1] 既設建造物の屋上に、アンカー61を打ち込む箇所
を特定するための墨だしを行う。この墨だしでは、アン
カー61の打ち込み箇所が水勾配に沿う直線方向に沿う
ように描かれる(墨だし工程)。 [2] 墨だしで特定された建造物の屋上躯体に、所定深さ
だけドリルで孔明けし、アンカー61を打ち込む。その
アンカー61に対して断熱ボルト62などの支持部材6
を立設し、この支持部材の上端部にレベル調整可能なホ
ルダー63を螺合させ、断熱ボルト62に対してホルダ
ー63の高さをネジ部の螺合位置によって調節可能に構
成している(支持部材取付工程)。 [3] 前記支持部材6を構成する断熱ボルト62の上端部
に設けられたホルダー63を、断熱ボルト62に対して
回動させながら螺合位置を調節してレベル調整する。こ
のレベルは、このホルダー63に載置される第1固定枠
31の下縁が第1成形断熱板21の厚みと同程度となる
ように設定する。そして、このホルダー63の受け面に
固定枠部材3のうちの第1固定枠31を載せ、適宜ビス
あるいは接着剤などで取り付ける(第1固定枠取付工
程)。 [4] 建造物の屋上躯体表面1における断熱層2敷設範囲
のうち、その外周縁から少し外へはみ出す範囲と、外周
縁から1m程度敷設範囲の中央側へ寄った範囲のとの幅
で、断熱層敷設範囲の全周にわたって、ゴムアスファル
トエマルジョンと無機水硬性粉体とを混合した速乾型下
地調整材兼防水材を塗布することによって下側防水層5
1を形成する。前記の塗布範囲よりも断熱層2敷設範囲
の中央側に位置する箇所では、特に全面に塗布する必要
はなく、屋上面の凹凸をみながら不陸をなくすように、
前記速乾型下地調整材兼防水材を塗布するのがよい(下
側防水層塗布工程)。 [5] 下側防水層を構成するゴムアスファルトエマルジョ
ンと無機水硬性粉体とを混合した速乾型下地調整材兼防
水材が完全に固化しないうちに、その速乾型下地調整材
兼防水材の粘着力を利用して接着するように、成形断熱
板によって構成される第1成形断熱板を敷き詰める。そ
して、その第1成形断熱板の上に両面テープを張り付
け、さらにその上から、上面が第1固定枠の上縁近くに
位置する程度の厚みを設定されている第2成形断熱板を
敷き詰める。これらの第1成形断熱板21どうしの間、
ならびに第2成形断熱板22と第1固定枠31との間に
形成される間隙部分は、これら相互の接着も兼ねて、ス
プレーガンの先端をその間隙部分に差し込んで移動させ
ながら、現場発泡吹き付け法により隙間なく充填する
(断熱層下部形成工程)。 [6] 第2成形断熱板22及び第1固定枠31の上側には
中間防水シートを敷設し、その中間防水シートの周辺を
断熱層2の外側にまで延設して、屋上躯体1の表面に形
成されている周辺の下側防水層51の上に重ねて止め付
けることにより、中間防水層52を形成する(中間防水
層敷設工程)。一日の工事を終了する場合など、上側防
水層53の施工前に、工事を一時的に中断する場合は、
この中間防水層52の施工が完了した状態で終了する
と、表面に霜がついてもこの中間防水層52が、霜の浸
透を防止して、下方の第1,第2成形断熱板21,22
側に水分が浸透することを避けられる。 [7] 中間防水シートの敷設後、その上面側に、第2固定
枠32の設置位置を決めるための墨だしを行う。 [8] そして、中間防水層52の上側に、前記第1固定枠
31の延設方向であるX方向と直交して、Y方向に連続
する長尺方向を向けて多数の第2固定枠長尺体32aを
設け、この第2固定枠長尺体32aと、これに隣る位置
の第2固定枠長尺体32aの間にわたって、前記第1固
定枠31の延設方向と同方向であるX方向に長手方向を
向けた第2固定枠短尺体32bとを平面視格子状に配置
して、これらを互いに接合することにより格子状の第2
固定枠32を構成する。この第2固定枠32は、前記第
1固定枠31に対して、連結手段として第2固定枠32
の上側から捩込んだコーススレッドスクリュー33によ
り互いに固定連結されている(第2固定枠取付工程)。 [9] 中間防水層52の上側に設けられた第2固定枠32
の格子状の区画内に、成形断熱板によって構成される第
3成形断熱板23を敷き詰める。第3成形断熱板23
は、予め第2固定枠の格子状の区画と同程度の寸法に切
りそろえられているが、寸法の不揃いなどで、第3成形
断熱板23と第2固定枠32との間に隙間が生じれば、
その隙間の寸法に相当する大きさの成形断熱板切断片2
5を詰めればよい(断熱層上部形成工程)。 [10] 第3成形断熱板23ならびに第2固定枠32の上
に上側防水層53としての防水シートを敷設する(上側
防水層敷設工程)。 [11] 上側防水層53としての防水シートの上に表面材
4としての金属板を、隣合うものどうしが部分的に重合
する状態に敷き詰めて、その重合部分をコーキングする
とともに、この表面材4を前記固定枠部材3に固定する
(耐候層取付工程)。
<Construction Method> The construction method of the exterior heat insulation structure for the roof of the building for keeping cool in the present invention is as follows. [1] On the roof of the existing building, ink marking is performed to specify the location where the anchor 61 is to be driven. In this inking, the location where the anchor 61 is driven is drawn along a linear direction along the water gradient (inking process). [2] A predetermined depth is drilled into the rooftop of the building specified by sumi-dori, and the anchor 61 is driven. A support member 6 such as a heat insulating bolt 62 is attached to the anchor 61.
And a level-adjustable holder 63 is screwed into the upper end of the support member, and the height of the holder 63 with respect to the heat insulating bolt 62 can be adjusted by the screwing position of the screw portion ( Support member mounting step). [3] The level is adjusted by adjusting the screwing position while rotating the holder 63 provided at the upper end of the heat insulating bolt 62 constituting the support member 6 with respect to the heat insulating bolt 62. This level is set such that the lower edge of the first fixed frame 31 placed on the holder 63 is substantially equal to the thickness of the first molded heat insulating plate 21. Then, the first fixed frame 31 of the fixed frame member 3 is placed on the receiving surface of the holder 63, and is appropriately attached with a screw or an adhesive (first fixed frame attaching step). [4] The width of the area where the heat insulating layer 2 is laid on the rooftop body surface 1 of the building slightly outside the outer peripheral edge and the area closer to the center of the laid area by about 1 m from the outer peripheral edge, By applying a quick-drying type base conditioner / waterproof material in which a rubber asphalt emulsion and an inorganic hydraulic powder are mixed over the entire circumference of the heat insulating layer laying area, the lower waterproof layer 5 is formed.
Form one. At a portion located on the center side of the heat insulating layer 2 laying range rather than the coating range, it is not particularly necessary to apply the coating on the entire surface.
