JPH10330831A - Method for denitrifying molten steel - Google Patents

Method for denitrifying molten steel

Info

Publication number
JPH10330831A
JPH10330831A JP14769497A JP14769497A JPH10330831A JP H10330831 A JPH10330831 A JP H10330831A JP 14769497 A JP14769497 A JP 14769497A JP 14769497 A JP14769497 A JP 14769497A JP H10330831 A JPH10330831 A JP H10330831A
Authority
JP
Japan
Prior art keywords
molten steel
gas
vacuum chamber
cao
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14769497A
Other languages
Japanese (ja)
Inventor
Takeshi Murai
剛 村井
Eiju Matsuno
英寿 松野
Kazutoshi Kawashima
一斗士 川嶋
Hiroaki Ishikawa
博章 石川
Eiji Sakurai
栄司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14769497A priority Critical patent/JPH10330831A/en
Publication of JPH10330831A publication Critical patent/JPH10330831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an extra-low nitrogen molten steel having the same grade as the conventional method in shorter treating time than the conventional method by blowing gas into molten steel from the side wall of a vacuum lower vessel in an RH degassing equipment. SOLUTION: While supplying desulrizing agent into the molten steel 2a in an uptake tube 4, the molten steel in the lower extending direction of the uptake tube 4 or the molten steel 2a' in the upper extending direction thereof, inert gas and/or CO gas are blown into the molten steel 2b in the vacuum vessel from the lower vessel side wall of the vacuum vessel 6. Desirably, the dephosphorizing agent contains CaO and the injecting speed WCa O' (kg/min/ton) of this CaO content satisfies 1.75×10<-3> CS Q/W<=WCa O'<=10/t [wherein, CS is S concn. (ppm) in the molten steel before desulfurizing, Q is the circulating quantity (ton/min) of the molten steel, W is the molten steel quantity (ton) and (t) is desulfurize-treating time (min)]. Further, the blowing speed Gside (Nl/min) of the inert gas and/or the CO gas blown from the side wall part is controlled so as to satisfy 100<=Gside /A<=4000 [wherein, Gside is the gas blowing quantity (Nl/min) from the side wall part of the vacuum vessel and A is the inner part cross sectional area (m<2> ) of the lower vessel].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、RH真空脱ガス
装置を用いて溶鋼の脱窒処理を効率的に行なう方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently denitrifying molten steel using an RH vacuum degassing apparatus.

【0002】[0002]

【従来の技術】鉄鋼材料の高機能化及び高品質化への要
求の高まりから、鋼中の不純物元素を極限まで低減する
ことが望まれている。このために、溶鋼の段階で鋼を高
純度化し、高清浄化するための技術が必要とされてお
り、鋼中の不純物元素の一つである窒素は、鋼の加工性
向上のために低減しなければならない。こうした背景か
ら、RH脱ガス装置を用いて溶鋼からNが除去された極
低窒素鋼が溶製されている。
2. Description of the Related Art With the increasing demand for higher performance and higher quality of steel materials, it has been desired to reduce impurity elements in steel to the utmost. For this reason, technology for purifying and purifying steel in the molten steel stage is required, and nitrogen, one of the impurity elements in steel, is reduced to improve workability of steel. There must be. From such a background, extremely low nitrogen steel in which N has been removed from molten steel using an RH degassing apparatus has been produced.

【0003】例えば、特開昭63−57715号公報に
は、真空脱ガス装置において脱窒反応界面積を得るため
に、溶鋼中にCO及びArの混合ガスを吹き込み、低窒
素鋼を溶製する方法(以下、先行技術1という)が開示
されている。
For example, Japanese Patent Application Laid-Open No. 63-57715 discloses that a mixed gas of CO and Ar is blown into molten steel to obtain a low-nitrogen steel in order to obtain a denitrification reaction area in a vacuum degassing apparatus. A method (hereinafter referred to as Prior Art 1) is disclosed.

【0004】また、特開平3−61317、3−613
18及び3−61319号公報には、真空脱ガス装置に
おいて脱窒反応界面積を得るために、CO及びArの混
合ガスを真空槽側壁部から溶鋼中に吹き込み、低窒素鋼
を溶製する方法(以下、先行技術2という)が開示され
ている。
Further, Japanese Patent Laid-Open Publication Nos.
Nos. 18 and 3-61319 disclose a method of blowing low-nitrogen steel by blowing a mixed gas of CO and Ar into molten steel from a vacuum chamber side wall in order to obtain a denitrification reaction area in a vacuum degassing apparatus. (Hereinafter referred to as Prior Art 2).

