JPH10329251A - Structure with plural layer waveshape plate with optimum high-to-low ratio - Google Patents

Structure with plural layer waveshape plate with optimum high-to-low ratio

Info

Publication number
JPH10329251A
JPH10329251A JP10005182A JP518298A JPH10329251A JP H10329251 A JPH10329251 A JP H10329251A JP 10005182 A JP10005182 A JP 10005182A JP 518298 A JP518298 A JP 518298A JP H10329251 A JPH10329251 A JP H10329251A
Authority
JP
Japan
Prior art keywords
corrugated plate
plate
low
corrugated
compressive strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10005182A
Other languages
Japanese (ja)
Other versions
JP2928782B2 (en
Inventor
Ukku Kim Do
ウック キム ドー
Jon Kim Ki
ジョン キム キ
Seiji Seki
征治 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DEYONG PACKING CO Ltd
Original Assignee
DEYONG PACKING CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DEYONG PACKING CO Ltd filed Critical DEYONG PACKING CO Ltd
Publication of JPH10329251A publication Critical patent/JPH10329251A/en
Application granted granted Critical
Publication of JP2928782B2 publication Critical patent/JP2928782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/0003Shaping by bending, folding, twisting, straightening, flattening or rim-rolling; Shaping by bending, folding or rim-rolling combined with joining; Apparatus therefor
    • B31F1/0006Bending or folding; Folding edges combined with joining; Reinforcing edges during the folding thereof
    • B31F1/0009Bending or folding; Folding edges combined with joining; Reinforcing edges during the folding thereof of plates, sheets or webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/0003Shaping by bending, folding, twisting, straightening, flattening or rim-rolling; Shaping by bending, folding or rim-rolling combined with joining; Apparatus therefor
    • B31F1/0035Straightening or flattening

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure having a plural layer waveshape plate of an optimum high-to-low ratio for ensuring high compression strength by suppressing a decrease in abrupt compression strength after the plate is bent, suppressing an increased amount of the compression strength due to an increase in an initial compression deforming amount, and incorporating an initial cushioning effect. SOLUTION: In the structure 7 having a high waveshape plate 3c and a low waveshape plate 3d of different heights between two flat plates 1 and 2, when a high-to-low ratio (Hlow/Hhigh) of the plate 3d to the plate 3c is set to 5 range from high-to-low ratio for deforming the plate 3d in a trapezoidal shape to a high-to-low ratio for bringing the plate 3d into contact with the plate 3c when compression forces are applied perpendicularly to the plates 1, 2 to deform the plate 3c in a rectangular section. More particularly, it is set to a range of 0.8 to 0.95.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、包装材として使用
される段ボールの如く、二枚の平面板とこれらの間の波
形板とから構成される構造体に関し、特に、二枚の平面
板間に高さの異なる二層以上の波形板を備える構造体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure composed of two flat plates and a corrugated plate between them, such as a cardboard used as a packaging material. And a structure having two or more layers of corrugated plates having different heights.

【0002】[0002]

【従来の技術】この種の構造体は、一般に、図1に示す
ように、平面板1と平面板2との間に波形板3を配置
し、それらを接着剤4で接着して製造された一層波形板
構造体5として提供される。
2. Description of the Related Art A structure of this type is generally manufactured by disposing a corrugated plate 3 between a flat plate 1 and a flat plate 2 as shown in FIG. It is provided as a single-layer corrugated plate structure 5.

【0003】この構造体5の平面圧縮特性、即ち、二枚
の平面板1,2に対して垂直に圧縮力を加えたときの圧
縮特性は、実験結果により図2のように現れる。図3は
この間の波形板3の変形挙動の説明図である。
[0003] The plane compression characteristics of the structure 5, that is, the compression characteristics when a compressive force is applied vertically to the two flat plates 1 and 2 appear as shown in FIG. 2 according to the experimental results. FIG. 3 is an explanatory diagram of the deformation behavior of the corrugated plate 3 during this time.

