JPH10330107A - Production of highly packable carbonaceous powder - Google Patents

Production of highly packable carbonaceous powder

Info

Publication number
JPH10330107A
JPH10330107A JP9141502A JP14150297A JPH10330107A JP H10330107 A JPH10330107 A JP H10330107A JP 9141502 A JP9141502 A JP 9141502A JP 14150297 A JP14150297 A JP 14150297A JP H10330107 A JPH10330107 A JP H10330107A
Authority
JP
Japan
Prior art keywords
powder
treatment
carbonaceous
carbonaceous powder
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9141502A
Other languages
Japanese (ja)
Other versions
JP4029947B2 (en
Inventor
Manabu Hayashi
学 林
Shoji Yamaguchi
祥司 山口
Keiko Nishioka
圭子 西岡
Hiromi Fujii
裕美 藤井
Takashi Kameda
隆 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP14150297A priority Critical patent/JP4029947B2/en
Publication of JPH10330107A publication Critical patent/JPH10330107A/en
Application granted granted Critical
Publication of JP4029947B2 publication Critical patent/JP4029947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain compact carbonaceous powder excellent in packability by imparting a dynamic energy to carbonaceous powder to specify an apparent density ratio and a median diameter ratio between the non-treated powder and the treated powder. SOLUTION: Carbonaceous powder having an interlayer distance (d002 ) of <=0.345 nm and a crystallite size of >=10 nm is charged into a mixing device and ground by the application of a dynamic energy so as to give an apparent density ratio of >=1.1 and a median diameter ratio of >=1 between the non-treated powder and the treated powder. Thus, the highly packable carbonaceous powder having a median diameter of 5-50 μm and a BET method specific surface area of <=25 m<2> /g is obtained. The mixing device has a shaft and plural plow-like or saw tooth-like paddles fixed to the shaft in the device. The paddles form plural treating chambers in various phases. The inner wall surface of the device is formed in a cylindrical shape along the outermost line of the rotation of the paddles, and the space between the inner wall surface and the outermost line is minimized. The plural paddles are disposed on the shaft in its axial direction. One or plural screw type crushing blades capable of being rotated at a high rotation rate are disposed in one or many stages on the inner wall surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術】本発明は、高充填性炭素質粉末の
製造方法に関する。
The present invention relates to a method for producing a highly-filled carbonaceous powder.

【0002】[0002]

【従来技術】炭素および黒鉛製品は、電気、半導体、鉄
鋼、非鉄金属、化学、ガラス、機械、精密機器、原子力
など多くの産業分野で、導電材料、耐熱材料、潤滑剤、
機械部品等として広く利用されている。例えば黒鉛をプ
ラスチック用の潤滑用フィラー又は導電性フィラーとし
て用いる場合、その形状が板状であるため、プラスチッ
クの流動性が悪く、平滑な成形体表面及び均一な内部ひ
ずみが得られなかったが、黒鉛が球形化処理されていれ
ば、このような問題が解決される可能性がある。さらに
実際の利用にあたっては、炭素および黒鉛材料は、一定
の形状に成型されてから利用されることが多い。通常、
コークス、人造黒鉛、天然黒鉛などの骨材(フィラー)
とフェノールなどの合成樹脂やタールピッチなど、粘結
剤(バインダー)を混和、スラリー化して、押し出しあ
るいは型込めにより圧縮成型し、再び炭化、か焼、さら
に黒鉛化して成型炭素材を製造するのが一般的である。
2. Description of the Related Art Carbon and graphite products are used in many industrial fields such as electricity, semiconductors, iron and steel, non-ferrous metals, chemicals, glass, machinery, precision equipment, and nuclear power.
Widely used as machine parts. For example, when graphite is used as a lubricating filler or a conductive filler for plastics, because the shape is plate-like, the fluidity of the plastic is poor, and a smooth molded body surface and uniform internal strain were not obtained. Such a problem may be solved if graphite is subjected to spheroidization. Further, in actual use, carbon and graphite materials are often used after being molded into a certain shape. Normal,
Aggregates (fillers) such as coke, artificial graphite, and natural graphite
Mixing and binding agents (binders) such as phenol and synthetic resin and tar pitch, forming into a slurry, compression molding by extrusion or embedding, carbonization, calcination, and further graphitization to produce a molded carbon material Is common.

【0003】成形体としてのかさ密度が高く、従って、
強度、硬度が高くかつ均一な炭素成型体は、いわゆる特
殊炭素材と呼ばれ、極限材料の一種として重用されてお
り、用途が拡大している。特殊炭素材では、成型体の見
かけ密度をいかに向上させるかが問題となる。先に述べ
た成型法では、最終的に得られる成型体に、バインダー
の揮発分だけの空隙が発生することは避けられず、成形
体の密度低下の一因となっている。見かけ密度の向上に
は、フィラーの最密充填、バインダーの炭化収率向上、
成型体内の空隙へのピッチの再含浸・再炭化、成型体内
の空隙への気相からの炭素沈着、フィラー自体に融着性
を付与、炭化時収縮の大きな熱硬化性高分子の利用、加
熱圧縮処理(ホットプレス)などの方法がある。この中
でもフィラーの最密充填をはかる方法は、成型体技術の
基本として、更なる向上が望まれている。また、フィラ
ーの充填性向上には、成型体空隙への液相、気相で炭素
原料の再含浸工程を省く効果も期待される。
[0003] The bulk density as a molded body is high,
A carbon molded body having high strength, hardness and uniformity is called a so-called special carbon material, and is used as a kind of extreme material, and its use is expanding. In the case of special carbon materials, how to increase the apparent density of the molded body is a problem. In the molding method described above, it is inevitable that voids are formed only in the volatile matter of the binder in the finally obtained molded body, which is one of the causes of a decrease in the density of the molded body. To improve the apparent density, close-packing of fillers, improvement of carbonization yield of binder,
Re-impregnation and re-carbonization of pitch in voids in molded body, carbon deposition from gas phase in voids in molded body, imparting fusibility to filler itself, use of thermosetting polymer with large shrinkage during carbonization, heating There are methods such as compression processing (hot press). Among these, the method of measuring the closest packing of the filler is desired to be further improved as a basis of the molding technique. In addition, the effect of eliminating the step of re-impregnation of the carbon raw material in the liquid or gas phase into the voids of the molded body is also expected to improve the filling property of the filler.

【0004】さらに炭素質粒子の成形体としては、近年
新型二次電池の極板としての利用法が、改めて着目され
ている。非水電解液二次電池の極板に利用される成型体
は、成型体自体が層間環化合物を形成するため、より多
くの炭素材料が、極板という単位体積に充填されること
が、重要である。炭素質、黒鉛質粒子(炭素質、黒鉛質
及びそれらを含む複層炭素質物)は、難黒鉛化性炭素材
料に比べて結晶性が高く、真密度が高い。従って、これ
ら炭素、黒鉛類の炭素材料を用いて電極を構成すれば、
高い電極充填性が得られ、電池の体積エネルギー密度を
高めることができる。炭素、黒鉛系粉末で電極を構成す
る場合、粉末とバインダーを混合し、分散媒を加えたス
ラリーを作成し、これを集電体である金属箔に塗布し、
その後、分散媒を乾燥する方法が一般的に用いられてい
る。この際、粉末の集電体への圧着と電極の極板厚みの
均一化、極板容量の向上を目的として、更に圧縮成型を
掛ける工程を設けるのが一般的である。この圧縮工程に
より、電極の極板密度は向上し、電池の体積あたりのエ
ネルギー密度は、更に向上する。
In recent years, attention has been paid to the use of carbonaceous particles as electrode plates of new type secondary batteries as compacts. Since the molded body used for the electrode plate of the non-aqueous electrolyte secondary battery itself forms an interlayer ring compound, it is important that more carbon material be filled in a unit volume of the electrode plate. It is. Carbonaceous and graphitic particles (carbonaceous, graphitic and multi-layered carbonaceous materials containing them) have higher crystallinity and higher true density than non-graphitizable carbon materials. Therefore, if an electrode is formed using these carbon and graphite carbon materials,
High electrode filling properties can be obtained, and the volume energy density of the battery can be increased. When the electrode is composed of carbon and graphite-based powder, a powder and a binder are mixed, a slurry is prepared by adding a dispersion medium, and this is applied to a metal foil as a current collector,
Thereafter, a method of drying the dispersion medium is generally used. At this time, it is general to provide a step of further performing compression molding for the purpose of pressing the powder to the current collector, making the electrode plate thickness uniform, and improving the electrode plate capacity. By this compression step, the electrode plate density of the electrode is improved, and the energy density per volume of the battery is further improved.

【0005】しかしながら、ある程度高結晶で、フィラ
ーとして入手可能な炭素質、黒鉛質の材料は、一般的に
その粒子形状が鱗片状、鱗状、板状である。これら炭素
質、黒鉛質粒子を上記製造工程を経て、成型体化する
と、粒子自身の充填性が不十分な為、粒子間に必要最小
限以上に多くの空隙が在留し、バインダーの使用量を低
く押さえられないため、最終的な成型体の見かけ密度も
高く得られないという問題があった。
[0005] However, carbonaceous and graphitic materials that are somewhat crystalline and are available as fillers generally have a flake-like, scale-like, or plate-like particle shape. When these carbonaceous and graphitic particles are formed into a molded body through the above-described production process, the filling properties of the particles themselves are insufficient, so that more voids than necessary are retained between the particles, and the amount of binder used is reduced. There was a problem that the apparent density of the final molded product could not be obtained high because it could not be held low.

【0006】そのため、炭素質粉末を粉砕等の処理を行
い、粒径を小さくすることが考えられるが、炭素質粉末
の結晶構造のためか、粉砕処理後の炭素質粉末の充填性
は低下する。
For this reason, it is conceivable to reduce the particle size by performing a treatment such as pulverization of the carbonaceous powder. However, the filling property of the carbonaceous powder after the pulverization is reduced due to the crystal structure of the carbonaceous powder. .

【0007】[0007]

【発明が解決しようとする課題】そのため、本発明の目
的は、高充填性炭素粉末を得るための製造方法を提供す
ることである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a production method for obtaining a highly-filled carbon powder.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明者らが鋭意検討を重ねた結果、成型体の充
填性を向上させるためには、フィラーの形状や充填性が
重要であり、炭素質粉末に力学的エネルギー処理を施す
ことで、より球状化した炭素質粉末を得、これをフィラ
ーとして用いることで、最終的に高充填性を示す、緻密
な炭素成形体が得られることを見出し、本発明に至っ
た。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors to achieve the above object, the shape and filling property of the filler are important in order to improve the filling property of the molded body. By subjecting the carbonaceous powder to mechanical energy treatment, a more spherical carbonaceous powder is obtained, and by using this as a filler, a dense carbon compact is finally obtained that exhibits high filling properties. And found that the present invention was achieved.

【0009】本発明の炭素質粉末の製造法は、このよう
な知見に基づいて、完成されたものであって、炭素質粉
末を力学的エネルギーを加えることで、処理前後の見か
け密度比を1.1以上、処理前後のメジアン径比が1以
下とすることを特徴とする高充填性炭素質粉末の製造方
法である。また、処理前の炭素質粉末の層間距離(d0
02)が0.345nm以下、結晶子サイズ(Lc)が
10nm以上であることを特徴とするものである。
The method for producing a carbonaceous powder of the present invention has been completed based on such knowledge, and the apparent density ratio before and after the treatment is 1 by applying mechanical energy to the carbonaceous powder. And a median diameter ratio before and after the treatment is 1 or less. In addition, the interlayer distance (d0
02) is 0.345 nm or less, and the crystallite size (Lc) is 10 nm or more.