It is preferable to apply the quick-drying base adjustment material and waterproof material (lower waterproof layer application step). [5] The quick-drying base adjustment material and waterproofing material that mixes the rubber asphalt emulsion and the inorganic hydraulic powder that constitute the lower waterproofing layer before the solidification completely completes the solidification. The first formed heat insulating plate composed of the formed heat insulating plate is laid so as to adhere by utilizing the adhesive force of the above. Then, a double-sided tape is stuck on the first molded heat insulating plate, and a second molded heat insulating plate having a thickness such that the upper surface is positioned near the upper edge of the first fixed frame is further spread from above. Between these first molded heat insulating plates 21,
In addition, the gap formed between the second molded heat insulating plate 22 and the first fixed frame 31 serves as an adhesive for the mutual bonding, and while the tip of the spray gun is inserted into the gap and moved, the in-situ foaming is sprayed. Filling without gaps by the method (step of forming lower part of heat insulating layer). [6] An intermediate waterproof sheet is laid on the upper side of the second formed heat insulating plate 22 and the first fixed frame 31, and the periphery of the intermediate waterproof sheet is extended to the outside of the heat insulating layer 2, and the surface of the rooftop frame 1 is formed. The intermediate waterproof layer 52 is formed by overlapping and fastening on the lower waterproof layer 51 formed in the vicinity (the intermediate waterproof layer laying step). When the construction is temporarily suspended before the construction of the upper waterproof layer 53, such as when finishing the construction of the day,
When the construction of the intermediate waterproof layer 52 is completed, the intermediate waterproof layer 52 prevents the frost from penetrating even if the surface is frosted, and the first and second molded heat insulating plates 21 and 22 below.
Water is prevented from penetrating into the side. [7] After the intermediate waterproof sheet is laid, blacking is performed on the upper surface side to determine the installation position of the second fixing frame 32. [8] On the upper side of the intermediate waterproof layer 52, a number of second fixed frame lengths extending in a continuous direction in the Y direction perpendicular to the X direction, which is the extending direction of the first fixed frame 31, are provided. An elongated body 32a is provided, and extends in the same direction as the extension direction of the first fixed frame 31 between the second fixed frame elongated body 32a and the second fixed frame elongated body 32a located adjacent thereto. The second fixed frame short body 32b whose longitudinal direction is oriented in the X direction is arranged in a lattice shape in a plan view, and these are joined together to form a second lattice-shaped second body.
The fixed frame 32 is constituted. The second fixed frame 32 is connected to the first fixed frame 31 by a second fixed frame 32 as a connecting means.
Are fixedly connected to each other by a coarse thread screw 33 screwed from above (second fixing frame mounting step). [9] Second fixed frame 32 provided above intermediate waterproof layer 52
Is spread over the third shaped heat insulating plate 23 constituted by the formed heat insulating plate. Third molded heat insulating plate 23
Are preliminarily cut to the same size as the grid-shaped sections of the second fixed frame, but a gap is generated between the third molded heat insulating plate 23 and the second fixed frame 32 due to irregular dimensions. If
Molded heat insulating plate cut piece 2 having a size corresponding to the size of the gap
5 may be packed (the heat insulating layer upper part forming step). [10] A waterproof sheet as the upper waterproof layer 53 is laid on the third molded heat insulating plate 23 and the second fixed frame 32 (upper waterproof layer laying step). [11] A metal plate as the surface material 4 is laid on the waterproof sheet as the upper waterproof layer 53 in a state where adjacent objects partially overlap, and the overlapped portion is coked. Is fixed to the fixed frame member 3 (weather resistant layer attaching step).