【0004】圧縮力を加える前の図2中のa点におい
て、構造体5を構成する波形板3は、図3(a)に示す
如く山峰形状を有している。構造体5の圧縮強度(P)
は、圧縮変形量(δ)が増加するにつれて増加し、b点
で第1ピークを形成する。このときの波形板3の断面形
状は、図3(b)に示す如く梯形となる。その後の構造
体5の圧縮強度(P)は、圧縮変形量(δ)の増加につ
れて更に増加し、c点で第2ピークを形成する。このと
きの波形板3の断面形状は、図3(c)に示す如く長方
形となる。その後は波形板3が曲るため、c点での圧縮
強度(P)が最大値となり、更なる圧縮変形量(δ)の
増加につれて圧縮強度(P)は急激に減少する。
At a point a in FIG. 2 before a compressive force is applied, the corrugated plate 3 constituting the structure 5 has a mountain peak shape as shown in FIG. Compressive strength of structure 5 (P)
Increases as the amount of compressive deformation (δ) increases, and forms a first peak at point b. The cross-sectional shape of the corrugated plate 3 at this time is a trapezoid as shown in FIG. Thereafter, the compressive strength (P) of the structure 5 further increases as the amount of compressive deformation (δ) increases, and a second peak is formed at the point c. The cross-sectional shape of the corrugated plate 3 at this time is a rectangle as shown in FIG. Thereafter, since the corrugated plate 3 bends, the compressive strength (P) at the point c becomes the maximum value, and the compressive strength (P) rapidly decreases as the amount of compressive deformation (δ) further increases.

【0005】一層波形板構造体5よりもっと大きい圧縮
強度を持たせるため、二枚の波形板3を付けて二重に構
成した波形板構造体が提供される。二重波形板構造体6
は、図4に示すように、平面板1と平面板2間に、接着
剤4aにより接着された波形板3a及び波形板3bを配
置し、これらを接着剤4bで接着したものである。
[0005] In order to have a greater compressive strength than the corrugated plate structure 5, a corrugated plate structure provided with two corrugated plates 3 is provided. Double corrugated plate structure 6
As shown in FIG. 4, a corrugated plate 3a and a corrugated plate 3b bonded by an adhesive 4a are arranged between a flat plate 1 and a flat plate 2, and these are bonded by an adhesive 4b.

【0006】この構造体6の平面圧縮特性は、細密な分
析の結果、図5のように、一層波形板構造体5の場合と
同様に現れる。図6はこの間の波形板3a,3bの変形
挙動の説明図である。
[0006] As a result of close analysis, the planar compression characteristic of the structure 6 appears as in the case of the corrugated plate structure 5 as shown in FIG. FIG. 6 is an explanatory diagram of the deformation behavior of the corrugated plates 3a and 3b during this time.

【0007】圧縮力を加える前の図5中のa点におい
て、構造体6を構成する波形板3a及び波形板3bは、
図6(a)に示す如く山峰形状を有している。構造体6
の圧縮強度(P)は、圧縮変形量(δ)が増加するにつ
れて増加し、b点で第1ピークを形成する。このとき波
形板3a及び波形板3bは、図6(b)に示す如く梯形
の断面形状を有する。その後の構造体6の圧縮強度
(P)は、圧縮変形量(δ)の増加につれて更に増加
し、c点で第2ピークを形成する。このときの波形板3
a及び波形板3bの断面形状は、図6(c)に示す如く
長方形となる。その後は波形板3a及び波形板3bが曲
るため、c点での圧縮強度(P)が最大値となり、更な
る圧縮変形量(δ)の増加につれて圧縮強度(P)は急
激に減少する。
At the point a in FIG. 5 before the compressive force is applied, the corrugated plates 3a and 3b constituting the structure 6
It has a mountain peak shape as shown in FIG. Structure 6
The compressive strength (P) increases as the amount of compressive deformation (δ) increases, and forms a first peak at point b. At this time, the corrugated plates 3a and 3b have a trapezoidal cross-sectional shape as shown in FIG. Thereafter, the compressive strength (P) of the structure 6 further increases as the amount of compressive deformation (δ) increases, and forms a second peak at the point c. Corrugated plate 3 at this time
The cross-sectional shapes of a and the corrugated plate 3b are rectangular as shown in FIG. Thereafter, since the corrugated plate 3a and the corrugated plate 3b are bent, the compressive strength (P) at the point c becomes the maximum value, and the compressive strength (P) rapidly decreases as the amount of compressive deformation (δ) further increases.