【0010】また、処理後の高充填性炭素質粉末のメジ
アン径が、5〜50μmであり、BET法比表面積が、
25m2/g以下であることを特徴とするものである。
また、処理前後の見かけ密度比を1.1以上、処理前後
のメジアン径比が1以下となるように力学的エネルギー
処理を行った炭素質粉末を縮合多環化合物等の有機化合
物と混合した後に、該有機化合物を炭素化する複層構造
炭素粉末の製造方法である。
The median diameter of the highly-filled carbonaceous powder after the treatment is 5 to 50 μm, and the BET specific surface area is
It is not more than 25 m 2 / g.
After mixing the carbonaceous powder subjected to the mechanical energy treatment so that the apparent density ratio before and after the treatment is 1.1 or more and the median diameter ratio before and after the treatment is 1 or less with an organic compound such as a condensed polycyclic compound, And a method for producing a multi-layered carbon powder for carbonizing the organic compound.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で使用できる炭素質粉末は、天然又は人造の黒鉛
質粉末又は黒鉛化前駆体である炭素質粉末である。これ
ら処理前の炭素質、黒鉛質粉末は、特に限定されるもの
ではないが、最終的に黒鉛構造となった場合には、層間
距離(d002)が0.345nm以下、結晶子サイズ
(Lc)が10nm以上、真密度が1.9g/cc以上
であることが好ましい。真密度は2.1以上がより好ま
しく、2.2以上が更に好ましく、2.25g/cc以
上であることが最も好ましい。更に層間距離(d00
2)が0.337nm以下の方がより好ましく、0.3
36nm以下が最も好ましい。結晶子サイズ(Lc)
は、30nm以上がより好ましく、50nm以上は更に
好ましく、100nm以上であるものが特に好ましい。
炭素質粉末の結晶性は、リチウムイオンを用いた電気化
学的容量でも判別することができる、本発明に用いられ
る炭素質粉末は、充放電レートを0.2mA/cm2
した、半電池による電気容量にして、270mAh/g
以上、好ましくは310mAh/g以上、さらに好まし
くは330mAh/g以上、特に好ましくは350mA
h/g以上であることが好ましい。すなわち、炭素六角
網面構造がある程度発達した高結晶性炭素材料であっ
て、金属イオンがインターカレーションした際に、C6
Liと表現される組成、炭素6原子に対しリチウム1原
子を収容するステージ1構造を形成できる材料であるこ
とが、特に好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The carbonaceous powder that can be used in the present invention is a natural or artificial graphite powder or a carbonaceous powder that is a graphitization precursor. Although the carbonaceous and graphitic powders before the treatment are not particularly limited, when the graphite structure is finally formed, the interlayer distance (d002) is 0.345 nm or less, and the crystallite size (Lc) Is preferably 10 nm or more and the true density is 1.9 g / cc or more. The true density is more preferably 2.1 or more, still more preferably 2.2 or more, and most preferably 2.25 g / cc or more. Further, the interlayer distance (d00
2) is more preferably 0.337 nm or less, and 0.3
Most preferably, it is 36 nm or less. Crystallite size (Lc)
Is more preferably 30 nm or more, still more preferably 50 nm or more, and particularly preferably 100 nm or more.
The crystallinity of the carbonaceous powder can also be determined by electrochemical capacity using lithium ions. The carbonaceous powder used in the present invention is based on a half-cell having a charge / discharge rate of 0.2 mA / cm 2. 270 mAh / g in electrical capacity
Or more, preferably 310 mAh / g or more, more preferably 330 mAh / g or more, and particularly preferably 350 mA.
h / g or more is preferable. That is, a highly crystalline carbon material to some extent developed carbon hexagonal network structure, when the metal ions are intercalated, C 6
It is particularly preferable that the material be a material capable of forming a stage 1 structure containing a composition represented by Li and containing one lithium atom for six carbon atoms.

【0012】処理前の炭素質、黒鉛質粉末の結晶性がそ
れほど高くない場合は、力学的エネルギー処理後に、改
めて結晶性を高める熱処理を行うこともできる。結晶性
が低く、面配向が高度に進んでいない、構造に乱れが残
存している状態で、力学的エネルギー処理を行えば、そ
の構造故に粉砕面が比較的等方的となり、丸みを帯びた
処理物を得やすくなる。
When the crystallinity of the carbonaceous or graphitic powder before the treatment is not so high, a heat treatment for increasing the crystallinity can be performed again after the mechanical energy treatment. When mechanical energy treatment is performed in a state where crystallinity is low, plane orientation is not advanced to a high degree, and disorder is remaining in the structure, the crushed surface is relatively isotropic due to its structure, and it is rounded It becomes easier to obtain processed products.

【0013】炭素六角網面構造が発達した高結晶性炭素
材料としては、六角網面を面配向的に大きく成長させた
高配向黒鉛と、高配向黒鉛粒子を等方向に集合させた等
方性高密度黒鉛が挙げられる。高配向黒鉛としては、ス
リランカあるいはマダカスカル産の天然黒鉛や、溶融し
た鉄から過飽和の炭素として析出させたいわゆるキッシ
ュグラファイト、一部の高黒鉛質度の人造黒鉛が、好適
に用いられる。
A highly crystalline carbon material having a developed carbon hexagonal network structure includes highly oriented graphite in which hexagonal mesh planes are largely grown in the plane orientation and isotropic graphite in which highly oriented graphite particles are aggregated in the same direction. High-density graphite. As the highly oriented graphite, natural graphite produced from Sri Lanka or Madagascar, so-called quiche graphite precipitated as supersaturated carbon from molten iron, and artificial graphite having some high graphite quality are preferably used.

【0014】天然黒鉛は、(株)産業技術センターから
昭和49年に刊行された成書、「粉粒体プロセス技術集
成」の黒鉛の項、及びNoyes Publications刊行の「HAND
BOOKOF CARBON,GRAPHITE,DIAMOND AND FULLERENES」に
従えば、その性状によって、鱗片状黒鉛(Flake Glaphi
te)、鱗状黒鉛(Crystalline(Vein) Glaphite)、土壌黒
鉛(Amorphousu Glaphite)に分けられる。黒鉛化度は、
鱗状黒鉛が100%と最も高く、次いで鱗片状黒鉛の9
9.9%であり、土壌黒鉛は28%と低い。天然黒鉛の
品質は、主な産地、鉱脈により定まるものであり、鱗片
状黒鉛(FlakeGlaphite)は、マダガスカル、中国、ブラ
ジル、ウクライナ、カナダ等に産し、鱗状黒鉛(Crysta
lline(Vein) Glaphite)は、主にスリランカに産する。
土壌黒鉛は、朝鮮半島、中国、メキシコ等を主な産地と
している。これらの天然黒鉛の中で、最終的に本発明に
てフィラーとして使用されるものとしては、土壌黒鉛は
一般に粒径が小さい上、純度が低いため、その黒鉛化
度、不純物量の低さ等により、鱗片状黒鉛、鱗状黒鉛か
ら選択されることがが好ましい。
[0014] Natural graphite is described in a book published in 1974 from the Industrial Technology Center Co., Ltd., in the section on graphite in "Pulverized Particle Process Technology", and in "HAND" published by Noyes Publications.
According to “BOOKOF CARBON, GRAPHITE, DIAMOND AND FULLERENES”, depending on its properties, flake graphite (Flake Glaphi
te), scaly graphite (Crystalline (Vein) Glaphite) and soil graphite (Amorphousu Glaphite). The degree of graphitization is
Scaly graphite is the highest at 100%, followed by 9% of scaly graphite.
9.9% and soil graphite is as low as 28%. The quality of natural graphite is determined by the major production areas and veins, and flaky graphite (FlakeGlaphite) is produced in Madagascar, China, Brazil, Ukraine, Canada, etc., and flaky graphite (Crysta
lline (Vein) Glaphite) mainly comes from Sri Lanka.
Soil graphite is mainly produced in the Korean Peninsula, China, Mexico, etc. Among these natural graphites, those that are finally used as fillers in the present invention include soil graphite, which generally has a small particle size and a low purity. Is preferably selected from flaky graphite and flaky graphite.

【0015】人造黒鉛としては、石油コークス、あるい
は石炭ピッチコークスを1500〜3000℃ の温度
で、非酸化性雰囲気で加熱して製造されるもので、最終
的な熱処理後の状態で、高配向、高電気容量を示すもの
であれば、いずれも用いることができる。処理前の粒子
の大きさとしては、メジアン径で、10μm以上、好ま
しくは15μm以上、より好ましくは20μm以上、更
に好ましくは30μm以上である。処理前の粒子の大き
さに上限は特にないが、メジアン径で、好ましくは1m
m以下、より好ましくは500μm以下、更に好ましく
は250μm以下、特に好ましくは200μm以下であ
る。
[0015] Artificial graphite is produced by heating petroleum coke or coal pitch coke at a temperature of 1500 to 3000 ° C in a non-oxidizing atmosphere. Any material that exhibits high electric capacity can be used. The size of the particles before the treatment is 10 μm or more, preferably 15 μm or more, more preferably 20 μm or more, and still more preferably 30 μm or more in terms of median diameter. There is no particular upper limit on the size of the particles before the treatment, but the median diameter is preferably 1 m.
m, preferably 500 μm or less, more preferably 250 μm or less, particularly preferably 200 μm or less.

【0016】粉体粒子の充填構造は、粒子の大きさと形
状、粒子間相互作用力の程度等に左右される。充填構造
を定量的に議論する指標としては、見かけ密度や充填率
が使用される。見かけ密度は、単位充填体積あたりの質
量を示し、かさ度とも呼ばれる。 見かけ密度=充填粉体の質量/粉体の充填体積 本発明では、処理前後の見かけ密度比を1.1以上、処
理前後のメジアン径比が1以下となるように力学的エネ
ルギー処理を行う。この様に、力学的エネルギーを加
え、炭素質粉末の充填性を改良するのは、緻密な炭素材
料を得るためである。
The filling structure of the powder particles depends on the size and shape of the particles, the degree of interaction between the particles, and the like. As an index for quantitatively discussing the filling structure, an apparent density or a filling ratio is used. The apparent density indicates the mass per unit filling volume, and is also called bulkiness. Apparent density = mass of filled powder / filled volume of powder In the present invention, mechanical energy treatment is performed so that the apparent density ratio before and after treatment becomes 1.1 or more and the median diameter ratio before and after treatment becomes 1 or less. The reason why the mechanical energy is applied to improve the filling property of the carbonaceous powder is to obtain a dense carbon material.

【0017】本発明でいう、処理前後の見かけ密度比と
は、処理前のタップ密度を分母とし、処理後のタップ密
度を分子とした、処理前後のタップ密度比のことであ
る。タップ充填挙動を表す式としては、様々な式が提案
されている。その一例として、次式、ρ−ρn=A・ex
p(−k・n)を挙げることができる。ここで、ρは充
填の終局における見かけ密度、ρnはn回充填時の見か
け密度、k及びAは定数である。本発明の見かけ密度
(タップ密度)とは、20ccセルへの1000回タッ
プ充填時の見かけ密度(ρ1000)を終局の見かけ密度ρ
と見なしたものを指す。
The apparent density ratio before and after the treatment in the present invention is a tap density ratio before and after the treatment, where the tap density before the treatment is the denominator and the tap density after the treatment is the numerator. Various expressions have been proposed as expressions representing tap filling behavior. As an example, the following equation: ρ−ρ n = A · ex
p (−kn) can be mentioned. Here, ρ is the apparent density at the end of filling, ρn is the apparent density at the time of filling n times, and k and A are constants. The apparent density (tap density) of the present invention is the apparent density (ρ 1000 ) at the time of filling the 20 cc cell 1000 times with taps, and the final apparent density ρ.
Refers to what is considered.

【0018】また、処理前後のメジアン径比とは、レー
ザー式粒径分布測定機で測定した、処理前のメジアン径
を分母とし、処理後のメジアン径を分子とした体積基準
粒径分布のメジアン径比のことである。レーザー式粒径
測定の測定原理は、形状に異方性のある粒子でも等方的
に平均化し、実質的に球として換算した粒子径分布が得
られる。
The median diameter ratio before and after the treatment is defined as the median diameter of the volume-based particle size distribution using the median diameter before the treatment as a denominator and the median diameter after the treatment as a numerator, as measured by a laser particle size distribution analyzer. It is a diameter ratio. The measurement principle of the laser type particle size measurement is that particles having anisotropic shape are averaged isotropically, and a particle size distribution substantially converted into a sphere can be obtained.

【0019】粉末粒子の充填性を高めるためには、粒子
と粒子の間にできる空隙に内接する様により小さな粒子
を充填すると良いことが知られている。すなわち、粉末
粒子群の中の一つ粒子(着目粒子)に接触している粒子
の個数(配位数n)が多いほど、充填層の空隙の占める
割合は低下する。すなわち、充填率に影響を与える因子
は、粒子の大きさの比率と組成比、すなわち、粒径分布
が重要である。
It is known that in order to enhance the filling property of powder particles, it is better to fill smaller particles so as to inscribe the voids formed between the particles. That is, as the number of particles (coordination number n) in contact with one particle (particle of interest) in the powder particle group increases, the proportion of the voids in the packed layer decreases. In other words, factors that affect the filling factor are the particle size ratio and the composition ratio, that is, the particle size distribution is important.