【0005】一方、溶鋼中のSは界面活性元素であるた
め、溶鋼の脱窒が進行する反応界面にSが吸着し、脱窒
を妨げる。これに対して、例えば、特開昭63−161
113号公報には、溶鋼の脱窒反応を妨げるS濃度を予
め下げてから脱窒を行なう方法(以下、先行技術3とい
う)が開示されている。
On the other hand, since S in molten steel is a surface active element, S is adsorbed on the reaction interface where the denitrification of molten steel proceeds, thereby preventing denitrification. On the other hand, for example, Japanese Unexamined Patent Publication No. 63-161
No. 113 discloses a method of performing a denitrification after lowering the S concentration that hinders the denitrification reaction of molten steel in advance (hereinafter referred to as prior art 3).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、先行技
術1及び2では、溶鋼中S濃度が高い場合には脱窒反応
が妨げられるので、効率的に窒素を減らすことができな
い。先行技術3によれば、脱窒を妨害するSを予め除去
してから脱窒処理をするので、極低窒素鋼は得られる。
しかしながら、処理時間が長くなるので溶鋼の熱ロスが
大きく、余分なエネルギーコストを要する。
However, in the prior arts 1 and 2, when the S concentration in the molten steel is high, the denitrification reaction is hindered, so that nitrogen cannot be reduced efficiently. According to the prior art 3, since the S that interferes with the denitrification is removed in advance and then the denitrification treatment is performed, an extremely low nitrogen steel can be obtained.
However, since the treatment time is long, the heat loss of the molten steel is large, and an extra energy cost is required.

【0007】従って、この発明の目的は、上述した問題
を解決して、RH脱ガス装置により溶鋼を効率的に処理
し、窒素濃度を極限まで下げることができる溶鋼の脱窒
方法を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a method for denitrifying molten steel by which molten steel can be efficiently treated by an RH degassing apparatus and the nitrogen concentration can be reduced to the limit. It is in.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上述した
観点から、溶鋼の脱窒方法を開発すべく鋭意研究を重ね
た。溶鋼の脱窒反応を促進するためには、 脱窒反応の界面積を大きくすること、 溶鋼中の界面活性元素の濃度を低くし、脱窒反応の界
面への活性元素の吸着量を少なくして界面活性元素によ
る脱窒反応の妨害をできるだけ小さくすること、及び、 脱窒反応界面への未脱窒溶鋼の供給速度を大きくする
こと、 等が重要である。
Means for Solving the Problems From the above-mentioned viewpoints, the present inventors have intensively studied to develop a method for denitrification of molten steel. In order to promote the denitrification reaction of molten steel, it is necessary to increase the interfacial area of the denitrification reaction, reduce the concentration of surface active elements in the molten steel, and reduce the amount of active elements adsorbed on the interface of the denitrification reaction. It is important to minimize the disturbance of the denitrification reaction by the surface active elements as much as possible, and to increase the supply rate of the undenitrified molten steel to the denitrification reaction interface.

【0009】RH真空脱ガス槽内の溶鋼中にガスを吹き
込んで脱窒反応界面積をできるだけ大きくするために
は、ガスは溶鋼環流用の上昇管から吹き込むよりも、真
空槽下部槽の側壁部から吹き込んだ方が多量に吹き込む
ことができるので、溶鋼中により多くのガス気泡を形成
させ得る。従って、脱窒反応界面としてより広い気液界
面を提供することができる。この場合、ガス吹込み用ノ
ズルの位置は、下降管の近接位置を避けた側壁部とし、
そこからガスを吹き込めば、溶鋼環流を妨害することも
ない。
In order to maximize the area of the denitrification reaction zone by blowing gas into the molten steel in the RH vacuum degassing tank, the gas is blown from the side wall of the lower tank of the vacuum tank rather than blown from the rising pipe for refluxing the molten steel. A larger amount of gas bubbles can be formed in the molten steel because a larger amount of gas can be blown from the molten steel. Therefore, a wider gas-liquid interface can be provided as the denitrification reaction interface. In this case, the position of the gas injection nozzle is a side wall part avoiding the position near the downcomer pipe,
If gas is blown from there, it will not obstruct the molten steel reflux.

【0010】こうして形成された脱窒反応界面に、界面
活性元素、特にS原子が吸着している量が少ない状態で
脱窒する方が脱窒に有利である。そのためには、脱硫剤
を上昇管内部の環流溶鋼中や上昇管から流出した直後の
真空槽内溶鋼表面のように溶鋼撹拌の強い場所に添加
し、こうして脱硫された溶鋼に脱窒用ガスを吹き込むの
がよい。この脱窒用ガスは上述したように、真空槽下部
槽の側壁部から吹き込む。こうすれば、真空槽内で脱硫
された溶鋼が、取鍋へ環流して取鍋内の未脱硫溶鋼によ
って脱硫効果が薄められる前に溶鋼を脱窒することがで
きるから、脱窒界面への吸着S原子が少ない状態で脱窒
することができる。従って、溶鋼の脱窒が効率的に行な
われる。
[0010] It is more advantageous for denitrification that the denitrification is performed in a state where the amount of the surface active element, particularly the S atom, adsorbed on the thus formed denitrification reaction interface is small. For this purpose, the desulfurizing agent is added to the molten steel inside the riser pipe or to a place where the molten steel is strongly stirred, such as the molten steel surface in the vacuum chamber immediately after flowing out of the riser pipe, and the denitrification gas is supplied to the molten steel thus desulfurized. Good to blow. As described above, the denitrification gas is blown from the side wall of the lower tank of the vacuum tank. In this way, the molten steel desulfurized in the vacuum chamber is recirculated to the ladle and can be denitrified before the desulfurization effect is reduced by the undesulfurized molten steel in the ladle. It is possible to denitrify with less adsorbed S atoms. Therefore, the denitrification of the molten steel is performed efficiently.