【0008】二枚の波形板3a,3bを有する二重波形
板構造体6においては、図5中に破線により示す一層波
形板構造体5に比べ、圧縮変形量(δ)が増加するにつ
れて圧縮強度(P)の初期増加量が大きく、また圧縮強
度(P)の第1,2ピーク値が大きいことがわかる。
In the double corrugated plate structure 6 having two corrugated plates 3a and 3b, as compared with the one-layer corrugated plate structure 5 indicated by a broken line in FIG. It can be seen that the initial increase in the strength (P) is large and the first and second peak values of the compressive strength (P) are large.

【0009】[0009]

【発明が解決しようとする課題】以上の如く一層波形板
構造体5は、図3(c)に示すように、波形板3が長方
形となるときに最大圧縮強度となり、これを境界として
波形板3が曲るため、圧縮強度(P)が急激に減少する
という問題がある。また、図2に示す圧縮変形量(δ)
−圧縮強度(P)曲線において、横軸とδ−P曲線によ
り取囲まれた面積により求められる総圧縮強度(P*)
(図12参照)が二重波形板構造体6に比べてかなり低
い。
As described above, the one-layer corrugated plate structure 5 has the maximum compressive strength when the corrugated plate 3 is rectangular as shown in FIG. 3 (c). Since 3 is bent, there is a problem that the compressive strength (P) rapidly decreases. Also, the amount of compressive deformation (δ) shown in FIG.
-In the compressive strength (P) curve, the total compressive strength (P *) determined by the area surrounded by the horizontal axis and the δ-P curve
(See FIG. 12) is considerably lower than the double corrugated plate structure 6.

【0010】二重波形板構造体6は波形板が二枚である
ので、総圧縮強度(P*)は一層波形板構造体5よりは
高いが、図6(c)に示すように、二重波形板3a,3
bが長方形となるときに最大圧縮強度となり、これを境
界として波形板3a,3bが曲るため、一層波形板構造
体5と同様、圧縮強度(P)が急激に減少するという問
題がある。また、一層波形板構造体5に比べ、圧縮強度
(P)の初期増加量が大きいため、初期緩衝効果は殆ど
ない。この初期緩衝効果は、包装材としての段ボールに
おいて重要な特性である。
Since the double corrugated plate structure 6 has two corrugated plates, the total compressive strength (P *) is higher than that of the corrugated plate structure 5, but as shown in FIG. Heavy corrugated plates 3a, 3
When b becomes a rectangle, the compression strength becomes the maximum, and since the corrugated plates 3a and 3b are bent at the boundary, there is a problem that the compression strength (P) is sharply reduced similarly to the corrugated plate structure 5. Further, since the initial increase amount of the compressive strength (P) is larger than that of the corrugated plate structure 5, there is almost no initial buffer effect. This initial buffering effect is an important property in cardboard as a packaging material.

【0011】波形板が曲った後の急激な圧縮強度の減少
を抑制し、また初期緩衝効果を持たせるためには、二枚
の波形板を付けて二重とせず、波形板間に間隔(空間)
を与えて高波形板と低波形板が二層となるように構成さ
れる構造体が提案できる。
In order to suppress a sudden decrease in compressive strength after the corrugated plate is bent and to have an initial buffer effect, two corrugated plates are not used to form a double, but a gap between the corrugated plates is used. space)
And a structure configured such that the high corrugated plate and the low corrugated plate have two layers can be proposed.