【0020】しかし、これらの検討は、モデル的な球形
粒子群で行われたものであり、本発明で取り扱われる処
理前の炭素質、黒鉛質粒子は、鱗片状、鱗状、板状であ
り、このまま、単に分級等だけで粒径分布を制御して、
充填率を高めようと試みても、それほどの高充填状態を
生み出すことはできない。
However, these studies were conducted on a group of model spherical particles, and the carbonaceous and graphitic particles before treatment handled in the present invention were in the form of flakes, scales, and plates. As it is, the particle size distribution is controlled simply by classification, etc.
Attempts to increase the filling rate cannot produce such a high filling state.

【0021】一般的に、粒子径分布が全体的に小粒径側
にシフトすれば、配位数が増加して、空隙率が低下、結
果として充填性が向上することも期待できるはずであ
る。しかし、現実の鱗片状、鱗状、板状の炭素質、黒鉛
質粉末の粒子径と充填性の関係を整理すると、粒子径が
小さくなるほど充填性が悪化する傾向にある。すなわ
ち、粒径が小さくなるほど、充填性は低下している。つ
まり、期待したほどの配位数の増加は起こらなかったこ
とになる。これは、黒鉛質粉末粒子の表面に「ささく
れ」や「はがれかけ」、「折れ曲がり」とも呼べる、突
起物状の黒鉛質微粒子が、ある程度の強度で接続されて
おり、これらが、隣接粒子との接点を著しく減少させて
いると考えられる。
In general, if the particle size distribution shifts toward the smaller particle size as a whole, the coordination number increases, the porosity decreases, and as a result, it can be expected that the packing property is improved. . However, when the relationship between the particle diameter and the packing property of the actual flaky, scaly, and plate-like carbonaceous and graphitic powders is arranged, the filling property tends to deteriorate as the particle diameter decreases. That is, the smaller the particle size, the lower the filling property. In other words, the coordination number did not increase as expected. This is due to the fact that protruding graphitic fine particles, which can be called `` saddle '', `` peeling off '', and `` bending '', are connected to the surface of the graphitic powder particles with a certain degree of strength, and these are connected to adjacent particles. It is considered that the number of contacts is significantly reduced.

【0022】本発明者らの検討では、真密度がほぼ等し
く、メジアン径もほぼ等しい炭素質粒子では、形状が球
状であるほど、見かけ密度(タップ密度)が高い値を示
すことが確認されている。すなわち、粒子の形状に丸み
を帯びさせ、球状に近づけることが重要である。粒子形
状が球状に近づけば、粉末の充填性も、同時に大きく向
上する。
According to the investigations of the present inventors, it has been confirmed that the apparent density (tap density) of the carbonaceous particles having substantially the same true density and substantially the same median diameter shows a higher value as the shape is spherical. I have. That is, it is important that the shape of the particles be rounded and approximate to a spherical shape. If the particle shape approaches a spherical shape, the filling property of the powder is also greatly improved.

【0023】なお、形状解析には、粒子状態あるいは成
形体断面でのSEM観察、液中に分散させた数千個の粒
子の画像を1個づつCCDカメラを用いて撮影し、その
平均的な形状パラメータを算出することが可能なフロー
式粒子像解析、液中での沈降速度、BET比表面積、粒
子径分布から演算される球換算比表面積、及び両比表面
積の比率などを用いた。
In the shape analysis, SEM observation in a particle state or a cross section of a molded product, images of thousands of particles dispersed in a liquid are taken one by one using a CCD camera, and the average is taken. Flow-type particle image analysis capable of calculating shape parameters, sedimentation velocity in liquid, BET specific surface area, sphere-converted specific surface area calculated from particle size distribution, ratio of both specific surface areas, and the like were used.

【0024】本発明では、以上の理由により、球形化度
の指標に粉体の見かけ密度を採用している。処理後の粉
粒体の充填性が処理前に比べ上昇している場合は、用い
た処理方法により、粒子が球状化した結果と考えること
ができる。処理前後の見かけ密度比は、1.1以上、好
ましくは1.3以上、より好ましくは、1.4以上、更
に好ましくは1.7以上である。
In the present invention, the apparent density of the powder is used as an index of the degree of spheroidization for the above reasons. When the filling property of the granular material after the treatment is higher than that before the treatment, it can be considered that the particles are spheroidized by the treatment method used. The apparent density ratio before and after the treatment is 1.1 or more, preferably 1.3 or more, more preferably 1.4 or more, and still more preferably 1.7 or more.

【0025】処理後の見かけ密度は、、0.5g/cc
以上であることが好ましいが、メジアン径に応じてその
好ましい値が異なる。メジアン径をBμmとすると、B
が40以下の場合は、下式により定められるA値に対
し、測定された見かけ密度が、A値より大であること
が、好ましい。 A=−0.012+3.29×10-2×B−5.41×
10-4×B2 Bが40以上の場合は、見かけ密度は、0.6g/cc
以上のものが好ましい。特に全メジアン径領域におい
て、0.65g/cc以上であることがより好ましく、
0.7g/cc以上であることが特に好ましい。ここで
いう見かけ密度は、測定手法により絶対値が若干異なる
が、タップ法により求めたものであり、川北の式に基づ
くものである。
The apparent density after the treatment is 0.5 g / cc.
The above values are preferable, but the preferable values differ depending on the median diameter. When the median diameter is B μm, B
Is 40 or less, it is preferable that the measured apparent density is larger than the A value with respect to the A value defined by the following formula. A = −0.012 + 3.29 × 10 −2 × B−5.41 ×
When 10 −4 × B 2 B is 40 or more, the apparent density is 0.6 g / cc.
The above are preferred. In particular, in the entire median diameter region, it is more preferably 0.65 g / cc or more,
It is particularly preferred that it be 0.7 g / cc or more. The apparent density here has a slightly different absolute value depending on the measurement method, but is obtained by the tap method and is based on Kawakita's formula.

【0026】本発明でいう、力学的エネルギー処理と
は、処理前後の粉粒体のメジアン径比が1以下となるよ
うに粒子サイズを減ずると同時に、形状を制御するもの
であり、粉砕、分級、混合、造粒、表面改質、反応など
の粒子設計に活用できる工学的単位操作の中では、粉砕
処理に属するものである。粉砕とは、物質に力を加え
て、その大きさを減少させ、物質の粒径や粒度分布、充
填性を調節することを指す。粉砕処理は、物質へ加わる
力の種類、処理形態により分類される。ここで、力の種
類は、たたき割る力(衝撃力)、押しつぶす力(圧縮
力)、すりつぶす力(摩砕力)、削りとる力(剪断力)
の4つに大別される。一方、処理形態は、粒子内部に亀
裂を発生、伝播させていく体積粉砕と粒子表面を削り取
っていく表面粉砕の二つに大別される。体積粉砕は、衝
撃力、圧縮力、剪断力により進行し、表面粉砕は、摩砕
力、剪断力により進行する。粉砕とは、これら被粉砕物
に加えられる力の種類、処理形態が、様々な比率で組合
わされた処理のことである。
The mechanical energy treatment referred to in the present invention is to reduce the particle size so that the median diameter ratio of the powder before and after the treatment becomes 1 or less, and at the same time, to control the shape. Among the engineering unit operations that can be used for particle design such as mixing, granulation, surface modification, and reaction, it belongs to the pulverization process. Grinding refers to applying a force to a substance to reduce its size and adjust the particle size, particle size distribution, and filling properties of the substance. The pulverization process is classified according to the type of force applied to the substance and the processing mode. Here, the types of forces are a smashing force (impact force), a crushing force (compression force), a crushing force (milling force), and a shaving force (shearing force).
It is roughly divided into four. On the other hand, treatment forms are roughly classified into two types: volume pulverization in which cracks are generated and propagated inside the particles, and surface pulverization in which the particle surface is scraped off. Volume pulverization proceeds by impact force, compression force, and shear force, and surface pulverization proceeds by attrition force and shear force. Pulverization is a treatment in which the types of forces applied to these objects to be crushed and the processing forms are combined in various ratios.

【0027】粉砕を行うには、爆破など化学的な反応や
体積膨張を用いる場合もあるが、粉砕機など、機械装置
を用いて処理するのが通常、一般的である。これら、力
の加え方と処理形態の組み合わせで分類される粉砕処理
は、その処理の目的に応じて、使い分けられている。本
発明で用いられる粉砕処理とは、粉砕の進行途上での体
積粉砕の有無に関わらず、最終的に表面処理の占める割
合が高く行われる処理が好ましい。つまり、粉砕処理の
初期段階では、メジアン径の減少がおきるが、その段階
がある程度進行した後は、粒子径の変化率が小さくな
り、逆に表面粉砕が進行し、被処理物の表面から、角が
とれるようにして粉砕が進行する処理が好ましい。ある
いは、弱い表面粉砕が進行し、粒子サイズはほぼ一定の
まま、粒子形状が変化し、丸みを帯びた粉粒体の得られ
る処理が好ましい。
In order to carry out the pulverization, a chemical reaction such as blasting or volume expansion may be used. However, it is usually general to use a mechanical device such as a pulverizer. These pulverization processes classified according to a combination of a method of applying a force and a processing mode are properly used according to the purpose of the process. The pulverization treatment used in the present invention is preferably a treatment in which the proportion of the surface treatment is finally high, regardless of the presence or absence of volume pulverization during the pulverization. In other words, in the initial stage of the pulverization process, the median diameter decreases, but after that stage has progressed to some extent, the rate of change in the particle diameter decreases, and conversely, the surface pulverization proceeds, and from the surface of the workpiece, A process in which the pulverization proceeds so that the corner can be removed is preferable. Alternatively, a process is preferred in which weak surface pulverization proceeds, the particle shape changes while the particle size remains substantially constant, and a rounded powder is obtained.

【0028】本発明者らの検討では、体積粉砕を積極的
に行った場合は、充填性が向上せず、粒子形状も粒子サ
イズが減ずるのみで、形状に大きな変化を観察すること
はできなかった。これは、本発明で用いられる黒鉛質粉
末粒子が、鱗片状、鱗状、板状の形態を有する為と考え
られる。工業的に入手し得る黒鉛材料は、多結晶体であ
る。しかし、材料中の黒鉛微結晶は、ある特定の方向に
整列して存在しやすい為に、やはり各種の性質におい
て、かなりの異方性を有する。力学的強度も異方性の現
れる性質の一つであり、鱗片状、鱗状、板状の形態を有
する黒鉛質粉末粒子は、底面に平行に劈開しやすい性質
を示す。従って、積極的に体積粉砕を行う処理では、劈
開を伴いながら、粒子径を減じるため、粒子形状に丸み
を導入することは難しい。
According to the study of the present inventors, when volume pulverization is actively performed, the filling property is not improved, and the particle shape is only reduced in particle size, and no large change in shape can be observed. Was. This is presumably because the graphite powder particles used in the present invention have a flaky, scaly, or plate-like form. Industrially available graphite materials are polycrystalline. However, graphite microcrystals in the material are likely to be aligned in a specific direction and therefore have considerable anisotropy in various properties. The mechanical strength is also one of the properties in which anisotropy appears, and the graphitic powder particles having a flake-like, scale-like, or plate-like morphology have a property of being easily cleaved parallel to the bottom surface. Therefore, in the process of actively performing volume pulverization, it is difficult to introduce roundness into the particle shape because the particle diameter is reduced while cleavage is involved.

【0029】処理前後のメジアン径比は、1以下となる
ことが好ましい。造粒がおきている場合はメジアン径比
が1以上となり、かつ見かけ密度も上昇する。しかし、
造粒された粉粒体は、最終的に成形する過程で元の処理
前の状態に戻ることが十分予想され、好ましくない。炭
素質、黒鉛質粉末粒子の角が取れて、粒子形状に丸みを
導入するには、表面粉砕が行われることが重要である
が、この為には処理を行う装置種類の選定とその装置の
持つ粉砕能力の見極めが重要である。前者は、被粉砕物
に与える粉砕力の種類により、装置種類を選び出すこと
であり、後者は装置機種毎に存在する粉砕力の限界(粉
砕限界)を利用することである。
The median diameter ratio before and after the treatment is preferably 1 or less. When granulation occurs, the median diameter ratio becomes 1 or more, and the apparent density also increases. But,
It is fully expected that the granulated powder will return to the original state before the treatment in the final molding process, which is not preferable. In order to round off the carbon and graphite powder particles and to introduce roundness into the particle shape, it is important that surface grinding is performed. It is important to determine the crushing ability possessed. The former is to select the type of device according to the type of crushing force applied to the object to be crushed, and the latter is to utilize the limit of crushing force (crushing limit) that exists for each device model.