【0011】一方、上昇管内への環流ガスや脱硫剤吹込
み用搬送ガスを多く吹き込み過ぎると、上昇管内でガス
が吹き抜け現象を起こし、溶鋼環流が十分に行なわれな
い。従って、環流ガスや上昇管あるいは上昇管の下方か
らの脱硫剤吹込み用搬送ガスは、ガス及び脱硫剤吹込み
用ノズル詰まり防止及び脱硫剤吹込み機能の確保に必要
なガス流量に制限する。
On the other hand, if a large amount of the reflux gas or the carrier gas for injecting the desulfurizing agent into the riser tube is blown in too much, the gas will blow through the riser tube, and the molten steel will not be sufficiently refluxed. Therefore, the reflux gas or the carrier gas for blowing the desulfurizing agent from below the riser or the riser is limited to a gas flow rate necessary for preventing clogging of the gas and the desulfurizing agent blowing nozzle and ensuring the function of blowing the desulfurizing agent.

【0012】以上のようにすれば、上記〜項の脱窒
反応の界面積を大きくし、界面活性元素特にS原子によ
る脱窒反応の妨害を排除し、そして脱窒反応界面への未
脱窒溶鋼の供給速度を大きくすることができる。従っ
て、溶鋼の脱窒反応を促進することができる。
With the above arrangement, the area of the denitrification reaction in the above items (1) to (4) is increased, the interference of the denitrification reaction by surface active elements, particularly S atoms, is eliminated, and the undenitrification reaction to the denitrification reaction interface is prevented. The supply speed of molten steel can be increased. Therefore, the denitrification reaction of molten steel can be promoted.

【0013】この発明は、上述した知見に基づきなされ
たものであって、請求項1記載の溶鋼の脱窒方法は、R
H真空脱ガス装置の真空槽の側壁部から真空槽内の溶鋼
中にガスを吹き込むことにより溶鋼を脱窒する方法にお
いて、脱硫剤を上昇管内溶鋼、上昇管の下延長方向の溶
鋼、又は上昇管の上延長方向の溶鋼へ供給しつつ、不活
性ガス及び/又はCOガスを真空槽の側壁部から真空槽
内の溶鋼中に吹き込むことに特徴を有するものである。
[0013] The present invention has been made based on the above-mentioned findings.
In a method of denitrifying molten steel by injecting gas into molten steel in a vacuum tank from a side wall of a vacuum tank of a H vacuum degassing apparatus, a desulfurizing agent is added to molten steel in a riser pipe, molten steel in a downward extension direction of a riser pipe, or riser. It is characterized in that an inert gas and / or a CO gas is blown into the molten steel in the vacuum chamber from the side wall of the vacuum chamber while supplying the molten steel in the upwardly extending direction of the pipe.

【0014】請求項2記載の溶鋼の脱窒方法は、請求項
1の発明において、脱硫剤としてCaOを含むものを使
用し、脱硫剤の供給を、脱硫剤に含まれるCaO重量分
の吹込み速度WCaO ’が、下記(1)式を満たすように
制御し、且つ、真空槽の側壁部から溶鋼中に吹き込む不
活性ガス及び/又はCOガスの吹込みを、その不活性ガ
ス及び/又はCOガス量の吹込み速度Gsideが下記
(2)式を満たすように制御することに特徴を有するも
のである。
According to a second aspect of the present invention, there is provided a method for denitrification of molten steel according to the first aspect of the present invention, wherein a desulfurizing agent containing CaO is used, and the supply of the desulfurizing agent is performed by blowing the amount of CaO contained in the desulfurizing agent. The velocity W CaO ′ is controlled so as to satisfy the following equation (1), and the blowing of the inert gas and / or the CO gas blown into the molten steel from the side wall of the vacuum chamber is performed by the inert gas and / or CO gas. It is characterized in that the blowing speed G side of the CO gas amount is controlled so as to satisfy the following equation (2).

【0015】 1.75×10-3S Q/W≦WCaO ’≦10/t ----------(1) 但し、 WCaO ’:脱硫剤中CaO量の供給速度(kg/min /to
n ) CS :脱硫前溶鋼のS濃度(ppm ) Q :溶鋼環流量(ton /min ) W :溶鋼量(ton ) t :脱硫処理時間(min ) 100≦Gside/A≦4000 ----------------------------(2) 但し、 Gside:真空槽側壁部からのガス吹込み量(Nl/min ) A :真空槽下部槽の内部横断面積(m2
[0015] 1.75 × 10 -3 C S Q / W ≦ W CaO '≦ 10 / t ---------- (1) where, W CaO': supply rate in the desulfurizing agent CaO amount (Kg / min / to
n) C S : S concentration of molten steel before desulfurization (ppm) Q: Ring flow rate of molten steel (ton / min) W: Quantity of molten steel (ton) t: Desulfurization treatment time (min) 100 ≦ G side / A ≦ 4000 --- ------------------------- (2) Here, G side : The amount of gas blown from the vacuum chamber side wall (Nl / min) A: Internal cross-sectional area of vacuum tank lower tank (m 2 )

【0016】[0016]