【0012】二層波形板構造体7は、図7の(A)、
(B)に示すように、平面板1と平面板2間に高波形板
3cと低波形板3dを配置し、これらを接着剤4で接着
したものである。ここで(A)は、低波形板3dの高さ
が高波形板3cの高さより少し低い場合を示し、(B)
は低波形板3dの高さが高波形板3cの高さより極端に
低い場合を示す。
The two-layer corrugated plate structure 7 is shown in FIG.
As shown in (B), a high corrugated plate 3c and a low corrugated plate 3d are arranged between a flat plate 1 and a flat plate 2, and these are bonded with an adhesive 4. Here, (A) shows the case where the height of the low corrugated plate 3d is slightly lower than the height of the high corrugated plate 3c, and (B)
Indicates a case where the height of the low corrugated plate 3d is extremely lower than the height of the high corrugated plate 3c.

【0013】細密な調査結果と実験結果により求められ
た前記二層波形板構造体7の平面圧縮特性を図8に示
し、この間の高波形板3c及び低波形板3dの変形挙動
の説明図を図9及び図10に示す。
FIG. 8 shows the plane compression characteristics of the double-layer corrugated plate structure 7 obtained based on detailed investigation results and experimental results. FIG. 8 is an explanatory diagram of the deformation behavior of the high corrugated plate 3c and the low corrugated plate 3d during this period. 9 and 10.

【0014】図7(A)に示す構造体7、即ち、低波形
板3dの高さが高波形板3cの高さより少し低い構造体
7の場合、図9(b)に示す如く、高波形板3cの断面
形状が梯形となったとき、図8の平面圧縮特性上に第1
ピーク(A)−bが生じ、その後図9(c)に示す如
く、高波形板3cの断面形状が長方形となったとき、図
8の平面圧縮特性上に第2ピーク(A)−cが生じる。
この第2ピーク(A)−cでの圧縮強度は、図8中に一
点鎖線により示す二重波形板構造体6における第2ピー
クよりは低いが、一層波形板構造体5よりはかなり高
く、変形挙動自体は二重波形板構造体6に似ている。
In the case of the structure 7 shown in FIG. 7A, that is, the structure 7 in which the height of the low corrugated plate 3d is slightly lower than the height of the high corrugated plate 3c, as shown in FIG. When the cross-sectional shape of the plate 3c becomes trapezoidal, the first compression characteristic shown in FIG.
When the peak (A) -b is generated, and thereafter, as shown in FIG. 9 (c), when the cross-sectional shape of the high corrugated plate 3c becomes rectangular, the second peak (A) -c appears on the plane compression characteristic of FIG. Occurs.
The compressive strength at the second peak (A) -c is lower than the second peak in the double corrugated plate structure 6 shown by a dashed line in FIG. The deformation behavior itself is similar to the double corrugated plate structure 6.

【0015】更に、図9(d)に示す如く、高波形板3
cが長方形となった後に低波形板3dが長方形となるた
め、第2ピーク(A)−cの後に第3ピーク(A)−d
が生ずるが、図7(A)に示す構造体7においては高波
形板3cと低波形板3dの高低差が殆どないため、前記
第3ピーク(A)−dは低く、二重波形板構造体6にお
けると同様、第2ピーク(A)−cの後の圧縮強度
(P)の急減が生じる。
Further, as shown in FIG.
Since the low corrugated plate 3d becomes rectangular after c becomes rectangular, the third peak (A) -d follows the second peak (A) -c.
However, in the structure 7 shown in FIG. 7A, since the height difference between the high corrugated plate 3c and the low corrugated plate 3d is almost zero, the third peak (A) -d is low, and the double corrugated plate structure As in body 6, a sharp decrease in compressive strength (P) occurs after the second peak (A) -c.