【0030】装置種類の選定に関しては、剪断力により
粉砕が進行する装置機種が有効であることが、発明者ら
の検討で明らかとなっている。表面粉砕を進行させる装
置としては、まず、ボールミルや振動ミル、媒体撹拌ミ
ルなどの粉砕メディアを使用する装置が好ましい。これ
らの機種では、摩砕力と剪弾力中心の粉砕を行われてい
ると考えられ、角を取るような粉砕を行うことができ
る。湿式粉砕も乾式粉砕と同様に好ましい。具体的な装
置名を一例として挙げるとすれば、中央化工機(株)社
製の振動ミルやボールミル、岡田精工(株)社製のメカ
ノミル、(株)栗本鉄工所社製の乾式・湿式両用の媒体
撹拌ミルなどが挙げられる。次に表面粉砕を行うことが
できる装置として、回転する容器と容器内部に取り付け
られたテーパーの間を、処理物が通過することで、回転
する容器とテーパーとの速度差に起因する圧縮力と剪断
力が、処理物に加えられる機種が好ましい。これらの装
置は、元来、2種以上の粉体を複合化し、粉体の表面改
質を行うための装置であるが、剪断力が強く加わる装置
であるために、粉体の充填性の向上、すなわち粒子に丸
みを帯びさせることができたものと考えられる。具体的
な装置名を一例として挙げるとすれば、(株)徳寿工作
所社製のシータ・コンポーザ、ホソカワミクロン(株)
社製のメカノフュージョンシステムなどが挙げられる。
Regarding the selection of the type of the device, it has been clarified by the inventors that the type of the device in which the pulverization proceeds by the shearing force is effective. As a device for advancing the surface pulverization, first, a device using a pulverizing medium such as a ball mill, a vibration mill, and a medium stirring mill is preferable. In these models, it is considered that the grinding is performed at the center of the grinding force and the shearing force, so that the corner can be ground. Wet grinding is also preferred, as is dry grinding. Examples of specific device names include a vibration mill and a ball mill manufactured by Chuo Kakoki Co., Ltd., a mechano mill manufactured by Okada Seiko Co., Ltd., and a dry / wet type manufactured by Kurimoto Iron Works Co., Ltd. And a medium stirring mill. Next, as a device capable of performing surface pulverization, as a processed material passes between a rotating container and a taper attached to the inside of the container, a compressive force caused by a speed difference between the rotating container and the taper is generated. A model in which a shear force is applied to the processed material is preferred. These devices are originally devices for compounding two or more kinds of powders and performing surface modification of the powders. However, since they are devices to which a shear force is strongly applied, the filling property of the powders is high. It is considered that the particles could be improved, that is, the particles could be rounded. As an example of specific equipment names, Theta Composer manufactured by Tokuju Kousaku Co., Ltd., Hosokawa Micron Corporation
And a mechanofusion system manufactured by the company.

【0031】粉砕限界とは、粒子径の領域のことを指
し、体積粉砕が進行する粒子径としては、最下限界領域
のことである。すなわち、粒子径が小さくなり、衝突確
率が低下し、粒子の自重も小さくなるため、衝突しても
大きな応力を発生せず、体積粉砕が進行しなくなる粒子
径領域のことである。この領域では、体積粉砕に代わ
り、表面粉砕が行われ、処理後の粉体の充填性は、メジ
アン径を大きく変えないままに、充填性のみを向上させ
る。この粉砕限界を利用するには、1回の粉砕処理でも
行えるが、処理装置を通過した粉砕物を再び処理装置に
投入することが好ましい。さらに分級機構を内蔵してい
る装置も好ましい。分級機構を粉砕処理装置に接続し
て、処理物を循環させることは、複数回の粉砕を確実に
することから、更に好ましい。繰り返し処理回数は、1
回以上で、3回以上でより好ましく、4回以上が特に好
ましい。高速回転式ミルは、本来、衝撃力と圧縮力、剪
断力を組み合わせることで体積粉砕を行う機械式粉砕器
である。好ましい装置条件は、衝撃力を押さえ、剪断力
を強める条件であるが、処理を繰り返すことで、処理物
の粒子径領域は、装置固有の粉砕限界に到達し、表面粉
砕が主に行われるようになる。あるいはバッチ式の処理
装置を使用し、長時間処理を行っても、同様の効果を確
実に得ることができ、これも更に好ましい。
The pulverization limit refers to a region of a particle diameter, and is a lowermost limit region as a particle diameter at which volume pulverization proceeds. That is, it is a particle diameter region where the particle diameter is reduced, the collision probability is reduced, and the particle's own weight is also reduced, so that a large stress is not generated even when the particles collide, and the volume pulverization does not progress. In this region, the surface pulverization is performed instead of the volume pulverization, and the filling property of the powder after the treatment improves only the filling property without largely changing the median diameter. To utilize this pulverization limit, a single pulverization process can be performed, but it is preferable that the pulverized material that has passed through the processing device is again fed into the processing device. Further, a device having a built-in classification mechanism is also preferable. It is more preferable to connect the classifying mechanism to the pulverization processing apparatus and circulate the processed material, since the pulverization is performed a plurality of times. The number of repetitions is 1
Or more times, more preferably 3 times or more, particularly preferably 4 times or more. A high-speed rotary mill is essentially a mechanical pulverizer that performs volume pulverization by combining impact force, compression force, and shear force. Preferred apparatus conditions are conditions that suppress the impact force and increase the shearing force, but by repeating the processing, the particle diameter region of the processed product reaches the apparatus-specific pulverization limit, and surface pulverization is mainly performed. become. Alternatively, the same effect can be reliably obtained even when the processing is performed for a long time using a batch-type processing apparatus, and this is further preferable.

【0032】鋭意検討の結果、本発明者らは、粉砕限界
を利用しさえすれば、体積粉砕を進行させることを中心
に設計された処理装置でも、表面粉砕を進行させること
が可能であり、充填性の改良された処理物を得ることが
可能なことを見いだした。このような処理としては、高
速で回転するロータとその周囲に設けられたステータと
から成り立っている高速回転式ミルを、使用することが
好ましい。さらに衝撃力が大きく加わらないように、ロ
ータの回転数を低く押さえて運転することがより好まし
い。更にロータには板状のブレードを取り付けて使用
し、ロータとステータの間隙には、衝撃粉砕が発生しに
くい様に、一定以上の隙間を空けることが好ましい。具
体的な装置名を一例として挙げるとすれば、日本ニュー
マチック工業(株)社製のファインミル、ターボ工業
(株)社製のターボミルなどが挙げられる。
As a result of diligent studies, the present inventors can proceed with surface pulverization even with a processing apparatus designed to promote volume pulverization as long as the pulverization limit is utilized. It has been found that it is possible to obtain treated products with improved filling properties. As such a process, it is preferable to use a high-speed rotary mill composed of a rotor that rotates at a high speed and a stator provided around the rotor. It is more preferable to operate the rotor at a low rotation speed so that a large impact force is not applied. Further, it is preferable that a plate-shaped blade is attached to the rotor for use, and a certain gap or more is provided in the gap between the rotor and the stator so that impact pulverization hardly occurs. As an example of a specific device name, a fine mill manufactured by Nippon Pneumatic Industries Co., Ltd., a turbo mill manufactured by Turbo Kogyo Co., Ltd., or the like may be used.

【0033】しかし、粉砕限界という概念を利用すれ
ば、いかなる装置種を用いても、表面粉砕が進行し、角
に丸みを帯びた、充填性の向上した処理物が得られるわ
けではない。(株)産業技術センターから昭和49年に
刊行された成書、「粉粒体プロセス技術集成」の黒鉛の
項によれば、摩擦粉砕型による処理を行えば、黒鉛は扁
平になりやすく、流体エネルギー型の粉砕を行えば粒子
同士の摩擦が増えるためか、粒子の角がとれた丸みのあ
る形状のものが得られるとの記述がある。しかし、発明
者らの検討の結果、流体エネルギー型の粉砕機では、目
的粒子径である5〜50μの範囲では、充填性の高まっ
た粉体を得ることはできなかった。これは、流体エネル
ギー型粉砕機が、音速に近い気流中で粒子に衝撃を与え
ることを粉砕原理としているため、粉砕力が強すぎた為
と考えられる。
However, if the concept of the pulverization limit is used, the surface pulverization progresses, and a processed product having rounded corners and improved filling properties cannot be obtained with any type of apparatus. According to the Graphite section of the “Granular Particle Process Technology Collection” published by the Industrial Technology Center in 1974, graphite can easily be flattened if it is processed by a friction pulverization type. It is described that if energy-type pulverization is performed, friction between particles may increase, or particles having rounded shapes with sharp corners may be obtained. However, as a result of studies by the inventors, a fluid energy type pulverizer could not obtain a powder having a high filling property in the target particle diameter range of 5 to 50 μm. This is considered to be because the pulverizing power was too strong because the fluid energy type pulverizer employs the principle of pulverizing particles in a gas stream close to the speed of sound.

【0034】本発明者らは、更に検討を進めた結果、剪
断力を被処理物に連続的に与え続けることができる装置
として、特定の構造を有する混合装置が、表面粉砕装置
として適当であることを見いだした。特定の構造を有す
る混合装置としては、内部に1本のシャフトとシャフト
に固定された複数のすき状又は鋸歯状ののパドルが、位
相を変えて複数配置された処理室を有し、その内壁面は
パドルの回転の最外線に沿った円筒型に形成されその隙
間を最小限とし、パドルはシャフトの軸方向に複数枚配
列され、更に装置内壁面には、高速で回転するスクリュ
ー型解砕砕翼が、1段あるいは多段に1個あるいは複数
個設置された構造の混合装置を挙げることができる。被
処理物は、スクリュー型解砕機により剪断力を受けると
同時に、パドルの回転により、壁面への圧縮力を受け
る。剪断力と圧縮力を与える構造は、本来は混合機であ
るにも関わらず、本発明者らが好ましいと考える表面粉
砕機構に合致した構造を有する。具体的な装置名を一例
として挙げるとすれば、松坂技研(株)社製のレーディ
ゲミキサー、太平洋機工(株)社製のプローシェアーミ
キサなどが挙げられる。
As a result of further studies by the present inventors, a mixing device having a specific structure is suitable as a surface pulverizing device as a device capable of continuously applying a shearing force to an object to be processed. I found something. As a mixing device having a specific structure, a processing chamber in which a plurality of plow-shaped or saw-tooth-shaped paddles fixed to the shaft and a plurality of puddles are arranged in different phases is provided. The wall is formed in a cylindrical shape along the outermost line of rotation of the paddle to minimize the gap, multiple paddles are arranged in the axial direction of the shaft, and the screw type disintegrator that rotates at high speed on the inner wall of the device A mixing device having a structure in which one or a plurality of crushing blades are provided in one or more stages can be given. The workpiece is subjected to a shearing force by the screw type crusher and, at the same time, receives a compressive force to the wall surface by the rotation of the paddle. The structure that applies the shearing force and the compressive force has a structure that matches the surface crushing mechanism that the present inventors consider preferable, despite being originally a mixer. As an example of a specific device name, a Reedige mixer manufactured by Matsuzaka Giken Co., Ltd., a Plowshare mixer manufactured by Taiheiyo Kiko Co., Ltd., and the like are exemplified.

【0035】処理前の炭素質粉末の真密度が2.25未
満で結晶性がそれほど高くない場合は、上述の力学的エ
ネルギー処理後に、改めて結晶性を高める熱処理を行う
ことが好ましい。熱処理は好ましくは2000℃以上、
より好ましくは2500℃以上、最も好ましくは280
0℃以上で行うのがよい。
When the true density of the carbonaceous powder before the treatment is less than 2.25 and the crystallinity is not so high, it is preferable to perform a heat treatment for increasing the crystallinity again after the above-mentioned mechanical energy treatment. Heat treatment is preferably 2000 ° C or higher,
More preferably 2500 ° C. or higher, most preferably 280 ° C.
It is better to carry out at 0 ° C. or higher.