【0026】〔他の実施の形態〕 (1)固定枠部材3を構成する格子状の木材は、その断
面が前記の50mm角のものに限らず、20mm角〜100
mm角程度の自由な大きさのものを、断熱層2の熱収縮応
力の程度に応じて、これに抗することのできる強度のも
のを用いればよく、また、その断面形状も正方形に限ら
ず、長方形であったり、三角形、多角形、あるいは円形
等、任意の形を選択することができる。 (2)また、格子の間隔も、前記の成形断熱板の大きさ
に合わせて自由に設定できるものであり、市販の成形断
熱板の定尺寸法に合わせて設定するのが望ましいが、こ
れに限定されるものではなく、要は、屋上面全体の大き
さや断熱層2の厚さなどに応じて断熱層2の熱収縮に充
分対抗できる木材径や格子間隔を選定すればよい。現実
には、600mm〜1200mmの範囲で定めるのが好まし
い。 (3)固定枠部材3の素材としては、実施の態様に示し
たような木材に限らず、軽量型鋼などの鋼材を使用する
ことも可能である。 (4)断熱層2の厚さ方向における固定枠部材3の配設
位置は、前記の屋上面から100mm程度の位置に限ら
ず、断熱層2の厚みを考慮して、固定枠部材3が断熱層
2上部の熱収縮を効果的に抑制でき、かつ、表面材4の
取付が可能な位置であればよい。 (5)断熱層2の上側を覆う表面材4は、厚さが0.3
〜1.0mm程度のガルバリウム鋼板に限らず、例えば、
厚さが0.3〜1mm程度で角波部分の1つの空間断面積
が10cm2以下の凸状補強されたアルミ、亜鉛合金メッ
キ鋼板、フッソ樹脂鋼板、アクリル樹脂鋼板、塩ビ樹脂
鋼板など、高度に表面処理を施した鋼板を用いることが
でき、必要に応じてその板厚や断面形状も変更すること
ができる。 (6)断熱層2を構成する成形断熱板の厚みや、各成形
断熱板の重ね合わせ段数も適宜設定変更可能である。 (7)断熱層2を構成する成形断熱板と各固定枠部材3
との隙間は、実施の形態で示したように発泡樹脂の吹き
付けによって構成するものに限らず、隙間に合致するよ
うに切断した成形断熱板の切断片や、発泡断熱材の粒状
体の詰め込みによって充填するように構成することも可
能である。 (8)下側防水層51では、前記速乾型下地調整材兼防
水材を、断熱層敷設範囲の全体にわたって塗布してもよ
い。また、この下側防水層51を、中間防水層52や上
側防水層53と同様な防水シートによって構成してもよ
い。 (9)断熱層の施工工程で、中間防水層52の施工を省
いてもよい。
[Other Embodiments] (1) The cross section of the lattice-shaped wood constituting the fixed frame member 3 is not limited to the above-mentioned 50 mm square, but may be 20 mm square to 100 mm.
Any material having a free size of about mm square may be used as long as it can withstand the heat shrinkage stress of the heat insulating layer 2 according to the degree of the heat shrinkage stress, and its sectional shape is not limited to a square. , An arbitrary shape such as a rectangle, a triangle, a polygon, or a circle can be selected. (2) Also, the interval between the lattices can be freely set according to the size of the above-mentioned molded heat insulating plate, and it is desirable to set it according to the standard size of a commercially available molded heat insulating plate. It is not limited, and the point is that the diameter of the wood and the lattice spacing that can sufficiently resist the heat shrinkage of the heat insulating layer 2 may be selected according to the size of the entire roof surface, the thickness of the heat insulating layer 2, and the like. In reality, it is preferable to set the distance in the range of 600 mm to 1200 mm. (3) The material of the fixed frame member 3 is not limited to the wood as described in the embodiment, but a steel material such as a lightweight steel can be used. (4) The disposition position of the fixed frame member 3 in the thickness direction of the heat insulating layer 2 is not limited to the position about 100 mm from the roof surface, and the fixed frame member 3 is insulated in consideration of the thickness of the heat insulating layer 2. Any position can be used as long as it can effectively suppress the thermal shrinkage of the upper part of the layer 2 and can attach the surface material 4. (5) The surface material 4 covering the upper side of the heat insulating layer 2 has a thickness of 0.3.
Not limited to galvalume steel sheet of about 1.0 mm, for example,
Aluminum, zinc alloy-plated steel sheet, fluorinated resin steel sheet, acrylic resin steel sheet, PVC resin steel sheet, etc. with a thickness of about 0.3 to 1 mm and one of the square wave portions with a spatial cross-sectional area of 10 cm 2 or less, reinforced Can be used, and its thickness and cross-sectional shape can be changed as necessary. (6) The thickness of the formed heat insulating plate constituting the heat insulating layer 2 and the number of superposed stages of each formed heat insulating plate can be appropriately changed. (7) Molded heat insulating plate constituting each heat insulating layer 2 and each fixed frame member 3
The gap is not limited to the one formed by spraying the foamed resin as shown in the embodiment, and the cut piece of the molded heat insulating plate cut to match the gap, or the packing of the granular material of the foamed heat insulating material. It is also possible to configure to fill. (8) In the lower waterproof layer 51, the quick-drying type base adjustment material and waterproof material may be applied over the entire area of the heat insulating layer. Further, the lower waterproof layer 51 may be formed of the same waterproof sheet as the intermediate waterproof layer 52 and the upper waterproof layer 53. (9) The construction of the intermediate waterproof layer 52 may be omitted in the construction process of the heat insulation layer.