【発明の実施の形態】次に、この発明を、図面を参照し
ながら説明する。図1及び2に、この発明の方法を実施
するときに使用するRH脱ガス装置の一例の断面概念図
を示す。図1は、取鍋内溶鋼をRH脱ガス装置で脱窒す
るときの縦断面概念図であり、図2は、図1の真空槽の
AA線矢視図である。図1及び2において、1は取鍋、
2aは上昇管内の環流溶鋼、2a’は上昇管から流出し
た溶鋼、2bは真空槽内の溶鋼、4は上昇管、5は下降
管、6は真空槽、7は上昇管の下部に接続された溶鋼の
環流用ガス吹込み管、そして10は合金投入シュートで
ある。脱硫剤供給装置として、粉体吹込みランス8及び
粉体吹付けランス9が設けられている。11はガス吹込
みノズルであり、その取り付け高さは真空槽6の側壁部
下部であって、RH脱ガス処理中の真空槽内の溶鋼2b
表面レベルより低い位置に、円周方向に複数本設けられ
ており、先端は溶鋼2b内部に開口している。このガス
吹込みノズル11は、図2に示すように、上昇管4及び
下降管5近接部から離れた位置に複数本(この場合は8
本)設けられている。
Next, the present invention will be described with reference to the drawings. 1 and 2 are conceptual cross-sectional views of an example of an RH degassing apparatus used when carrying out the method of the present invention. FIG. 1 is a conceptual diagram of a vertical section when molten steel in a ladle is denitrified by an RH degassing device, and FIG. 2 is a view of the vacuum chamber of FIG. 1 and 2, 1 is a ladle,
2a is the circulating molten steel in the riser, 2a 'is the molten steel flowing out of the riser, 2b is the molten steel in the vacuum vessel, 4 is the riser, 5 is the descender, 6 is the vacuum vessel, and 7 is the lower part of the riser. Reference numeral 10 denotes a gas injection pipe for circulating molten steel, and reference numeral 10 denotes an alloy charging chute. As a desulfurizing agent supply device, a powder blowing lance 8 and a powder blowing lance 9 are provided. Numeral 11 denotes a gas injection nozzle whose mounting height is lower than the side wall of the vacuum chamber 6 and which is molten steel 2b in the vacuum chamber during the RH degassing process.
A plurality is provided in the circumferential direction at a position lower than the surface level, and the tip is opened inside the molten steel 2b. As shown in FIG. 2, a plurality of gas injection nozzles 11 (in this case, 8
Book) is provided.

【0017】上記RH真空脱ガス装置で、真空槽6の内
圧を所定圧力まで減圧し、溶鋼2の環流用ガス吹込み管
7から上昇管4内の溶鋼2aに環流ガスを吹込む。こう
して、取鍋1内の溶鋼2を真空槽6内の減圧雰囲気に曝
しながら、上昇管4から上昇させ、下降管5から下降さ
せて循環させる。次いで、粉体吹込みランス8から気送
で粉状脱硫剤を上昇管4の真下下方から溶鋼2aを目が
けて上向きに吹込み、又は、粉体吹付けランス9から上
昇管4から流出した溶鋼2a’の表面に向けて気送で粉
状脱硫剤を吹き付ける。また、粉体吹付けランス9の代
わりに合金投入シュート10を利用して脱硫剤を同じ位
置に投入してもよい。こうして、真空槽6内へ流入した
溶鋼2bは脱硫される。一方、上記溶鋼脱硫をしなが
ら、ガス吹込みノズル11から不活性ガス及び/又はC
Oガスを真空槽6内の溶鋼2bに吹き込む。溶鋼2bは
上記脱硫処理により脱硫された直後のものである。脱硫
された溶鋼は環流して取鍋1へ入り、溶鋼全体が脱硫さ
れると共に脱窒される。
In the RH vacuum degassing apparatus, the internal pressure of the vacuum chamber 6 is reduced to a predetermined pressure, and the reflux gas is blown from the reflux gas blowing pipe 7 for the molten steel 2 to the molten steel 2 a in the rising pipe 4. Thus, while exposing the molten steel 2 in the ladle 1 to the reduced-pressure atmosphere in the vacuum chamber 6, the molten steel 2 is raised from the riser pipe 4 and lowered from the descending pipe 5 to be circulated. Next, a powdery desulfurizing agent is blown upward from the powder blowing lance 8 by a pneumatic feed from directly below the riser 4 to the molten steel 2a, or the powdery desulfurizing agent flows out of the riser 4 from the powder blowing lance 9. A powdery desulfurizing agent is sprayed on the surface of the molten steel 2a 'by air. In addition, the desulfurizing agent may be injected into the same position by using an alloy injection chute 10 instead of the powder spraying lance 9. Thus, the molten steel 2b flowing into the vacuum chamber 6 is desulfurized. On the other hand, while desulfurizing the molten steel, the inert gas and / or C
O gas is blown into the molten steel 2b in the vacuum chamber 6. The molten steel 2b is immediately after desulfurization by the desulfurization treatment. The desulfurized molten steel refluxes and enters the ladle 1, where the entire molten steel is desulfurized and denitrified.

【0018】上記脱硫剤は、大きな脱硫効果をあげ、且
つコストを低くする点からCaOを含むものが望まし
い。脱硫剤の溶鋼への添加量(kg/溶鋼−t)は、脱
硫処理前のS濃度と処理後の目標S濃度に応じて決め
る。
The desulfurizing agent desirably contains CaO from the viewpoint of achieving a large desulfurizing effect and reducing the cost. The amount of the desulfurizing agent added to the molten steel (kg / molten steel-t) is determined according to the S concentration before the desulfurization treatment and the target S concentration after the treatment.