【0036】本発明の製造方法で得られた、処理後の炭
素質あるいは黒鉛質粉末のメジアン径は、5〜50μ
m、好ましくは、10〜50μm、更に好ましくは10
〜25μm、特に15〜25μmの範囲にあることが好
ましい。10μm以下の微粉量は、体積基準粒子径分布
で、25%以下であり、、好ましくは17%以下、更に
好ましくは14%以下、より更に好ましくは12%以下
である。処理後の黒鉛質粒子のBET法比表面積は、
0.5m2/g以上25.0m2/g以下であり、好まし
くは2.0m2/g以上10.0m2/g以下、より好ま
しくは3.0m2/g以上7.0m2/g以下、更に好ま
しくは3.5m2/g以上5.0m2/g以下である。粒
子径とBET比表面積の両立を図る方法として、分級操
作による比表面積の制御がある。分級操作による微粉除
去を行うことで、比表面積を効果的に減少させることが
できる。また、アルゴンイオンレーザー光を用いたラマ
ンスペクトル分析において1580〜1620cm−1
の範囲にピークPA(ピーク強度IA)および1350
〜1370cm−1の範囲にピークPB(ピーク強度I
B)の強度比R=IB/IAが0.0以上0.7以下、
1580〜1620cm-1の範囲のピークの半値幅が2
8cm-1以下であることが好ましい。また、ラマンスペ
クトルの強度比Rは0.5以下がより好ましく、0.3
以下が最も好ましい。1580〜1620cm-1の範囲
のピークの半値幅は26cm-1以下がより好ましく、2
4cm-1以下が最も好ましい。また、全粒子を対象とし
た平均円形度(粒子面積相当円の周囲長を分子とし、撮
像された粒子投影像の周囲長を分母とした比率で、粒子
像が真円に近いほど1となり、粒子像が細長いあるいは
デコボコしているほど小さい値になる)は0.940以
上となるものが好ましい。更に、円相当径による粒径分
布に基づいて、メジアン径15μm以上の粒子のみを対
象とするように制限を加えた15μm制限平均円形度が
0.850以上であるものが、より好ましい。なお、円
相当径とは、撮像した粒子像と同じ投影面積を持つ円
(相当円)の直径であり、円形度とは、相当円の周囲長
を分子とし、撮像された粒子投影像の周囲長を分母とし
た比率である。
The median diameter of the treated carbonaceous or graphitic powder obtained by the production method of the present invention is 5 to 50 μm.
m, preferably 10 to 50 μm, more preferably 10
2525 μm, particularly preferably 15-25 μm. The amount of the fine powder having a particle size of 10 μm or less is 25% or less, preferably 17% or less, more preferably 14% or less, and still more preferably 12% or less in a volume-based particle size distribution. The BET specific surface area of the graphite particles after the treatment is as follows:
0.5 m 2 / g or more and 25.0 m 2 / g or less, preferably 2.0 m 2 / g or more and 10.0 m 2 / g or less, more preferably 3.0 m 2 / g or more and 7.0 m 2 / g. It is more preferably 3.5 m 2 / g or more and 5.0 m 2 / g or less. As a method for achieving both the particle diameter and the BET specific surface area, there is control of the specific surface area by a classification operation. By performing the fine powder removal by the classification operation, the specific surface area can be effectively reduced. In Raman spectrum analysis using argon ion laser light, 1580 to 1620 cm −1
PA (peak intensity IA) and 1350
Peak PB (peak intensity I
B) intensity ratio R = IB / IA of 0.0 or more and 0.7 or less,
The half width of the peak in the range of 1580 to 1620 cm -1 is 2
It is preferably 8 cm −1 or less. Further, the intensity ratio R of the Raman spectrum is more preferably 0.5 or less, and 0.3
The following are most preferred. Half width is more preferably 26cm -1 or less of a peak in the range of 1580~1620cm -1, 2
Most preferably 4 cm -1 or less. In addition, the average circularity for all particles (the ratio of the perimeter of a circle corresponding to the particle area as a numerator and the perimeter of the captured particle projection image as a denominator is 1 as the particle image is closer to a perfect circle, The smaller the particle image is, the smaller the value is when the particle image is elongated or uneven) is preferably 0.940 or more. Further, based on the particle size distribution based on the circle equivalent diameter, those having a 15 μm limited average circularity of 0.850 or more, which is a restriction so that only particles having a median diameter of 15 μm or more are targeted, are more preferable. The equivalent circle diameter is the diameter of a circle (equivalent circle) having the same projected area as the captured particle image, and the circularity is defined as the circumference of the equivalent circle as a numerator and the periphery of the captured particle projection image. This is the ratio with the length as the denominator.

【0037】本発明の複層構造炭素材料は、前記処理後
の炭素質あるいは黒鉛質粉末を焼成工程により炭素化す
る有機化合物と混合した後に、該有機化合物を焼成炭素
化して得られる。炭素質あるいは黒鉛質粉末と混合され
る有機化合物としてはまず、液相で炭素化を進行させる
有機物として、軟ピッチから硬ピッチまでのコールター
ルピッチ、石炭液化油等の石炭系重質油、アスファルテ
ン等の直流系重質油、原油、ナフサなどの熱分解時に副
生するナフサタール等分解系重質油等の石油系重質油、
分解系重質油を熱処理することで得られる、エチレンタ
ールピッチ、FCCデカントオイル、アシュランドピッ
チなど熱処理ピッチ等を用いることができる。さらにポ
リ塩化ビニル、ポリビニルアセテート、ポリビニルブチ
ラール、ポリビニルアルコール等のビニル系高分子と3
ーメチルフェノールフォルムアルデヒド樹脂、3、5ー
ジメチルフェノールフォルムアルデヒド樹脂等の置換フ
ェノール樹脂、アセナフチレン、デカシクレン、アント
ラセンなどの芳香族炭化水素、フェナジンやアクリジン
などの窒素環化合物、チオフェンなどのイオウ環化合物
などの物質があげられる。また、固相で炭素化を進行さ
せる有機物としては、セルロースなどの天然高分子、ポ
リ塩化ビニリデンやポリアクリロニトリルなどの鎖状ビ
ニル樹脂、ポリフェニレン等の芳香族系ポリマー、フル
フリルアルコール樹脂、フェノール−ホルムアルデヒド
樹脂、イミド樹脂等熱硬化性樹脂やフルフリルアルコー
ルのような熱硬化性樹脂原料などがあげられる。これら
の有機物を必要に応じて、適宜溶媒を選択して溶解希釈
することにより、黒鉛粒子核の表面に付着させ、使用す
ることができる。
The multi-layered carbon material of the present invention is obtained by mixing the carbonaceous or graphitic powder after the treatment with an organic compound to be carbonized in a firing step, and then firing the organic compound. The organic compounds to be mixed with the carbonaceous or graphitic powder include, as organic substances that promote carbonization in the liquid phase, coal tar pitch from soft pitch to hard pitch, coal-based heavy oil such as coal liquefied oil, asphaltene Petroleum heavy oils such as naphtha tar and other cracked heavy oils by-produced during thermal cracking of crude oil, naphtha, etc.
Heat-treated pitches such as ethylene tar pitch, FCC decant oil, and ashland pitch obtained by heat-treating cracked heavy oil can be used. Further, a vinyl polymer such as polyvinyl chloride, polyvinyl acetate, polyvinyl butyral, and polyvinyl alcohol, and 3
-Methylphenol formaldehyde resin, substituted phenol resins such as 3,5-dimethylphenol formaldehyde resin, aromatic hydrocarbons such as acenaphthylene, decacyclene, anthracene, nitrogen ring compounds such as phenazine and acridine, and sulfur ring compounds such as thiophene Substances. Examples of the organic substance that progresses carbonization in the solid phase include natural polymers such as cellulose, chain vinyl resins such as polyvinylidene chloride and polyacrylonitrile, aromatic polymers such as polyphenylene, furfuryl alcohol resin, and phenol-formaldehyde. Examples thereof include thermosetting resins such as resins and imide resins, and thermosetting resin raw materials such as furfuryl alcohol. These organic substances can be used by adhering to the surface of the graphite particle nucleus by dissolving and diluting these organic substances, if necessary, by appropriately selecting a solvent.

【0038】本願発明においては、通常、かかる炭素質
あるいは黒鉛質粉末と有機化合物を混合したものを加熱
し中間物質を得て、その後炭化焼成、粉砕することによ
り、最終的に粒子の表面に炭素質物の表層を形成させた
複層構造炭素質粉末を得るが、複層構造炭素質粉末中の
炭素質物の割合は50重量%以下0.1重量%以上、好
ましくは25重量%以下0.5重量%以上、更に好まし
くは15重量%以下1重量%以上、特に好ましくは10
重量%以下2重量%以上となるように調整する。
In the present invention, usually, a mixture of such a carbonaceous or graphitic powder and an organic compound is heated to obtain an intermediate substance, which is then carbonized, fired and pulverized, so that carbon particles are finally added to the surface of the particles. A multi-layered carbonaceous powder having a surface layer of a carbonaceous material formed thereon is obtained. % By weight or more, more preferably 15% by weight or less, 1% by weight or more, particularly preferably 10% by weight or more.
It is adjusted so as to be 2% by weight or less by weight.

【0039】一方、本願発明のかかる複層炭素質物を得
るための製造工程は以下の4工程に分けられる。 第1工程 炭素質あるいは黒鉛質粉末と有機化合物、更に必要に応
じて溶媒とを種々の市販の混合機や混練機等を用いて混
合し、混合物を得る工程。 第2工程 必要に応じ前記混合物を攪拌しながら加熱し、溶媒を除
去した中間物質を得る工程。
On the other hand, the production process for obtaining such a multi-layer carbonaceous material according to the present invention can be divided into the following four processes. First step: a step of mixing a carbonaceous or graphitic powder with an organic compound and, if necessary, a solvent using various commercially available mixers and kneaders to obtain a mixture. Second step: a step of heating the mixture while stirring, if necessary, to obtain an intermediate substance from which the solvent has been removed.

【0040】第3工程 前記混合物又は中間物質を、窒素ガス、炭酸ガス、アル
ゴンガス不活性ガス雰囲気下、あるいは非酸化性雰囲気
下で500℃以上3000℃以下に加熱し、炭素化物質
を得る工程。 第4工程 前記炭素化物質を必要に応じて粉砕、解砕、分級処理な
ど粉体加工する工程。これらの工程中第2工程及び第4
工程は場合によっては省略可能であり、第4工程は第3
工程の前に行ってもいい。
Third step: a step of heating the mixture or the intermediate substance to 500 ° C. or more and 3000 ° C. or less in an atmosphere of an inert gas such as a nitrogen gas, a carbon dioxide gas and an argon gas or a non-oxidizing atmosphere to obtain a carbonized material. . Fourth step: a step of subjecting the carbonized material to powder processing, such as pulverization, crushing, and classification, as necessary. Among these steps, the second step and the fourth step
The step can be omitted in some cases, and the fourth step is the third step.
It may be performed before the process.

【0041】また、第3工程の加熱処理条件としては、
熱履歴温度条件が重要である。その温度下限は炭素前駆
体の種類、その熱履歴によっても若干異なるが通常50
0℃以上、好ましくは700℃以上、更に好ましくは9
00℃以上である。一方、上限温度は基本的に黒鉛粒子
核の結晶構造を上回る構造秩序を有しない温度まで上げ
ることができる。従って熱処理の上限温度としては、通
常3000℃以下、好ましくは2800℃以下、更に好
ましくは2500℃以下、特に好ましくは1500℃以
下である。このような熱処理条件において、昇温速度、
冷却速度、熱処理時間などは目的に応じて任意に設定す
る事ができる。また、比較的低温領域で熱処理した後、
所定の温度に昇温する事もできる。なお、本工程に用い
る反応機は回分式でも連続式でも又、一基でも複数基で
もよい。
The heat treatment conditions in the third step include:
Thermal history temperature conditions are important. The lower limit of the temperature is slightly different depending on the kind of the carbon precursor and its heat history, but it is usually 50.
0 ° C. or higher, preferably 700 ° C. or higher, more preferably 9 ° C.
It is 00 ° C or higher. On the other hand, the upper limit temperature can be raised to a temperature that does not basically have a structural order exceeding the crystal structure of the graphite particle nucleus. Therefore, the upper limit temperature of the heat treatment is usually 3000 ° C. or lower, preferably 2800 ° C. or lower, more preferably 2500 ° C. or lower, and particularly preferably 1500 ° C. or lower. Under such heat treatment conditions, the rate of temperature rise,
The cooling rate, heat treatment time, and the like can be arbitrarily set according to the purpose. After heat treatment in a relatively low temperature range,
The temperature can be raised to a predetermined temperature. The reactor used in this step may be a batch type or a continuous type, and may be a single unit or a plurality of units.