【0016】図7(B)に示す構造体7、即ち、低波形
板3dの高さが高波形板3cより極端に低い構造体7の
場合、図10(c)に示す如く、高波形板3cの断面形
状が長方形となったとき、図8の平面圧縮特性上に第2
ピーク(B)−cが生じ、この後、高波形板3cが低波
形板3dと接触するまでの間の圧縮特性は、一層波形板
構造体5のそれと略一致するが、前記接触の後は、低波
形板3dが梯形から長方形へと変形するため、図10
(d)に示す如く低波形板3dの断面形状が長方形とな
ったとき、図8の平面圧縮特性上に第3ピーク(B)−
dが生じる。ところが、低波形板3dの高さが低いため
この第3ピーク(B)−dは低く、総圧縮強度(P*)
は一層波形板構造体5におけるそれと略同等である。
In the case of the structure 7 shown in FIG. 7B, that is, the structure 7 in which the height of the low corrugated plate 3d is extremely lower than that of the high corrugated plate 3c, as shown in FIG. When the cross-sectional shape of 3c is rectangular, the second
A peak (B) -c occurs, and after that, the compression characteristics until the high corrugated plate 3c comes into contact with the low corrugated plate 3d substantially match those of the corrugated plate structure 5, but after the contact. Since the low corrugated plate 3d is deformed from a trapezoid to a rectangle, FIG.
As shown in FIG. 8D, when the cross-sectional shape of the low-corrugated plate 3d is rectangular, the third peak (B) −
d occurs. However, since the height of the low corrugated plate 3d is low, the third peak (B) -d is low, and the total compressive strength (P *)
Is substantially the same as that in the corrugated plate structure 5.

【0017】このように、低波形板3dの高さが高波形
板3cの高さより少し低い二層波形板構造体7の平面圧
縮特性は、二重波形板構造体6のそれに近く、また低波
形板3dの高さが高波形板3cの高さより極端に低い二
層波形板構造体7の平面圧縮特性は、一層波形板構造体
5のそれと殆ど同じになり、二重波形板構造体6及び一
層波形板構造体5における前述した問題を解消できな
い。
As described above, the planar compression characteristics of the two-layer corrugated plate structure 7 in which the height of the low corrugated plate 3d is slightly lower than the height of the high corrugated plate 3c are close to those of the double corrugated plate structure 6, and are low. The planar compression characteristics of the two-layer corrugated plate structure 7 in which the height of the corrugated plate 3d is extremely lower than the height of the high corrugated plate 3c are almost the same as those of the one-layer corrugated plate structure 5, and the double corrugated plate structure 6 And the above-mentioned problem in the corrugated plate structure 5 cannot be solved.

【0018】本発明は斯かる事情に鑑みてなされたもの
であり、二層波形板構造体7の低波形板3dの高さを高
波形板3cの高さに対して適正に設定することにより、
高波形板3cが曲った後の急激な圧縮強度の減少を抑制
し、高い圧縮強度を確保すると共に、圧縮初期には高波
形板3cのみを変形させ、圧縮強度(P)の初期増加量
を抑制して、所望の初期緩衝効果が得られる構造体を提
供することを目的とする。
The present invention has been made in view of such circumstances, and by appropriately setting the height of the low corrugated plate 3d of the two-layer corrugated plate structure 7 with respect to the height of the high corrugated plate 3c. ,
Abrupt decrease in compressive strength after bending of the high corrugated plate 3c is suppressed, high compressive strength is secured, and only the high corrugated plate 3c is deformed in the initial stage of compression to reduce the initial increase in compressive strength (P). It is an object of the present invention to provide a structure capable of suppressing the occurrence of a desired initial buffer effect.

【0019】[0019]

【課題を解決するための手段】本発明の第1発明に係る
構造体は、高さの異なる波形断面を有する二層以上の波
形板を二枚の平面板間に備える構造体において、前記波
形板の相互の高低比が、前記二枚の平面板に対して垂直
に圧縮力を加えて高波形板を長方形断面に変形せしめた
とき、低波形板が梯形断面に変形する高低比から、低波
形板が高波形板と接触する高低比までの範囲に設定して
あることを特徴とする。
According to a first aspect of the present invention, there is provided a structure having two or more layers of corrugated plates having corrugated sections having different heights between two flat plates. When the high and low ratio of the low corrugated plate changes to a trapezoidal cross section when the high corrugated plate is deformed into a rectangular cross-section by applying a compressive force perpendicular to the two flat plates, The corrugated plate is set in a range up to a height ratio at which the corrugated plate contacts the high corrugated plate.