【0019】図3に、この発明において、脱硫剤中のC
aO分の供給速度WCaO ’、及び、真空槽側壁部からの
ガス吹込み量Gsideについて、一層望ましい領域を斜線
で示す。以下、同図を参照しながらWCaO ’及びGside
の望ましい範囲について説明する。
FIG. 3 shows that in the present invention, C
Regarding the supply rate W CaO ′ of the aO component and the gas injection amount G side from the side wall of the vacuum chamber, a more desirable area is indicated by oblique lines. Hereinafter, W CaO 'and G side with reference to FIG.
Is described below.

【0020】(イ)WCaO ’の望ましい範囲について ・脱硫剤中のCaO分の供給量WCaO ’は、1.75×
10-3S Q/W以上であることが一層望ましい。この
場合には、脱硫剤の供給量が十分であるため、真空槽内
に供給される溶鋼のS濃度も十分低下し、脱窒反応が一
層促進するからである。 ・WCaO ’が10/t以下に制限すれば一層望ましい。
この場合には、脱硫剤を供給しても溶鋼の温度降下によ
る操業上の問題が発生する心配は全くないからである。
[0020] (i) W CaO 'supply amount W CaO of CaO content for the desired range, during the desulfurizing agent' of, 1.75 ×
More preferably, it is 10 -3 C S Q / W or more. In this case, since the supply amount of the desulfurizing agent is sufficient, the S concentration of the molten steel supplied into the vacuum chamber is sufficiently reduced, and the denitrification reaction is further promoted. More preferably, W CaO ′ is limited to 10 / t or less.
This is because, in this case, even if the desulfurizing agent is supplied, there is no concern at all that an operational problem due to a temperature drop of the molten steel occurs.

【0021】(ロ)Gside/Aの望ましい範囲について ・真空槽の内部横断面積当たりのガス吹込み量Gside
Aは、100Nl/min/m2 より小さいことが一層
望ましい。この場合には、脱窒反応界面積の増加が十分
確保されるので、脱窒反応は一層促進されるからであ
る。 ・真空槽内へのガス吹込み量が多くなり過ぎると、脱窒
反応は促進されるが、ガスによる溶鋼スプラッシュ量が
多くなり、これが真空槽側壁に付着し、以降の溶鋼処理
時に溶け出すと溶鋼が汚染され、操業上問題となる。こ
の観点から、真空槽の内部横断面積当たりのガス吹込み
量Gside/Aは、4000Nl/min/m2 以下の場
合にはその問題発生は皆無であり、一層望ましいという
知見を得た。そこで、この値を上限とした。
(B) Desirable range of G side / A ・ Amount of gas blown per side cross-sectional area of the vacuum chamber G side / A
A is more preferably smaller than 100 Nl / min / m 2 . In this case, a sufficient increase in the area of the denitrification reaction interface is ensured, so that the denitrification reaction is further promoted.・ If the amount of gas blown into the vacuum chamber becomes too large, the denitrification reaction will be accelerated, but the amount of molten steel splash caused by the gas will increase, and this will adhere to the vacuum chamber side wall and melt out during the subsequent molten steel processing. Molten steel is contaminated, causing operational problems. From this viewpoint, it has been found that when the gas injection amount G side / A per inner cross-sectional area of the vacuum chamber is 4000 Nl / min / m 2 or less, no problem occurs, and it is more desirable. Therefore, this value was set as the upper limit.

【0022】(ハ)脱窒速度係数:KN の望ましい範囲
について 次に、上記溶鋼の脱窒反応の速度式を、下記(3)式の
2次反応速度式で表わされると考える。
(C) Desirable range of denitrification rate coefficient: K N Next, the rate equation of the denitrification reaction of the molten steel is considered to be represented by the following second-order rate equation of the following equation (3).

【0023】 −dNt /dt=k’(A/V)Nt 2 --------------------(3) 但し、 Nt :脱窒開始後時刻tにおけるN濃度(wt.%) k’:見掛けの反応速度定数(cm/wt.%/min) A :脱窒反応界面積(cm2 ) V :真空槽内の溶鋼体積(cm3 ) (2)式より導かれる下記(4)式は、脱窒反応速度を
表わす。
−dN t / dt = k ′ (A / V) N t 2 -------------------- (3) where N t : start of denitrification N concentration at the rear time t (wt%.) k ' : apparent reaction rate constant (cm / wt% / min. ) a: denitrification interfacial area (cm 2) V: molten steel volume in the vacuum chamber (cm 3 The following equation (4) derived from the equation (2) represents a denitrification reaction rate.