【0027】[0027]

【発明の効果】上記技術手段を講じた本発明の効果は次
の通りである。 イ.厚さの大きな断熱層であっても、その断熱層の大部
分を現場発泡によらず成形断熱板の積層構造によって構
成するので、施工に際して発泡合成樹脂材料の微粉の飛
散を招くことがない。また、現場での注入発泡のように
表面材として大きな発泡注入圧に耐え得る構造を必要と
するものではない。したがって、所要の断熱機能を有し
た断熱層と、その断熱層の上側を覆う耐候性・耐水性を
有した耐候層とを、従来に比べて、大幅に軽量化するこ
とができた。 ロ.断熱層の上側を覆う耐候性・耐水性を有した耐候層
として、断熱層の熱収縮の規制、ならびに断熱層を屋上
躯体に固定するための固定枠部材を介して取り付けた硬
質板状の表面材を用いることができるので、単に断熱層
の表面に塗布した塗膜によって耐候層を構成するものに
比べて、断熱層の断熱機能の維持と、表面材自体の耐久
性を、部品点数の増大を避けながら顕著に向上すること
ができる。 ハ.断熱層の上下両側からの防水・防湿が図られ、既設
建造物の断熱を効果的に行っている。特に、請求項5に
示すように、断熱層の厚さ方向の中間位置にも防水層を
設けた場合には、万一、水分が断熱層の上側もしくは下
側から入り込んできた場合にも、その防水層を越えての
水分の浸入を阻止することができ、さらに耐久性が増す
ことになる。 ニ.請求項3に記載のように、前記固定枠部材を、建造
物の屋上に固定された第1固定枠と、前記表面材が連結
された第2固定枠との組合せで構成すると、作業工程の
細分化が容易で、下層からの段階的な施工が容易に行い
易い。 ホ.請求項4に記載のように、前記断熱層を構成する成
形断熱板を、固定枠部材を構成する第1固定枠と第2固
定枠との境界で、上下で分離された複数の成形断熱板で
構成すると、第1固定枠よりも下方側の成形断熱板を第
1固定枠で固定し、それよりも上方の成形断熱板を第2
固定枠で固定するというように、作業工程の途中での成
形断熱板の固定を確実に行える。 へ.請求項5に記載のように、前記断熱層の厚さ方向で
の中間位置に、防水・防湿用の中間防水層を設けること
により、この中間防水層の敷設終了時点で断熱層施工工
事の一時中断を可能にできる。つまり、断熱層を最上層
まで施工し終わらなくとも、この中間防水層までの施工
が完了すれば、その日の工事を終了して翌朝まで放置し
ても、霜が断熱層内に浸透することを避け、又、降雨が
あっても断熱層の機能を維持することができる。つま
り、この中間断熱層は、万一、上側防水層が破損したと
しても、外部からの水分の浸透を断熱層の中間部分で食
い止めることができるとともに、施工の一時中断を可能
にして、その施工工程の自由度を高める上でも有効であ
る。
The effects of the present invention employing the above technical means are as follows. I. Even if the heat insulating layer has a large thickness, most of the heat insulating layer is constituted by the laminated structure of the formed heat insulating plates without depending on the foaming in place, so that the fine powder of the foamed synthetic resin material is not scattered at the time of construction. In addition, it does not require a structure capable of withstanding a large foaming injection pressure as a surface material as in the case of injection foaming on site. Therefore, the heat-insulating layer having the required heat-insulating function and the weather-resistant layer having weather resistance and water resistance covering the upper side of the heat-insulating layer can be significantly reduced in weight as compared with the conventional case. B. A hard plate-like surface attached as a weather-resistant and water-resistant weather-resistant layer that covers the upper side of the heat-insulating layer and that is fixed via a fixing frame member for fixing the heat-insulating layer to the rooftop body, as well as regulating the heat shrinkage of the heat-insulating layer. Since the material can be used, maintaining the heat insulating function of the heat insulating layer and the durability of the surface material itself and increasing the number of parts are compared with the case where the weather resistant layer is composed of a coating film simply applied to the surface of the heat insulating layer. Can be significantly improved while avoiding the problem. C. Waterproofing and moistureproofing from both the upper and lower sides of the heat insulation layer are achieved, effectively insulating existing buildings. In particular, as shown in claim 5, in the case where the waterproof layer is also provided at an intermediate position in the thickness direction of the heat insulating layer, even if moisture enters from above or below the heat insulating layer, Infiltration of moisture beyond the waterproof layer can be prevented, and durability is further increased. D. As described in claim 3, when the fixed frame member is configured by a combination of a first fixed frame fixed to the roof of a building and a second fixed frame to which the surface material is connected, It is easy to subdivide, and it is easy to perform stepwise construction from the lower layer. E. As described in claim 4, the molded heat insulating plate constituting the heat insulating layer is formed of a plurality of molded heat insulating plates which are vertically separated at a boundary between a first fixed frame and a second fixed frame which constitute a fixed frame member. In this configuration, the formed heat insulating plate below the first fixed frame is fixed by the first fixed frame, and the formed heat insulating plate above it is fixed to the second fixed frame.
As in the case of fixing with a fixed frame, the molded heat insulating plate can be reliably fixed in the middle of the working process. What. As described in claim 5, by providing an intermediate waterproof layer for waterproofing and moisture-proofing at an intermediate position in the thickness direction of the thermal insulating layer, at the time of completion of the installation of the intermediate waterproofing layer, the construction of the thermal insulating layer is temporarily stopped. Can be interrupted. In other words, even if the insulation layer is not completed up to the uppermost layer, if the construction up to the intermediate waterproof layer is completed, even if the construction on that day is completed and left until the next morning, frost will penetrate into the insulation layer. Avoid, and the function of the heat insulating layer can be maintained even if it rains. In other words, even if the upper waterproof layer is damaged, this intermediate thermal insulation layer can stop the penetration of moisture from the outside in the middle part of the thermal insulation layer, and can temporarily suspend the construction, It is also effective in increasing the degree of freedom of the process.