【0020】この発明においては、高波形板が変形して
長方形断面となったとき、低波形板は、梯形断面にまで
変形した状態と、高波形板との接触により変形を開始す
る状態との間の状態にあり、長方形断面となった高波形
板が曲がることによる急激な圧縮強度の低下を低波形板
の作用により抑制して、高い圧縮強度を確保する。ま
た、圧縮初期には高波形板のみが変形し、圧縮強度の初
期増加量を小さく保つことができ、十分な初期緩衝効果
が得られる。
In the present invention, when the high corrugated plate is deformed to have a rectangular cross-section, the low corrugated plate is deformed to a trapezoidal cross-section, and starts to be deformed by contact with the high corrugated plate. In the middle state, a sudden decrease in compressive strength due to bending of the high-corrugated plate having a rectangular cross section is suppressed by the action of the low-corrugated plate, and high compressive strength is secured. In the initial stage of compression, only the high corrugated plate is deformed, and the initial increase in compressive strength can be kept small, and a sufficient initial buffer effect can be obtained.

【0021】本発明の第2発明に係る構造体は、高波形
板に対する低波形板の高低比が、0.8〜0.95であ
ることを特徴とする。
The structure according to the second aspect of the present invention is characterized in that the height ratio of the low corrugated plate to the high corrugated plate is 0.8 to 0.95.

【0022】この発明においては、高波形板に対する低
波形板の高低比を0.8〜0.95の範囲に設定し、高
い圧縮強度を確保と、十分な初期緩衝効果とを確実に実
現する。
In the present invention, the height ratio of the low-corrugated plate to the high-corrugated plate is set in the range of 0.8 to 0.95 to ensure a high compressive strength and a sufficient initial buffer effect. .

【0023】[0023]

【発明の実施の形態】図11は、図7に示す如き二層波
形板構造体7において、高波形板3cの高さ(Hhigh)
に対する低波形板3dの高さ(Hlow )の比(Hlow /
Hhigh)を変化させたときの総圧縮強度(P*)と初期
緩衝量(a)との関係を調査及び実験により求めた結果
を示す図である。
FIG. 11 shows the height (Hhigh) of a high corrugated plate 3c in a two-layer corrugated plate structure 7 as shown in FIG.
Ratio of the height (Hlow) of the low corrugated plate 3d to the height (Hlow /
FIG. 10 is a diagram showing the results obtained by investigating and experimenting the relationship between the total compressive strength (P *) and the initial buffer amount (a) when Hhigh) was changed.

【0024】総圧縮強度(P*)は、図12に示す圧縮
変形量(δ)−圧縮強度(P)曲線において、ハッチン
グを施した部分の面積、即ち、横軸とδ−P曲線とによ
り取囲まれた面積として求められる。また初期緩衝量
(a)は、δ−P曲線の初期傾斜αの逆数として求めら
れる。
The total compressive strength (P *) is calculated from the area of the hatched portion, that is, the horizontal axis and the δ-P curve in the compressive deformation (δ) -compressive strength (P) curve shown in FIG. It is determined as the area enclosed. The initial buffer amount (a) is obtained as the reciprocal of the initial slope α of the δ-P curve.

【0025】図11に示すように、総圧縮強度(P*)
は、一層波形板構造体5の圧縮強度を起点とし、高低比
(Hlow /Hhigh)の増加に伴って徐々に増加し、所定
の高低比以上となった後に急激に増加する。一方、初期
緩衝量(a)は、所定の高低比に達するまでの間には、
高低比(Hlow /Hhigh)の増加に拘わらず一層波形板
構造体5の初期緩衝量と略同一に保たれ、その後急激に
減少する。初期緩衝量(a)が急減する高低比は、総圧
縮強度(P*)が急増する高低比よりも十分に大きい。
As shown in FIG. 11, the total compressive strength (P *)
Starting from the compressive strength of the corrugated plate structure 5, it gradually increases as the height ratio (Hlow / Hhigh) increases, and then rapidly increases after the height ratio exceeds a predetermined height ratio. On the other hand, the initial buffer amount (a)
Despite the increase in the height ratio (Hlow / Hhigh), the initial buffer amount of the corrugated plate structure 5 is further kept substantially the same, and then rapidly decreases. The height ratio at which the initial buffer amount (a) sharply decreases is sufficiently larger than the height ratio at which the total compressive strength (P *) sharply increases.