【0024】 KN t=(1/Nt )−(1/N0 )--------------------(4) ここで、KN ≡k’(A/V) 但し、 KN :脱窒速度定数(1/wt.%/min) t :脱窒経過時間(min) N0 :脱窒開始時(t=0)におけるN濃度(wt.%) 従って、所定の脱窒処理時間内に希望するN濃度まで脱
窒するためには、脱窒速度係数KN を一定値以上に大き
くしなければならない。この発明の方法で得ようとする
極低窒素溶鋼を得るためには、KN の値を7(1/wt.%
/min)以上にすることが必要であり、一層望ましく
は15(1/wt.%/min)以上にするのがよい。その
ためには、脱硫剤中CaO量の供給速度:WCaO ’(kg
/min /ton )と、真空槽側壁部からのガス吹込み量:
side(Nl/min )とは、それぞれ前記(1)及び
(2)式を満たせばよいとの知見を得た。
K N t = (1 / N t ) − (1 / N 0 ) --- (4) where K N ≡k '(A / V) where K N : denitrification rate constant (1 / wt.% / Min) t: elapsed time of denitrification (min) N 0 : N concentration at the start of denitrification (t = 0) (wt Therefore, in order to denitrify to a desired N concentration within a predetermined denitrification treatment time, the denitrification rate coefficient K N must be increased to a certain value or more. In order to obtain the extremely low nitrogen molten steel to be obtained by the method of the present invention, the value of K N is set to 7 (1 / wt.%
/ Min) or more, and more preferably 15 (1 / wt.% / Min) or more. For this purpose, the supply rate of the CaO amount in the desulfurizing agent: W CaO ′ (kg
/ Min / ton) and the amount of gas blown from the vacuum chamber side wall:
It has been found that G side (Nl / min) satisfies the expressions (1) and (2), respectively.

【0025】[0025]

【実施例】次に、この発明の溶鋼の脱窒方法を、実施例
によって更に詳細に説明する。250t/チャージの転
炉から取鍋に出鋼された低炭素低硫黄溶鋼をRH脱ガス
設備で脱硫及び脱ガス処理した。本発明の範囲内の溶鋼
脱窒方法(実施例1〜22)及び本発明の範囲外の溶鋼
脱窒方法(比較例1及び2)の試験を、図1及び2に示
したRH脱ガス設備を用いて行なった。
Next, the method for denitrifying molten steel of the present invention will be described in more detail with reference to examples. The low-carbon, low-sulfur molten steel discharged from the converter at 250 t / charge into a ladle was desulfurized and degassed by an RH degassing facility. The tests of the molten steel denitrification method within the scope of the present invention (Examples 1 to 22) and the molten steel denitrification method out of the scope of the present invention (Comparative Examples 1 and 2) were conducted using the RH degassing equipment shown in FIGS. This was performed using

【0026】表1及び2に、実施例1〜22及び比較例
1及び2の試験条件を示す。
Tables 1 and 2 show the test conditions of Examples 1 to 22 and Comparative Examples 1 and 2.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】脱硫処理前の溶鋼のS濃度は20〜35p
pm、N濃度は25〜40ppmである。また、脱硫剤
の成分組成及び添加方法、真空槽下部槽の側壁部からの
ガス吹込み条件、並びに上昇管に吹き込んだ環流ガスと
上昇管の下方から脱硫剤を吹き込んだキャリーガスとの
合計流量の試験範囲は下記の通りである。但し、比較例
1においては、脱硫剤を真空槽の下降管内溶鋼に供給
し、また比較例2においては、真空槽下部槽の側壁部か
らのガスは吹き込まなかった。
The S concentration of molten steel before desulfurization treatment is 20-35 p
The pm and N concentrations are 25 to 40 ppm. Also, the composition and method of addition of the desulfurizing agent, the conditions of gas injection from the side wall of the lower tank of the vacuum tank, and the total flow rate of the reflux gas blown into the riser and the carry gas blown from the lower part of the riser with the desulfurizer Are as follows. However, in Comparative Example 1, the desulfurizing agent was supplied to the molten steel in the downcomer of the vacuum tank, and in Comparative Example 2, gas was not blown from the side wall of the vacuum tank lower tank.

【0030】 ・脱硫剤=CaO−CaF2 −MgO系フラックス CaO:50〜70wt.%、CaF2 :10〜50wt.%、 MgO:20wt.%以下 ・脱硫剤添加方法=上昇管下方からの吹込み(図1の粉
体吹込みランス8の使用)、又は、上昇管から流出した
溶鋼表面への吹付け(粉体吹付ランス9の使用) ・脱硫剤添加速度=8/258〜180/255kg/min/ton =0.031〜0.706kg/min/ton ・下部槽側壁部からの吹込みガス種=Arガス 40〜2000Nl/min/本(ランス本数:8本) ・上昇管に吹き込まれたガス=Arガス 合計:3500(Nl/min)/250(ton) 上記試験結果を、表1及び2に併記した。
Desulfurizing agent = CaO-CaF 2 -MgO based flux CaO: 50 to 70 wt.%, CaF 2 : 10 to 50 wt.%, MgO: 20 wt.% Or less (Using the powder blowing lance 8 in FIG. 1) or spraying the molten steel surface flowing out of the riser pipe (using the powder blowing lance 9) Desulfurizing agent addition rate = 8/258 to 180/255 kg / Min / ton = 0.031 to 0.706 kg / min / ton-Type of gas to be blown from the lower tank side wall = Ar gas 40 to 2000 Nl / min / (number of lances: 8)-Blown into riser Gas = Ar gas Total: 3500 (Nl / min) / 250 (ton) The above test results are also shown in Tables 1 and 2.