【0028】ト.請求項6に記載の施工方法を採用する
ことにより、上記イ.及びロ.に記載したものと同様な
作用効果を有した断熱構造を得ることができる。 チ.請求項7に記載の施工方法を採用することにより、
上記イ.〜ホ.に記載のものと同様の作用効果を有した
断熱構造を得ることができる。
G. By adopting the construction method according to claim 6, And b. It is possible to obtain a heat insulating structure having the same functions and effects as those described in (1). H. By adopting the construction method according to claim 7,
Above a. ~ E. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】屋上用外装式断熱構造の一部を切除した平面図FIG. 1 is a plan view of a part of an exterior heat-insulating structure for a roof cut away.

【図2】屋上用外装式断熱構造における図2の線分X−
X方向での断面図
FIG. 2 is a line segment X- in FIG.
Cross section in X direction

【図3】屋上用外装式断熱構造における図2の線分Y−
Y方向での断面図
3 is a line segment Y- of FIG.
Sectional view in Y direction

【図4】屋上用外装式断熱構造の施工過程を示し、
(イ)は施工前の屋上躯体を示す断面図、(ロ)は第1
固定枠と第1成形断熱板とを施工した状態を示す断面
図。
FIG. 4 shows a construction process of a roof exterior heat insulating structure,
(A) is a cross-sectional view showing the roof frame before construction, and (b) is the first.
Sectional drawing which shows the state which fixed frame and 1st shaping | molding heat insulation board were constructed.

【図5】屋上用外装式断熱構造の施工過程を示し、
(ハ)は第2成形断熱板および中間防水層を施工した状
態を示す断面図、(ニ)は第1固定枠と第2成形断熱板
とを施工した状態を示す図2の線分X’−X’での断面
図。
FIG. 5 shows a construction process of a roof exterior heat insulating structure,
(C) is a cross-sectional view showing a state where the second molded heat insulating plate and the intermediate waterproof layer are applied, and (D) is a line segment X ′ in FIG. 2 showing a state where the first fixed frame and the second molded heat insulating plate are applied. Sectional drawing at -X '.

【図6】屋上用外装式断熱構造の施工過程を示す斜視図FIG. 6 is a perspective view showing a construction process of a roof exterior heat insulating structure.

【図7】屋上用外装式断熱構造の施工過程を示す斜視図FIG. 7 is a perspective view showing a construction process of a roof exterior heat insulating structure.

【図8】屋上用外装式断熱構造の施工過程を示す斜視図FIG. 8 is a perspective view showing a construction process of a roof exterior heat insulating structure.