【0042】本発明の複層構造炭素材料は、体積基準メ
ジアン径が5〜70μm、好ましくは10〜40μm、
特に好ましくは15〜30μmである。本願発明による
複層構造炭素材料はのBET法を用いて測定した比表面
積は好ましくは1〜10m2/g、更に好ましくは1〜
4m2/g、特に好ましくは1〜3m2/gの範囲に入る
ことが好ましく、 又、本願発明の複層構造炭素質物
は、波長5145cm-1のアルゴンイオンレーザー光を
用いたラマンスペクトル分析、CuKα線を線源とした
X線広角回折の回折図において、核となる炭素質あるい
は黒鉛質粒子の結晶化度を上回らないことが好ましい。
尚、特に断らない限りスペクトルおよびピークは下記
条件によるラマンスペクトルである。すなわち、158
0〜1620cm-1の範囲にピークPA(ピーク強度I
A)および1350〜1370cm -1の範囲にピークP
B(ピーク強度IB)である。具体的な数値としては、
好ましくは0.01以上、1.0以下、より好ましくは
0.05以上、0.8以下、更に好ましくは0.1以
上、0.6以下である。また、見かけ密度は炭素被覆に
より使用した核黒鉛材料よりも更に向上するが、0.7
−1.2g/ccの範囲に制御することが望ましい。全
粒子を対象とした平均円形度は複層構造化前の0.94
0より大きくなるものが好ましい。更に、円相当径によ
る粒径分布に基づいて、メジアン径15μm以上の粒子
のみを対象とするように制限を加えた15μm制限平均
円形度も複層構造化前の0.850より大きくなるもの
がより好ましい。複層構造化は、核となる力学的エネル
ギー処理物の見かけ密度を更に向上し、かつ、その形状
に更なる丸みを導入する効果を有する。
The multilayer carbon material of the present invention has a volume-based
A dian diameter of 5 to 70 μm, preferably 10 to 40 μm,
Particularly preferably, it is 15 to 30 μm. According to the present invention
Specific surface of multi-layered carbon material measured using BET method
The product is preferably 1 to 10 m2 / g, more preferably 1 to 10 m2 / g.
4mTwo/ G, particularly preferably 1-3 mTwo/ G range
Preferably, the carbonaceous material having a multilayer structure of the present invention
Has a wavelength of 5145 cm-1Argon ion laser light
Raman spectrum analysis using CuKα radiation as the source
In the diffractogram of X-ray wide-angle diffraction, carbon
Does not exceed the crystallinity of the graphitic particles.
 The spectra and peaks are as follows unless otherwise specified.
It is a Raman spectrum according to conditions. That is, 158
0-1620cm-1PA (peak intensity I
A) and 1350-1370 cm -1Peak P in the range
B (peak intensity IB). As specific numbers,
Preferably 0.01 or more, 1.0 or less, more preferably
0.05 or more, 0.8 or less, more preferably 0.1 or less
Above, it is 0.6 or less. Also, the apparent density is
More improved than the more used nuclear graphite material, but 0.7
It is desirable to control to a range of -1.2 g / cc. all
The average circularity for particles was 0.94 before the multilayer structure was formed.
Those which are larger than 0 are preferred. Furthermore, the circle equivalent diameter
Particles having a median diameter of 15 μm or more
15μm limited average with restriction to target only
The degree of circularity is also greater than 0.850 before the multilayer structure
Is more preferred. Multi-layer structuring is the core mechanical energy
And further improve the apparent density of
Has the effect of introducing further roundness.

【0043】[0043]

【実施例】次に実施例により本発明を更に詳細に説明す
るが、本発明はこれらの例によってなんら限定されるも
のではない。 (測定法) (1)体積基準平均粒径 界面活性剤にポリオキシエチレン(20)ソルビタンモ
ノラウレートの2vol%水溶液を約1cc用い、これ
を予め炭素質粉末に混合し、しかる後にイオン交換水を
分散媒として、堀場製作所社製レーザー回折式粒度分布
計「LA−700」にて、体積基準平均粒径(メジアン
径)を測定した。
Next, the present invention will be described in more detail by way of examples, which should not be construed as limiting the present invention. (Measurement method) (1) Volume-based average particle size About 1 cc of a 2 vol% aqueous solution of polyoxyethylene (20) sorbitan monolaurate was used as a surfactant, and this was mixed with carbonaceous powder in advance, and then ion-exchanged water was used. Was used as a dispersion medium, and the volume-based average particle diameter (median diameter) was measured with a laser diffraction particle size distribution analyzer “LA-700” manufactured by Horiba, Ltd.

【0044】(2)見かけ密度(タップ密度) (株)セイシン企業社製粉体密度測定器「タップデンサ
ー KYT−3000」を用い、サンプルが透過する篩
には、目開き300μmの篩を使用し、20ccのタッ
ピングセルに粉体を落下させ、セルが満杯に充填された
後、ストローク長10mmのタッピングを1000回行
って、その時の見かけ密度を測定した。 (3)BET比表面積測定 大倉理研社製AMS−8000を用い、予備乾燥として
350℃ に加熱し、15分間窒素ガスを流した後、窒
素ガス吸着によるBET1点法によって測定した。
(2) Apparent Density (Tap Density) Using a powder density measuring device “Tap Denser KYT-3000” manufactured by Seishin Enterprise Co., Ltd., a sieve having a mesh size of 300 μm was used as a sieve through which the sample passes. The powder was dropped into a 20 cc tapping cell, and after the cell was completely filled, tapping with a stroke length of 10 mm was performed 1,000 times, and the apparent density at that time was measured. (3) Measurement of BET specific surface area Using AMS-8000 manufactured by Okura Riken Co., Ltd., it was heated to 350 ° C. as preliminary drying, nitrogen gas was flowed for 15 minutes, and then measured by the BET one-point method by nitrogen gas adsorption.

【0045】(4)真密度測定 界面活性剤0.1%水溶液を使用し、ピクノメーターに
よる液相置換法によって測定した。 (5)X線回折 試料に対して約15%のX線標準高純度シリコン粉末を
加えて混合し、試料セルに詰め、グラファイトモノクロ
メーターで単色化したCuKα線を線源とし、反射式デ
ィフラクトメーター法によって、広角X線回折曲線を測
定し、学振法を用いて層間距離(d002)及び結晶子
サイズ(Lc)を求めた。
(4) Measurement of True Density Using a 0.1% aqueous solution of a surfactant, the true density was measured by a liquid phase replacement method using a pycnometer. (5) X-ray diffraction X-ray standard high-purity silicon powder of about 15% is added to and mixed with the sample, packed in a sample cell, and a CuKα ray monochromatized with a graphite monochromator is used as a radiation source, and a reflection type diffract is used. The wide-angle X-ray diffraction curve was measured by a meter method, and the interlayer distance (d002) and the crystallite size (Lc) were determined by the Gakushin method.

【0046】(6)ラマン測定 日本分光社製NR−1800を用い、波長514.5n
mのアルゴンイオンレーザー光を用いたラマンスペクト
ル分析において、1580cm-1の付近のピークPAの
強度IA、1360cm-1の範囲のピークPBの強度I
Bを測定し、その強度の比R=IB/IAを測定した。
試料の調製にあたっては、粉末状態のものを自然落下に
よりセルに充填し、セル内のサンプル表面にレーザー光
を照射しながら、セルをレーザー光と垂直な面内で回転
させて測定を行った。
(6) Raman Measurement Using NR-1800 manufactured by JASCO Corporation, wavelength: 514.5 n
In Raman spectrum analysis using an argon ion laser beam of m, the intensity of the peak PA around the 1580 cm -1 IA, the intensity of the peak PB in the range of 1360 cm -1 I
B was measured, and the intensity ratio R = IB / IA was measured.
In preparing the sample, the cell was filled in a powder state by natural fall, and the measurement was performed by rotating the cell in a plane perpendicular to the laser light while irradiating the sample surface in the cell with the laser light.

【0047】(7)円形度の測定 東亜医用電子社製フロー式粒子像分析装置「FPIA−
1000」を使用し、円相当径による粒径分布の測定お
よび円形度の算出を行った。分散媒にはイオン交換水を
使用し、界面活性剤には、ポリオキシエチレン(20)
ソルビタンモノラウレートを使用した。まず、全粒子に
対する平均円形度を求めた後、円相当径による粒径分布
に基づいて、メジアン径15μm以上の粒子のみを対象
とするように制限を加え、15μm制限平均円形度の算
出を行った。なお、円相当径とは、撮像した粒子像と同
じ投影面積を持つ円(相当円)の直径であり、円形度と
は、相当円の周囲長を分子とし、撮像された粒子投影像
の周囲長を分母とした比率である。
(7) Measurement of circularity Flow particle image analyzer “FPIA-” manufactured by Toa Medical Electronics Co., Ltd.
Using "1000", the particle size distribution was measured by the equivalent circle diameter and the circularity was calculated. Ion exchange water is used as the dispersion medium, and polyoxyethylene (20) is used as the surfactant.
Sorbitan monolaurate was used. First, after calculating the average circularity for all the particles, based on the particle size distribution based on the equivalent circle diameter, a restriction is applied so that only particles having a median diameter of 15 μm or more are targeted, and the 15 μm limited average circularity is calculated. Was. The equivalent circle diameter is the diameter of a circle (equivalent circle) having the same projected area as the captured particle image, and the circularity is defined as the circumference of the equivalent circle as a numerator and the periphery of the captured particle projection image. This is the ratio with the length as the denominator.

【0048】(8)半電池による電気容量測定 8−1)半電池の作成 炭素質物に熱可塑性エラストマーをバインダーとして加
えたスラリーを作成し、ドクターブレード法で銅箔上に
塗布してシート電極を作成した。この電極を直径15.
4mmの円盤状に打ち抜き、電解液を含浸させたセパレ
ーターを中心にリチウム金属電極に対向させたコインセ
ルを作成し、充放電試験を行った。電解液としては、エ
チレンカーボネートとジエチルカーボネートを重量比
1:1の比率で混合した溶媒に過塩素酸リチウムを1.
5モル/リットルの割合で溶解させたものを使用した。
(8) Measurement of Electric Capacity by Half-Battery 8-1) Preparation of Half-Battery A slurry is prepared by adding a thermoplastic elastomer to a carbonaceous material as a binder, and the slurry is applied on a copper foil by a doctor blade method to form a sheet electrode. Created. This electrode has a diameter of 15.
A coin cell was punched out into a 4 mm disk shape and made to face a lithium metal electrode around a separator impregnated with an electrolyte, and a charge / discharge test was performed. As the electrolyte, lithium perchlorate was added to a solvent obtained by mixing ethylene carbonate and diethyl carbonate at a weight ratio of 1: 1.
What was melt | dissolved at the ratio of 5 mol / l was used.

【0049】8−2)電気容量の測定 充放電試験は電流値0.2mAとし、両電極間の電位差
が0Vになるまで充電を行い、1.5Vになるまで放電
を行った。炭素質の結晶化度を比較する電気容量には、
5サイクル目の放電容量を使用した。
8-2) Measurement of Electric Capacity In the charge / discharge test, a current value was set to 0.2 mA, charging was performed until the potential difference between both electrodes became 0 V, and discharging was performed until the potential difference became 1.5 V. The capacitance to compare the crystallinity of carbonaceous materials includes:
The discharge capacity at the fifth cycle was used.

【0050】(処理前の原料の選択)X線回折測定、ラ
マン分光法、電気化学的容量により、粉砕前の原料の選
択を行った。その結果、粒径の異なる石油系人造黒鉛2
種と粒径の異なるスリランカ製の天然黒鉛2種、石油系
コークス1種を選択した。検討に使用した原料を別表1
に整理した。
(Selection of raw materials before treatment) Raw materials before pulverization were selected by X-ray diffraction measurement, Raman spectroscopy, and electrochemical capacity. As a result, petroleum artificial graphite 2 with different particle size
Two kinds of natural graphite and one kind of petroleum coke made from Sri Lanka having different species and particle sizes were selected. Table 1 shows the raw materials used in the study.
Organized.

【0051】(力学的エネルギー処理) 1)実施例1 中央化工機(株)社製の研究用ポットミルを使用し、
3.6リットルの円筒型粉砕ポットに 粉砕メディアで
ある直径5mmのステンレスボールと天然黒鉛粉Aを
0.5kg投入し、80rpmで24時間、粉砕処理を
行った。結果を別表2と表3に示す。 2)実施例2 (株)栗本鐵工所社製のφ200型バッチ式乾式撹拌ミ
ルを使用し、 粉砕メディアである直径2mmのアルミ
ナボールと人造黒鉛粉B0.3kgを投入し、480r
pmで25分間、粉砕処理を行った。ラマンスペクトル
強度の比R値は0.19、1580cm-1の付近のピー
クの半値幅は22.2cm-1であった。その他の結果を
別表2と表3に示す。
(Mechanical Energy Treatment) 1) Example 1 Using a research pot mill manufactured by Chuo Kakoki Co., Ltd.
A stainless steel ball having a diameter of 5 mm and a natural graphite powder A of 0.5 kg were charged into a 3.6-liter cylindrical grinding pot, and grinding treatment was performed at 80 rpm for 24 hours. Tables 2 and 3 show the results. 2) Example 2 Using a φ200 batch dry agitating mill manufactured by Kurimoto Ironworks Co., Ltd., crushing media of 2 mm diameter alumina balls and artificial graphite powder B (0.3 kg) were charged, and 480 r
The crushing treatment was performed at pm for 25 minutes. The ratio R value of Raman spectrum intensity half width of the peak around the 0.19,1580Cm -1 was 22.2cm -1. Other results are shown in Tables 2 and 3.