【0031】表1及び2から明らかなように、 ・実施例1〜14においては、脱窒速度定数KN は15
(1/wt.%/min)以上であり、所定の脱窒時間内に
溶鋼のN濃度は20ppm以下に下がり、 ・実施例15〜22おいては、脱窒速度定数KN は7
(1/wt.%/min)以上であり、所定の脱窒時間内に
溶鋼のN濃度は25ppm以下に下がり、いずれも極低
窒素溶鋼が効率よく得られた。
As is clear from Tables 1 and 2, in Examples 1 to 14, the denitrification rate constant K N was 15
(1 / wt.% / Min) or more, and the N concentration of the molten steel falls to 20 ppm or less within a predetermined denitrification time. In Examples 15 to 22, the denitrification rate constant K N is 7
(1 / wt.% / Min) or more, and the N concentration of the molten steel dropped to 25 ppm or less within a predetermined denitrification time, and in each case, extremely low nitrogen molten steel was efficiently obtained.

【0032】これに対して、 ・比較例1では、脱硫剤を真空槽の下降管内に供給した
ため、脱窒速度定数KNが2.3(1/wt.%/min)
と小さく、・比較例2では、真空槽下部槽の側壁部から
のガスは吹き込まず、真空槽内溶鋼へのガス吹込みは、
環流ガスと上昇管下方からの脱硫剤吹込み用キャリアー
ガスだけである。そのため、脱窒速度定数KN が1.1
(1/wt.%/min)と小さく、いずれも所定の脱窒時
間内での脱窒は促進されなかった。
On the other hand, in Comparative Example 1, since the desulfurizing agent was supplied into the downcomer of the vacuum chamber, the denitrification rate constant K N was 2.3 (1 / wt.% / Min).
In Comparative Example 2, gas was not blown from the side wall of the lower chamber of the vacuum chamber, and gas was blown into molten steel in the vacuum chamber.
Only the reflux gas and the carrier gas for blowing the desulfurizing agent from below the riser. Therefore, the denitrification rate constant K N is 1.1
(1 / wt.% / Min), none of which promoted denitrification within a predetermined denitrification time.

【0033】また、この発明の方法によれば、RH脱ガ
ス設備で脱硫処理をしながら脱窒処理をするので、従来
の先ず溶鋼を脱硫処理し、次いで脱窒処理するという方
法よりも短時間で脱窒処理をすることができることがわ
かる。
Further, according to the method of the present invention, the denitrification treatment is performed while the desulfurization treatment is performed in the RH degassing equipment, so that the method is shorter in time than the conventional method of first desulfurizing molten steel and then denitrification treatment. It can be seen that denitrification treatment can be performed by

【0034】[0034]

【発明の効果】以上述べたように、この発明によれば、
RH脱ガス設備で極低窒素溶鋼を従来よりも効率的に、
且つ安定した操業で製造可能な溶鋼の脱窒方法を提供す
ることができ、工業上有用な効果がもたらされる。
As described above, according to the present invention,
With RH degassing equipment, extremely low nitrogen molten steel can be more efficiently used than before.
In addition, it is possible to provide a method for denitrification of molten steel that can be manufactured in a stable operation, and an industrially useful effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の方法により取鍋内溶鋼を脱窒すると
きのRH脱ガス装置例の縦断面概念図である。
FIG. 1 is a schematic longitudinal sectional view of an example of an RH degassing apparatus when denitrifying molten steel in a ladle by the method of the present invention.

【図2】図1の真空槽のAA線矢視図である。FIG. 2 is a view of the vacuum chamber of FIG.

【図3】この発明において、脱硫剤中のCaO分の供給
速度WCaO ’と、真空槽側壁部からのガス吹込み速度G
sideとの間で満たされることが望ましい領域を示す概念
図である。
FIG. 3 shows the supply rate W CaO ′ of the CaO component in the desulfurizing agent and the gas blowing rate G from the side wall of the vacuum chamber.
It is a conceptual diagram which shows the area | region which is desirable to be filled with side .

【符号の説明】[Explanation of symbols]