【図9】従来例を示す断面図FIG. 9 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 屋上躯体 2 断熱層 21 第1成形断熱板 22 第2成形断熱板 23 第3成形断熱板 3 固定枠部材 31 第1固定枠 32 第2固定枠 51 下側防水層 52 中間防水層 53 上側防水層 4 表面材 6 支持部材 DESCRIPTION OF SYMBOLS 1 Roof frame 2 Heat insulation layer 21 1st shaping | molding heat insulating board 22 2nd shaping | molding heat insulating board 23 3rd shaping | molding heat insulating board 3 Fixed frame member 31 1st fixed frame 32 2nd fixed frame 51 Lower waterproof layer 52 Intermediate waterproof layer 53 Upper waterproof Layer 4 Surface material 6 Support member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊田 治 三重県亀山市阿野田町1422番地の1 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Osamu Toyoda 1 of 1422 Anodacho, Kameyama-shi, Mie Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 既設の保冷用建造物の屋上に対する外装
式の断熱構造であって、 発泡合成樹脂材料製の成形断熱板を用いた断熱層と、そ
の断熱層の上側を覆う耐候性・耐水性を有した硬質板状
の表面材と、前記断熱層と建造物との間に設ける防水・
防湿用の下側防水層、ならびに前記断熱層と表面材との
間に介装する防水・防湿用の上側防水層とを備えるとと
もに、 前記断熱層中に、屋上面に沿う方向での成形断熱板の熱
変化による伸縮を規制するとともに、成形断熱板を建造
物屋上に対して上方側への離反を規制した状態に固定す
る固定枠部材を埋設し、この固定枠部材を介して前記表
面材を建造物屋上に固定していることを特徴とする屋上
用外装式断熱構造。
1. An exterior heat-insulating structure for the roof of an existing cold-storage building, comprising: a heat-insulating layer using a molded heat-insulating plate made of a foamed synthetic resin material; and weather resistance and water resistance covering an upper side of the heat insulating layer. Hard plate-shaped surface material with water resistance, waterproof and waterproof between the heat insulation layer and the building
A lower waterproof layer for moisture prevention, and an upper waterproof layer for waterproofing and moisture prevention interposed between the heat insulating layer and the surface material, and formed heat insulation in the heat insulating layer in a direction along the roof surface. A fixed frame member for fixing expansion and contraction due to heat change of the plate and fixing the molded heat insulating plate to the building roof in a state in which separation from the upper side is restricted is embedded, and the surface material is interposed through the fixed frame member. An exterior heat-insulating structure for a roof, characterized in that is fixed to the roof of a building.
【請求項2】 前記固定枠部材は、木材または軽量鋼材
で構成され、平面視で屋上面を多数の小区画に区分する
形状に形成されているとともに、断熱層の上部近くに位
置して、建造物屋上に連結固定されている請求項1記載
の屋上用外装式断熱構造。
2. The fixing frame member is made of wood or lightweight steel material, is formed in a shape that divides a roof surface into a number of small sections in plan view, and is located near an upper part of a heat insulating layer. The roof exterior heat insulating structure according to claim 1, wherein the roof exterior heat insulating structure is connected and fixed to a building roof.
【請求項3】 前記固定枠部材は、建造物の屋上に固定
された第1固定枠と、前記表面材が連結された第2固定
枠とを上下に重ねて配置し、かつ、互いに連結固定され
ている請求項1または2記載の屋上用外装式断熱構造。
3. The fixed frame member comprises: a first fixed frame fixed to a roof of a building; and a second fixed frame to which the surface material is connected, which are vertically stacked, and are connected and fixed to each other. The roof exterior heat-insulating structure according to claim 1 or 2, wherein
【請求項4】前記断熱層を構成する成形断熱板は、前記
固定枠部材を構成する第1固定枠と第2固定枠との境界
で、上下で分離された複数の成形断熱板で構成されてい
る請求項3記載の屋上用外装式断熱構造。
4. A molded heat insulating plate constituting the heat insulating layer is constituted by a plurality of formed heat insulating plates which are vertically separated at a boundary between a first fixed frame and a second fixed frame which constitute the fixed frame member. The exterior heat insulation structure for a roof according to claim 3, wherein:
【請求項5】前記断熱層の厚さ方向での中間位置に、防
水・防湿用の中間防水層を設けてある請求項1〜4のい
ずれか一つに記載の屋上用外装式断熱構造。
5. The exterior heat-insulating structure for a roof according to claim 1, wherein an intermediate waterproof layer for waterproofing and moisture-proofing is provided at an intermediate position in the thickness direction of the heat insulating layer.
【請求項6】下記[イ] 〜[ヘ] に記載の各工程を記載順に
行うことを特徴とする屋上用外装式断熱構造の施工方
法。 [イ] 建造物の屋上躯体にアンカーを打ち込み、そのアン
カーに対してスタッドボルトなどの支持部材を立設し、
この支持部材の上端部にレベル調整可能なホルダーを設
ける支持部材取付工程。 [ロ] 前記支持部材の上端部に設けられたホルダーを用い
てレベル調整し、このホルダーに固定枠部材を取り付け
る固定枠部材敷設工程。 [ハ] 屋上面の不陸を調整するように建造物の屋上躯体表
面にゴムアスファルトエマルジョンと無機水硬性粉体と
を混合した速乾型下地調整材兼防水材を塗布し、この速
乾型下地調整材兼防水材によって下側防水層を形成する
下側防水層施工工程。 [ニ] 下側防水層の上に成形断熱板を、その上面が固定枠
部材の上縁近くに位置する程度の高さまで敷き詰めると
ともに、固定枠部材と前記成形断熱板との水平方向の隙
間に、現場発泡による断熱材を充填して、前記成形断熱
板を固定枠部材に固定する断熱層形成工程。 [ホ] 断熱層及び固定枠部材の上側に防水シートを敷設し
て上側防水層を形成する上側防水層施工工程。 [ヘ] 上側防水層の上に表面材としての金属板を、隣合う
ものどうしが部分的に重合する状態に敷き詰めて、その
重合部分をコーキングするとともに、この表面材を前記
固定枠部材に固定する耐候層取付工程。
6. A method for constructing a roof-mounted exterior heat-insulating structure, comprising performing the following steps [a] to [f] in the stated order. [B] An anchor is driven into the rooftop of the building, and support members such as stud bolts are erected on the anchor,