【0052】3)実施例3 (株)ターボ工業社製のT−400型ターボミル(4J
型)を使用し、ローターを3600rpmで回転させ、
スクリューフィーダーにて処理物を150kg/hrで
供給し、粉砕を行った。回収された粉砕物の粒径は、大
きく変化していなかった。粉砕限界を利用した表面粉砕
を行う目的で、粉砕物の再粉砕を行った。同一の処理物
に対し、合計4回の処理を行った。結果を別表2と表3
に示す。 4)実施例4 (株)マツボー社製のM20型レーディゲミキサー(内
容積20リットル)を使用し、天然黒鉛粉Bを4.0k
g投入し、撹拌用のパドルを230rpm、解砕用のチ
ョッパーを3000rpmで回転させ、150分間撹拌
した。ラマンスペクトル強度の比R値は0.22、15
80cm-1の付近のピークの半値幅は21.3cm-1
あった。その他の結果を別表2と表3に示す。
3) Example 3 T-400 type turbo mill (4J) manufactured by Turbo Kogyo Co., Ltd.
), Rotate the rotor at 3600 rpm,
The processed material was supplied at 150 kg / hr by a screw feeder and pulverized. The particle size of the collected pulverized material did not change significantly. In order to perform surface pulverization using the pulverization limit, the pulverized material was re-pulverized. The same processed material was processed a total of four times. Tables 2 and 3 show the results.
Shown in 4) Example 4 Using a M20 type Reedige mixer (20 liters in internal volume) manufactured by Matsubo Corporation, natural graphite powder B was 4.0 k.
g, a paddle for stirring was rotated at 230 rpm, and a chopper for crushing was rotated at 3000 rpm, and the mixture was stirred for 150 minutes. The ratio R value of Raman spectrum intensity is 0.22, 15
The half-value width of the peak in the vicinity of 80 cm -1 was 21.3 cm -1. Other results are shown in Tables 2 and 3.

【0053】5)実施例5 (株)マツボー社製のFKM−130D型レーディゲミ
キサー(内容積130リットル)を使用し、人造黒鉛粉
Bを50kg投入し、撹拌用のパドルを140rpm、
解砕用のチョッパーを3600rpmで回転させ、30
分間撹拌した。ラマンスペクトル強度の比R値は0.2
5、1580cm-1の付近のピークの半値幅は21.8
cm-1であった。その他の結果を別表2と表3に示す。 6)実施例6 実施例5と同じ装置条件、原料で60分間撹拌した。結
果を別表2と表3に示す。
5) Example 5 Using an FKM-130D model Reedige mixer (internal volume: 130 liters) manufactured by Matsubo Corporation, 50 kg of artificial graphite powder B was charged, and a paddle for stirring was set at 140 rpm.
Rotate the chopper for crushing at 3600 rpm, 30
Stirred for minutes. Raman spectrum intensity ratio R value is 0.2
The half width of the peak near 5, 1580 cm -1 is 21.8.
cm -1 . Other results are shown in Tables 2 and 3. 6) Example 6 The mixture was stirred for 60 minutes with the same raw material conditions as in Example 5. Tables 2 and 3 show the results.

【0054】7)実施例7 実施例5と同じ装置条件、原料で150分間撹拌した。
ラマンスペクトル強度の比R値は0.29、1580c
-1の付近のピークの半値幅は22.4cm -1であっ
た。その他の結果を別表2と表3に示す。 8)実施例8 実施例5と同じ装置条件、原料で、実施例3で得られた
処理物を90分間撹拌した。結果を別表2と表3に示
す。
7) Example 7 The same apparatus conditions as in Example 5 were used and the raw materials were stirred for 150 minutes.
Raman spectrum intensity ratio R value is 0.29, 1580c
m-1Of the peak near is 22.4 cm -1So
Was. Other results are shown in Tables 2 and 3. 8) Example 8 The same equipment conditions and raw materials as in Example 5 were used to obtain Example 3.
The treatment was stirred for 90 minutes. Tables 2 and 3 show the results.
You.

【0055】9)実施例9 ホソカワミクロン(株)社製AM−80F型メカノフュ
ージョンシステム(粉砕室の直径800mm)を使用
し、人造黒鉛粉Aを7kg投入し、粉砕室を500rp
mで回転させ、30分間運転した。ラマンスペクトル強
度の比R値は0.35、1580cm-1の付近のピーク
の半値幅は23.5cm-1であった。その他の結果を別
表2と表3に示す。 10)実施例10 ホソカワミクロン(株)社製AM−80F型メカノフュ
ージョンシステム(粉砕室の直径800mm)を使用
し、人造黒鉛粉Aを7kg投入し、粉砕室を500rp
mで回転させ、30分間運転した。ラマンスペクトル強
度の比R値は0.27、1580cm-1の付近のピーク
の半値幅は22.3cm-1であった。その他の結果を別
表2と表3に示す。
9) Example 9 Using an AM-80F type mechanofusion system manufactured by Hosokawa Micron Co., Ltd. (having a grinding chamber diameter of 800 mm), 7 kg of artificial graphite powder A was charged, and the grinding chamber was rotated at 500 rpm.
m and run for 30 minutes. The ratio R value of Raman spectrum intensity half width of the peak around the 0.35,1580Cm -1 was 23.5cm -1. Other results are shown in Tables 2 and 3. 10) Example 10 Using an AM-80F mechanofusion system manufactured by Hosokawa Micron Co., Ltd. (diameter of grinding chamber: 800 mm), 7 kg of artificial graphite powder A was charged, and the grinding chamber was rotated at 500 rpm.
m and run for 30 minutes. The ratio R value of Raman spectrum intensity half width of the peak around the 0.27,1580Cm -1 was 22.3cm -1. Other results are shown in Tables 2 and 3.

【0056】11)実施例11 ホソカワミクロン(株)社製AM−20FS型メカノフ
ュージョンシステム(粉砕室の直径200mm)を使用
し、人造黒鉛粉Bを30gと直径0.5mmのセラミッ
クボールを1kg投入し、粉砕室を450rpmで回転
させ、30分間運転した。ラマンスペクトル強度の比R
値は0.49、1580cm-1の付近のピークの半値幅
は25.8cm-1であった。その他の結果を別表2と表
3に示す。 12)実施例12 ホソカワミクロン(株)社製AM−20FS型メカノフ
ュージョンシステム(粉砕室の直径200mm)を使用
し、石油コークスを30gと直径0.5mmのセラミッ
クボールを1kg投入し、粉砕室を450rpmで回転
させ、30分間運転した。結果を別表2と表3に示す。
11) Example 11 Using an AM-20FS mechanofusion system manufactured by Hosokawa Micron Corp. (pulverization chamber having a diameter of 200 mm), 30 g of artificial graphite powder B and 1 kg of ceramic balls having a diameter of 0.5 mm were charged. The grinding chamber was rotated at 450 rpm and operated for 30 minutes. Raman spectrum intensity ratio R
Value half width of a peak in the vicinity of 0.49,1580Cm -1 was 25.8cm -1. Other results are shown in Tables 2 and 3. 12) Example 12 30 g of petroleum coke and 1 kg of ceramic balls having a diameter of 0.5 mm were charged using an AM-20FS type mechanofusion system manufactured by Hosokawa Micron Corp. (diameter of a grinding chamber of 200 mm), and the grinding chamber was rotated at 450 rpm. And run for 30 minutes. Tables 2 and 3 show the results.

【0057】13)実施例13 (株)徳寿工作所社製製シータ・コンポーザ(内容積5
0L)を使用し、人造黒鉛Bを10kg投入し、ベッセ
ルを20rpmで回転させ、ローターを400rpmで
回転させ、30分間運転した。結果を別表2と表3に示
す。 14)実施例14 実施例2で得られた処理物4kgと石油系タール1kg
とを、シグマ型ブレードを有するバッチ式ニーダーで混
合した。続いて、窒素雰囲気にて700℃まで昇温し、
脱タール処理を行い、しかる後に1200℃ まで熱処
理を行った。得られた熱処理物を、ピンミルにて解砕
し、粗粒子を除く目的で、分級処理を行い、最終的に複
層構造炭素質物粒子を得た。結果を別表4に示す。
13) Example 13 Theta Composer (manufactured by Tokuju Kousaku Co., Ltd.)
0L), 10 kg of artificial graphite B was charged, the vessel was rotated at 20 rpm, the rotor was rotated at 400 rpm, and the apparatus was operated for 30 minutes. Tables 2 and 3 show the results. 14) Example 14 4 kg of the processed product obtained in Example 2 and 1 kg of petroleum-based tar
Were mixed in a batch kneader having a sigma type blade. Subsequently, the temperature was raised to 700 ° C. in a nitrogen atmosphere,
A tar removal treatment was performed, followed by a heat treatment to 1200 ° C. The obtained heat-treated product was pulverized with a pin mill, and subjected to a classification treatment for the purpose of removing coarse particles, thereby finally obtaining carbonaceous material particles having a multilayer structure. Table 4 shows the results.

【0058】15)実施例15 実施例3で得られた処理物を用い、実施例13と同様の
処理を行った。結果を別表4に示す。 16)実施例16 実施例4で得られた処理物を用い、実施例13と同様の
処理を行った。結果を別表4に示す。
15) Example 15 The same treatment as in Example 13 was performed using the processed product obtained in Example 3. Table 4 shows the results. 16) Example 16 The same treatment as in Example 13 was performed using the processed product obtained in Example 4. Table 4 shows the results.

【0059】17)実施例17 実施例5で得られた処理物3kgと石油系タール7kg
とを、シグマ型ブレードを有するバッチ式ニーダーで混
合した。続いて、窒素雰囲気にて700℃まで昇温し、
脱タール処理を行い、しかる後に1200℃ まで熱処
理を行った。得られた熱処理物を、ピンミルにて解砕
し、粗粒子を除く目的で、分級処理を行い、最終的に複
層構造炭素質物粒子を得た。結果を別表4に示す。 18)比較例1 川崎重工業(株)社製KTM0Z型クリプトロンを使用
し、人造黒鉛粉Aを17kg/hrで供給し、ローター
を9000rpmで回転させ、運転した。結果を別表2
と表3に示す。
17) Example 17 3 kg of the treated product obtained in Example 5 and 7 kg of petroleum-based tar
Were mixed in a batch kneader having a sigma type blade. Subsequently, the temperature was raised to 700 ° C. in a nitrogen atmosphere,
A tar removal treatment was performed, followed by a heat treatment to 1200 ° C. The obtained heat-treated product was pulverized with a pin mill, and subjected to a classification treatment for the purpose of removing coarse particles, thereby finally obtaining carbonaceous material particles having a multilayer structure. Table 4 shows the results. 18) Comparative Example 1 KTM0Z type Kryptron manufactured by Kawasaki Heavy Industries, Ltd. was used, artificial graphite powder A was supplied at 17 kg / hr, and the rotor was rotated at 9000 rpm for operation. Table 2 shows the results
And Table 3 below.

【0060】19)比較例2 日本ニューマチック工業社製FM−300S型ファイン
ミルを使用し、人造黒鉛粉Aを40kg/hrで供給
し、ローターを3000rpmで回転させ、運転した。
結果を別表2と表3に示す。 20)比較例3 (株)ターボ工業社製のT−400型ターボミル(4J
型)を使用し、ローターを3600rpmで回転させ、
スクリューフィーダーにて処理物を150kg/hrで
供給し、粉砕を行った。結果を別表2と表3に示す。
19) Comparative Example 2 Using an FM-300S type fine mill manufactured by Nippon Pneumatic Industries, artificial graphite powder A was supplied at 40 kg / hr, and the rotor was rotated at 3000 rpm for operation.
Tables 2 and 3 show the results. 20) Comparative Example 3 T-400 type turbo mill (4J) manufactured by Turbo Kogyo Co., Ltd.
), Rotate the rotor at 3600 rpm,
The processed material was supplied at 150 kg / hr by a screw feeder and pulverized. Tables 2 and 3 show the results.