1 取鍋 2 溶鋼 2a 上昇管内の環流溶鋼 2a’上昇管から流出した溶鋼 2b 真空槽内の溶鋼 3 取鍋内スラグ 4 上昇管 5 下降管 6 真空槽 7 環流ガス吹込み管 8 粉体吹込みランス 9 粉体吹付ランス 10 合金投入シュート 11 ガス吹込みノズル DESCRIPTION OF SYMBOLS 1 Ladle 2 Molten steel 2a Recirculating molten steel in a riser pipe 2a 'Molten steel flowing out of a riser pipe 2b Molten steel in a vacuum tank 3 Slag in a ladle 4 Rise pipe 5 Downcomer pipe 6 Vacuum tank 7 Recirculation gas injection pipe 8 Powder blowing Lance 9 Powder spray lance 10 Alloy injection chute 11 Gas injection nozzle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 博章 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 櫻井 栄司 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroaki Ishikawa 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Eiji Sakurai 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Sun Honko Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 RH真空脱ガス装置の真空槽の側壁から
前記真空槽内の溶鋼中にガスを吹き込むことにより前記
溶鋼を脱窒する方法において、脱硫剤を上昇管内溶鋼、
上昇管の下延長方向の溶鋼、又は上昇管の上延長方向の
溶鋼へ供給しつつ、不活性ガス及び/又はCOガスを前
記真空槽の側壁部から前記真空槽内の溶鋼中に吹き込む
ことを特徴とする溶鋼の脱窒方法。
1. A method for denitrifying molten steel by blowing gas into the molten steel in the vacuum chamber from a side wall of a vacuum chamber of an RH vacuum degassing apparatus, the method comprising:
Injecting inert gas and / or CO gas into the molten steel in the vacuum chamber from the side wall of the vacuum chamber while supplying the molten steel in the lower extension direction of the riser pipe or the molten steel in the upper extension direction of the riser pipe. Characteristic method of denitrification of molten steel.
【請求項2】 前記脱硫剤はCaOを含み、前記脱硫剤
の供給を、前記CaO分換算の脱硫剤吹込み速度
CaO ’が、下記(1)式: 1.75×10-3S Q/W≦WCaO ’≦10/t --------(1) 但し、 WCaO ’:脱硫剤中CaO量の供給速度(kg/min /to
n ) CS :脱硫前溶鋼のS濃度(ppm ) Q :溶鋼環流量(ton /min ) W :溶鋼量(ton ) t :脱硫処理時間(min ) を満たし、且つ、前記真空槽の側壁部から前記溶鋼中に
吹き込む前記不活性ガス及び/又はCOガスの吹込み
を、前記不活性ガス及び/又はCOガス量の吹込み速度
sideが下記(2)式: 100≦Gside/A≦4000 ----------------------------(2) 但し、 Gside:真空槽側壁部からのガス吹込み量(Nl/min ) A :真空槽下部槽の内部横断面積(m2 ) を満たすように制御することを特徴とする、請求項1記
載の溶鋼の脱窒方法。
2. The desulfurizing agent contains CaO, and when the desulfurizing agent is supplied, the desulfurizing agent blowing rate W CaO ′ in terms of the CaO content is determined by the following formula (1): 1.75 × 10 −3 C S Q / W ≦ W CaO ′ ≦ 10 / t (1) where W CaO ′: supply rate of CaO amount in desulfurizing agent (kg / min / to
n) C S: S concentration desulfurization before the molten steel (ppm) Q: molten steel ring flow (ton / min) W: amount of molten steel (ton) t: meet desulfurization treatment time (min), and the sidewall portion of the vacuum chamber When the inert gas and / or CO gas is blown into the molten steel from above, the blowing speed G side of the inert gas and / or CO gas amount is expressed by the following formula (2): 100 ≦ G side / A ≦ 4000 ---------------------------- (2) where, G side : The amount of gas blown from the vacuum chamber side wall (Nl / min) A: The method for denitrification of molten steel according to claim 1, wherein the control is performed so as to satisfy the internal cross-sectional area (m 2 ) of the lower chamber of the vacuum chamber.
JP14769497A 1997-06-05 1997-06-05 Method for denitrifying molten steel Pending JPH10330831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14769497A JPH10330831A (en) 1997-06-05 1997-06-05 Method for denitrifying molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14769497A JPH10330831A (en) 1997-06-05 1997-06-05 Method for denitrifying molten steel

Publications (1)

Publication Number Publication Date
JPH10330831A true JPH10330831A (en) 1998-12-15

Family

ID=15436162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14769497A Pending JPH10330831A (en) 1997-06-05 1997-06-05 Method for denitrifying molten steel

Country Status (1)

Country Link
JP (1) JPH10330831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209586A (en) * 2014-04-30 2015-11-24 Jfeスチール株式会社 Ingot formation method of high-s low-n steel alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209586A (en) * 2014-04-30 2015-11-24 Jfeスチール株式会社 Ingot formation method of high-s low-n steel alloy

Similar Documents

Publication Publication Date Title
EP0548868B1 (en) Method of refining of high purity steel
EP0785284B1 (en) Process for vacuum refining of molten steel
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
JP3463573B2 (en) Manufacturing method of ultra clean ultra low sulfur steel
US4944799A (en) Method of producing stainless molten steel by smelting reduction
JPH10330831A (en) Method for denitrifying molten steel
JPH06240338A (en) Method for desulfurizing molten steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JPS6159375B2 (en)
JP2808197B2 (en) Vacuum refining of molten steel using large diameter immersion tube
JPH0987732A (en) Method for refining molten steel
JP3539740B2 (en) Molten steel desulfurization method and vacuum degassing tank in reflux vacuum degassing tank
JPH06306442A (en) Production of extra low sulfur steel
JP6358039B2 (en) Desulfurization method for molten steel
JPH0665625A (en) Desulphurization method for molten steel
JP2005015890A (en) Method for producing low-carbon high-manganese steel
JPS6187815A (en) Desulfurizing material and desulfurizing method of molten steel
JPH11217623A (en) Method for refining molten steel in refluxing type vacuum degassing apparatus
JP3660040B2 (en) Method of desulfurization of molten steel using RH vacuum degassing device
JP3709141B2 (en) Sloping suppression method in hot metal pretreatment
JPH08269533A (en) Desulfurization refining method of molten steel
JP3404760B2 (en) Desulfurization method of molten steel
JP3842857B2 (en) RH degassing method for molten steel
KR940008457B1 (en) Desulfurising method
JP3290794B2 (en) Molten steel refining method under reduced pressure