A supporting member mounting step of providing a holder whose level can be adjusted at the upper end of the supporting member. [B] A fixed frame member laying step of adjusting a level using a holder provided at an upper end of the support member and attaching a fixed frame member to the holder. [C] Apply a quick-drying type base adjustment material and a waterproofing material, which is a mixture of rubber asphalt emulsion and inorganic hydraulic powder, to the rooftop surface of the building so that unevenness on the roof surface is adjusted. A lower waterproof layer construction step of forming a lower waterproof layer with a base adjustment material and a waterproof material. [D] Spread the molded heat insulating plate on the lower waterproof layer to a height such that the upper surface thereof is located near the upper edge of the fixed frame member, and fill the horizontal gap between the fixed frame member and the formed heat insulating plate. A heat insulating layer forming step of filling the heat insulating material by in-situ foaming and fixing the formed heat insulating plate to the fixing frame member. [E] An upper waterproof layer construction step of laying a waterproof sheet above the heat insulating layer and the fixed frame member to form an upper waterproof layer. [F] A metal plate as a surface material is laid on the upper waterproof layer in such a manner that adjacent ones partially overlap, and the overlapping portion is caulked, and the surface material is fixed to the fixing frame member. Weatherproof layer mounting process.
【請求項7】下記[イ] 〜[リ] に記載の各工程を記載順に
行うことを特徴とする屋上用外装式断熱構造の施工方
法。 [イ] 建造物の屋上躯体にアンカーを打ち込み、そのアン
カーに対してスタッドボルトなどの支持部材を立設し、
この支持部材の上端部にレベル調整可能なホルダーを設
ける支持部材取付工程。 [ロ] 前記支持部材の上端部に設けられたホルダーを用い
てレベル調整し、このホルダーに固定枠部材の第1固定
枠を取り付ける第1固定枠取付工程。 [ハ] 屋上面の不陸を調整するように建造物の屋上躯体表
面にゴムアスファルトエマルジョンと無機水硬性粉体と
を混合した速乾型下地調整材兼防水材を塗布し、この速
乾型下地調整材兼防水材によって下側防水層を形成する
下側防水層塗布工程。 [ニ] 下側防水層の上に成形断熱板によって構成される第
1成形断熱板を敷き詰め、その第1成形断熱板の上に、
その上面が第1固定枠の上縁近くに位置する程度の高さ
まで第2成形断熱板を敷き詰めるとともに、固定枠部材
と前記各断熱板との水平方向の隙間に、現場発泡による
断熱材を充填して、前記成形断熱板を固定枠部材に固定
する断熱層下部形成工程。 [ホ] 第2成形断熱板及び第1固定枠の上側に中間防水シ
ートを敷設して中間防水層を形成する中間防水層敷設工
程。 [ヘ] 中間防水層の上から格子状の第2固定枠を、その一
部が第1固定枠と交差する状態で取り付ける第2固定枠
取付工程。 [ト] 中間防水層の上側に成形断熱板によって構成される
第3成形断熱板を敷き詰める断熱層上部形成工程。 [チ] 第3成形断熱板ならびに第2固定枠の上に上側防水
層としての防水シートを敷設する上側防水層敷設工程。 [リ] 上側防水層の上に表面材としての金属板を、隣合う
ものどうしが部分的に重合する状態に敷き詰めて、その
重合部分をコーキングするとともに、この表面材を前記
固定枠部材に固定する耐候層取付工程。
7. A method for constructing a rooftop exterior heat-insulating structure, characterized by performing the following steps (a) to (i) in the stated order. [B] An anchor is driven into the rooftop of the building, and support members such as stud bolts are erected on the anchor,
A supporting member mounting step of providing a holder whose level can be adjusted at the upper end of the supporting member. [B] A first fixed frame attaching step of adjusting a level using a holder provided at an upper end portion of the support member and attaching a first fixed frame of the fixed frame member to the holder. [C] Apply a quick-drying type base adjustment material and a waterproofing material, which is a mixture of rubber asphalt emulsion and inorganic hydraulic powder, to the rooftop surface of the building so that unevenness on the roof surface is adjusted. A lower waterproof layer coating step of forming a lower waterproof layer with a base adjustment material and a waterproof material. [D] Spread a first molded heat insulating plate composed of a molded heat insulating plate on the lower waterproof layer, and on the first molded heat insulating plate,
The second molded heat insulating plate is spread all the way up to a height such that its upper surface is located near the upper edge of the first fixed frame, and the horizontal gap between the fixed frame member and each of the heat insulating plates is filled with a heat insulating material by foaming in the field. Then, a lower heat insulating layer forming step of fixing the formed heat insulating plate to a fixed frame member. [E] An intermediate waterproof layer laying step of laying an intermediate waterproof sheet above the second molded heat insulating plate and the first fixed frame to form an intermediate waterproof layer. [F] A second fixed frame attaching step of attaching a grid-shaped second fixed frame from above the intermediate waterproof layer so that a part of the second fixed frame intersects the first fixed frame. [G] An upper heat insulating layer forming step in which a third formed heat insulating plate composed of a formed heat insulating plate is spread over the intermediate waterproof layer. [H] An upper waterproof layer laying step of laying a waterproof sheet as an upper waterproof layer on the third molded heat insulating plate and the second fixed frame. [I] A metal plate as a surface material is laid on the upper waterproof layer in such a manner that adjacent ones partially overlap, and the overlapping portion is coked, and the surface material is fixed to the fixing frame member. Weatherproof layer mounting process.
JP14127097A 1997-05-30 1997-05-30 Exterior insulation structure for roof of building for cooling and its construction method Expired - Fee Related JP2939452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14127097A JP2939452B2 (en) 1997-05-30 1997-05-30 Exterior insulation structure for roof of building for cooling and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14127097A JP2939452B2 (en) 1997-05-30 1997-05-30 Exterior insulation structure for roof of building for cooling and its construction method