【0061】21)比較例4 ホソカワミクロン(株)社製ACMパルペライザ10型
を使用し、人造黒鉛粉Bを50kg/hrで供給し、粉
砕羽を7000rpmで回転させ、処理を行った。結果
を別表2と表3に示す。 22)比較例5 ホソカワミクロン(株)社製INM−30型イノマイザ
ーを使用し、人造黒鉛粉Bを190kg/hrで供給
し、粉砕羽を5000rpmで回転させ、処理を行っ
た。結果を別表2と表3に示す。
21) Comparative Example 4 Using an ACM Pulperizer Model 10 manufactured by Hosokawa Micron Co., Ltd., artificial graphite powder B was supplied at 50 kg / hr, and the pulverizing blade was rotated at 7000 rpm to perform the treatment. Tables 2 and 3 show the results. 22) Comparative Example 5 Artificial graphite powder B was supplied at 190 kg / hr using an INM-30 type inomizer manufactured by Hosokawa Micron Corp., and the pulverizing blade was rotated at 5000 rpm to perform the treatment. Tables 2 and 3 show the results.

【0062】23)比較例6 日本ニューマチック工業社製IDS−2UR型衝突板式
ジェットミルを使用し、人造黒鉛粉Bを30kg/hr
で供給し、粉砕を行った。ラマンスペクトル強度の比R
値は0.81、1580cm-1の付近のピークの半値幅
は28.2cm -1であった。その他の結果を別表2と表
3に示す。 24)比較例7 ホソカワミクロン(株)社製カウンタージェットミル2
00AFG(流動層式、粉と粉の接触で粉砕)を使用
し、人造黒鉛粉Aを75kg/hrで供給し、粉砕を行
った。ラマンスペクトル強度の比R値は0.67、15
80cm-1の付近のピークの半値幅は26.5cm-1
あった。その他の結果を別表2と表3に示す。
23) Comparative Example 6 IDS-2UR type impact plate type manufactured by Nippon Pneumatic Industries, Ltd.
30kg / hr of artificial graphite powder B using jet mill
And pulverized. Raman spectrum intensity ratio R
The value is 0.81, 1580 cm-1Half width of the peak near
Is 28.2cm -1Met. Table 2 and Table 2 show other results
3 is shown. 24) Comparative Example 7 Counter Jet Mill 2 manufactured by Hosokawa Micron Corporation
Uses 00AFG (fluid bed type, pulverized by powder-powder contact)
Then, artificial graphite powder A was supplied at a rate of 75 kg / hr and pulverized.
Was. Raman spectrum intensity ratio R value is 0.67,15
80cm-1Of the peak near is 26.5 cm-1so
there were. Other results are shown in Tables 2 and 3.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】[0065]

【表3】 [Table 3]

【0066】[0066]

【表4】 [Table 4]

【0067】[0067]

【発明の効果】本発明の製造方法によれば、高密度の成
型体が要求される用途において、充填性を向上させるた
めに必要な、高充填性を示す、緻密な炭素質粉末が得ら
れる。
According to the production method of the present invention, a dense carbonaceous powder exhibiting a high filling property necessary for improving the filling property can be obtained in applications requiring a high-density molded body. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 裕美 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 亀田 隆 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiromi Fujii 3-1-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Inside the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (72) Inventor Takashi Kameda 8-Chome, Ami-cho, Inashiki-gun, Ibaraki Prefecture No.3-1 Inside the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素質粉末を力学的エネルギーを加える
ことで、処理前後の見かけ密度比を1.1以上、処理前
後のメジアン径比が1以下とすることを特徴とする高充
填性炭素質粉末の製造方法。
1. A highly-filled carbonaceous material characterized in that by applying mechanical energy to a carbonaceous powder, the apparent density ratio before and after treatment is 1.1 or more and the median diameter ratio before and after treatment is 1 or less. Powder manufacturing method.
【請求項2】 処理前の炭素質粉末の層間距離(d00
2)が0.345nm以下、結晶子サイズ(Lc)が1
0nm以上であることを特徴とする請求項1記載の炭素
質粉末の製造方法。
2. An interlayer distance (d00) of a carbonaceous powder before treatment.
2) is 0.345 nm or less, and the crystallite size (Lc) is 1
The method for producing a carbonaceous powder according to claim 1, wherein the thickness is 0 nm or more.
【請求項3】 処理後の高充填性炭素質粉末のメジアン
径が、5〜50μmであり、BET法比表面積が、25
2/g以下であることを特徴とする請求項1又は2記
載の炭素質粉末の製造方法。
3. The highly-filled carbonaceous powder after treatment has a median diameter of 5 to 50 μm and a BET specific surface area of 25 μm.
3. The method for producing a carbonaceous powder according to claim 1, wherein the carbonaceous powder is at most m 2 / g.
【請求項4】 請求項1〜3記載の処理後の高充填性炭
素質粉末を有機化合物と混合した後に、該有機化合物を
炭素化することを特徴とする高充填性複層構造炭素質粉
末の製造方法。
4. A highly-filled, multi-layered carbonaceous powder, comprising mixing the highly-filled carbonaceous powder after the treatment according to claim 1 with an organic compound, and then carbonizing the organic compound. Manufacturing method.
JP14150297A 1997-05-30 1997-05-30 Method for producing highly filling carbonaceous powder Expired - Lifetime JP4029947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14150297A JP4029947B2 (en) 1997-05-30 1997-05-30 Method for producing highly filling carbonaceous powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14150297A JP4029947B2 (en) 1997-05-30 1997-05-30 Method for producing highly filling carbonaceous powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007028687A Division JP4160095B2 (en) 2007-02-08 2007-02-08 Highly filling carbonaceous powder for electrode plates of non-aqueous electrolyte secondary batteries

Publications (2)

Publication Number Publication Date
JPH10330107A true JPH10330107A (en) 1998-12-15
JP4029947B2 JP4029947B2 (en) 2008-01-09

Family

ID=15293450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14150297A Expired - Lifetime JP4029947B2 (en) 1997-05-30 1997-05-30 Method for producing highly filling carbonaceous powder

Country Status (1)

Country Link
JP (1) JP4029947B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514753A (en) * 1999-11-26 2003-04-22 ティムカル アーゲー Method for producing graphite powder with increased bulk density
JP2004511422A (en) * 2000-10-25 2004-04-15 ハイドロ−ケベック Graphite particles with a potato shape and a small amount of impurities on the surface, and a method for producing the same
WO2006025377A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
WO2007000982A1 (en) * 2005-06-27 2007-01-04 Mitsubishi Chemical Corporation Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
US7919208B2 (en) 2005-10-31 2011-04-05 Sony Corporation Anode active material and battery
JP2012084520A (en) * 2010-09-16 2012-04-26 Mitsubishi Chemicals Corp Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
EP2472639A1 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
WO2015029829A1 (en) * 2013-08-26 2015-03-05 日本ゼオン株式会社 Production method for granulated particles used in electrochemical element, electrode used in electrochemical element, and electrochemical element
JP2016517155A (en) * 2013-07-26 2016-06-09 エルジー・ケム・リミテッド Secondary battery electrode with improved energy density and lithium secondary battery including the same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514753A (en) * 1999-11-26 2003-04-22 ティムカル アーゲー Method for producing graphite powder with increased bulk density
JP2016175839A (en) * 1999-11-26 2016-10-06 イメリス グラファイト アンド カーボン スイッツァランド エスアー Method for producing graphite powder with increased bulk density
JP2014065660A (en) * 1999-11-26 2014-04-17 Timcal Ag Method for producing graphite powder with an increased bulk density
JP2004511422A (en) * 2000-10-25 2004-04-15 ハイドロ−ケベック Graphite particles with a potato shape and a small amount of impurities on the surface, and a method for producing the same
US9508983B2 (en) 2000-10-25 2016-11-29 Hydro-Quebec Potatolike shaped graphite particles with low impurity rate at the surface, process for preparing same
US9444092B2 (en) 2000-10-25 2016-09-13 Hydro-Quebec Potato-shaped graphite particles with low impurity rate at the surface, method for preparing the same
US9412999B2 (en) 2000-10-25 2016-08-09 Hydro-Quebec Potato-shaped graphite particles with low impurity rate at the surface, method for preparing the same
US9312537B2 (en) 2000-10-25 2016-04-12 Hydro-Quebec Potato-shaped graphite particles with low impurity rate at the surface, method for preparing the same
JP2009184915A (en) * 2000-10-25 2009-08-20 Hydro Quebec Potato-shaped graphite particle with low impurity rate at the surface, and method for preparing same
US9184437B2 (en) 2000-10-25 2015-11-10 Hydro-Quebec Potato-shaped graphite particles with low impurity rate at the surface, method for preparing the same
JP2014028753A (en) * 2000-10-25 2014-02-13 Hydro Quebec Potato-shaped graphite particle with low impurity rate at surface, and method for preparing the same
EP2472636A2 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-Electrolyte Secondary Battery
EP2472638A2 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-Electrolyte Secondary Battery
EP2472637A2 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
EP2472639A1 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
US8404383B2 (en) 2004-08-30 2013-03-26 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JP4992425B2 (en) * 2004-08-30 2012-08-08 三菱化学株式会社 Non-aqueous secondary battery negative electrode material, non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
JP4992426B2 (en) * 2004-08-30 2012-08-08 三菱化学株式会社 Non-aqueous secondary battery negative electrode material, non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
JPWO2006025376A1 (en) * 2004-08-30 2008-05-08 三菱化学株式会社 Non-aqueous secondary battery negative electrode material, non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
JP2011238622A (en) * 2004-08-30 2011-11-24 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2006025377A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
WO2006025376A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JPWO2006025377A1 (en) * 2004-08-30 2008-05-08 三菱化学株式会社 Non-aqueous secondary battery negative electrode material, non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
US7897283B2 (en) 2005-06-27 2011-03-01 Mitsubishi Chemical Corporation Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing IT, cathode and non-aqueous secondary battery
WO2007000982A1 (en) * 2005-06-27 2007-01-04 Mitsubishi Chemical Corporation Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
US7919208B2 (en) 2005-10-31 2011-04-05 Sony Corporation Anode active material and battery
JP2012084520A (en) * 2010-09-16 2012-04-26 Mitsubishi Chemicals Corp Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2016517155A (en) * 2013-07-26 2016-06-09 エルジー・ケム・リミテッド Secondary battery electrode with improved energy density and lithium secondary battery including the same
US9991507B2 (en) 2013-07-26 2018-06-05 Lg Chem, Ltd. Electrode for secondary battery having improved energy density and lithium secondary battery including the same
WO2015029829A1 (en) * 2013-08-26 2015-03-05 日本ゼオン株式会社 Production method for granulated particles used in electrochemical element, electrode used in electrochemical element, and electrochemical element
JPWO2015029829A1 (en) * 2013-08-26 2017-03-02 日本ゼオン株式会社 Method for producing granulated particles for electrochemical element, electrode for electrochemical element, and electrochemical element

Also Published As

Publication number Publication date
JP4029947B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JP3916012B2 (en) Non-aqueous secondary battery electrode
JP4160095B2 (en) Highly filling carbonaceous powder for electrode plates of non-aqueous electrolyte secondary batteries
JP3534391B2 (en) Carbon material for electrode and non-aqueous secondary battery using the same
KR101341695B1 (en) 2 2 graphite composite particle for nonaqueous secondary battery negative electrode active material comprising the same negative electrode and nonaqueous secondary battery
KR101598236B1 (en) Anode powders for batteries
JP3460742B2 (en) Method for producing electrode material for non-aqueous solvent secondary battery
KR101473809B1 (en) Carbon material, carbonaceous material for battery electrode, and battery
KR101971448B1 (en) Carbon material, cell electrode material, and cell
KR20170103003A (en) Carbon material and nonaqueous secondary battery using carbon material
JP4199813B2 (en) Carbonaceous or graphite particles
KR20110033134A (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
JP5772939B2 (en) Carbon material for electrodes
CN111517319A (en) Carbon material and nonaqueous secondary battery using same
JP2000223120A (en) Carbon material for electrode
KR20130052735A (en) Organic coated fine particle powders
JP3106129B2 (en) Anode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4029947B2 (en) Method for producing highly filling carbonaceous powder
JP3712288B2 (en) Nonaqueous solvent secondary battery electrode material and method for producing the same
JP3666032B2 (en) Method for producing carbon-based composite material
JP4973247B2 (en) Carbon material for electrodes
JP2013001582A (en) Isotropic graphite material, and method for producing the same
JP3698181B2 (en) Negative electrode material for lithium ion secondary battery
JP2002121570A (en) Process for manufacturing bulk mesophase carbon and graphite powder
JP2001202961A (en) Anode material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2004067494A (en) Method for manufacturing graphite powder

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040402

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

EXPY Cancellation because of completion of term