Publications (2)

Publication Number Publication Date
JPH10331281A true JPH10331281A (en) 1998-12-15
JP2939452B2 JP2939452B2 (en) 1999-08-25

Family

ID=15287997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14127097A Expired - Fee Related JP2939452B2 (en) 1997-05-30 1997-05-30 Exterior insulation structure for roof of building for cooling and its construction method

Country Status (1)

Country Link
JP (1) JP2939452B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016965A (en) * 2008-07-03 2010-01-21 Denso Corp Rotary electric machine for vehicle
JP2015175196A (en) * 2014-03-17 2015-10-05 大成建設株式会社 Construction method of void slab
JP2018105041A (en) * 2016-12-27 2018-07-05 株式会社竹中工務店 External heat insulation structure and construction method of the same
CN113137011A (en) * 2021-03-16 2021-07-20 中国建筑第八工程局有限公司 Passive type roof partition stubble throwing structure and construction method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016965A (en) * 2008-07-03 2010-01-21 Denso Corp Rotary electric machine for vehicle
JP4650528B2 (en) * 2008-07-03 2011-03-16 株式会社デンソー Rotating electric machine for vehicles
US8106547B2 (en) 2008-07-03 2012-01-31 Denso Corporation Rotary electric machine for vehicles
JP2015175196A (en) * 2014-03-17 2015-10-05 大成建設株式会社 Construction method of void slab
JP2018105041A (en) * 2016-12-27 2018-07-05 株式会社竹中工務店 External heat insulation structure and construction method of the same
CN113137011A (en) * 2021-03-16 2021-07-20 中国建筑第八工程局有限公司 Passive type roof partition stubble throwing structure and construction method

Also Published As

Publication number Publication date
JP2939452B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
US11142904B2 (en) Continuous wall assemblies and methods
US4719723A (en) Thermally efficient, protected membrane roofing system
US9765515B2 (en) Bracket, a building module, a method for making the module, and a method for using the module to construct a building
US7658052B2 (en) Roof structure and method for making the same
US7793479B2 (en) Roof structure and method for making the same
US20080010933A1 (en) Insulated pitched roofing system and method of installing same
US20050217196A1 (en) Apparatus, method and system for sealing and insulating ventilation space
CN110080473A (en) A kind of flat roof waterproof heat-insulation system and its construction method
US20030089445A1 (en) Insulated pitched tile roofing system and method of installing same
US4226071A (en) Method for the preparation of low temperature structure
JP2939452B2 (en) Exterior insulation structure for roof of building for cooling and its construction method
US9863139B2 (en) Building module, a method for making same, and a method for using same to construct a building
JP6426884B2 (en) Heat insulation roof waterproof structure
JP7350260B2 (en) Insulated waterproof roof structure and its construction method
CN110725424B (en) Passive steel structure house
JP3787780B2 (en) Outside heat insulation wall structure
EP1591601A1 (en) Roof insulation system
Guyer et al. An Introduction to Roofing Systems
CA2627111C (en) Roof structure and method for making the same
JPS6224659Y2 (en)
CN118327223A (en) Waterproof heat-preserving ventilation roof system and construction method
Hutchinson Case Study–When A Roof is More Than a Roof
JPS6332245Y2 (en)
KR20240032415A (en) Waterproof structure of rooftop using fiber reinforced plastics
Guyer et al. Introduction to roofing systems

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090611

LAPS Cancellation because of no payment of annual fees