【0026】従って、高波形板3cと低波形板3dとの
高低比(Hlow /Hhigh)を、図11に示すように、総
圧縮強度(P*)が急増する高低比と初期緩衝量(a)
が急減する高低比との間に設定することにより、総圧縮
強度(P*)が高く、しかも初期緩衝量(a)が小さく
て初期緩衝効果が大きい二層波形板構造体7が得られ
る。
Therefore, as shown in FIG. 11, the height ratio (Hlow / Hhigh) between the high corrugated plate 3c and the low corrugated plate 3d is determined by changing the ratio between the height at which the total compressive strength (P *) sharply increases and the initial buffer amount (a). )
By setting the height ratio between the height and the height ratio, the two-layer corrugated plate structure 7 having a high total compression strength (P *), a small initial buffer amount (a), and a large initial buffer effect can be obtained.

【0027】図13は、高波形板3cと低波形板3dと
の高低比(Hlow /Hhigh)を図11中に示す最適な範
囲に設定した二層波形板構造体7を平面圧縮するときの
高波形板3c及び低波形板3dの変形挙動の説明図であ
る。
FIG. 13 shows a case where the two-layer corrugated plate structure 7 in which the height ratio (Hlow / Hhigh) between the high corrugated plate 3c and the low corrugated plate 3d is set to the optimum range shown in FIG. It is explanatory drawing of the deformation | transformation behavior of the high corrugated board 3c and the low corrugated board 3d.

【0028】最適の高低比の範囲は、高波形板3cの断
面形状が長方形となったとき、図13(B)に示すよう
に、低波形板3dの断面形状も長方形となる高低比は含
まず、図13(A)に示すように、低波形板3dの断面
形状が梯形となる高低比よりも小さく、図13(C)に
示すように、低波形板3dの頂部が高波形板3cと接触
する高低比よりは大きい。この範囲は具体的には、高波
形板3cの高さに対する低波形板3dの高さの高低比
(Hlow /Hhigh)が、0.8〜0.95となる範囲で
ある。
The range of the optimum height ratio includes the height ratio where the cross-sectional shape of the low corrugated plate 3d is also rectangular as shown in FIG. 13B when the cross-sectional shape of the high corrugated plate 3c is rectangular. However, as shown in FIG. 13A, the cross-sectional shape of the low corrugated plate 3d is smaller than the trapezoidal height ratio, and as shown in FIG. 13C, the top of the low corrugated plate 3d is the high corrugated plate 3c. Greater than the height ratio that comes into contact with. Specifically, this range is a range in which the height ratio (Hlow / Hhigh) of the height of the low corrugated plate 3d to the height of the high corrugated plate 3c is 0.8 to 0.95.

【0029】図14は前述した最適の高低比を有する二
層波形板構造体7の平面圧縮特性を、一層波形板構造体
5及び二重波形板構造体6の平面圧縮特性と比較した実
験結果を示す図である。
FIG. 14 is an experimental result comparing the plane compression characteristics of the two-layer corrugated plate structure 7 having the above-described optimum height ratio with those of the single-layer corrugated plate structure 5 and the double-corrugated plate structure 6. FIG.

【0030】図中に実線にて示すように、最適の高低比
を有する二層波形板構造体7において、初期圧縮変形量
の増加に伴う圧縮強度の増加量、換言すると、図12に
定義された初期緩衝量(a)(圧縮変形量δ−圧縮強度
P曲線の初期傾斜αの逆数)は、同図中に破線により示
す一層波形板構造体5のそれと殆ど同じである。
As shown by the solid line in the figure, in the two-layer corrugated plate structure 7 having the optimum height ratio, the amount of increase in the compressive strength with the increase in the amount of initial compressive deformation, in other words, as defined in FIG. The initial buffer amount (a) (the reciprocal of the initial slope α of the compressive deformation amount δ-compressive strength P curve) is almost the same as that of the single-layer corrugated plate structure 5 indicated by a broken line in FIG.

【0031】また、最適の高低比を有する二層波形板構
造体7において、圧縮変形による圧縮強度、換言する
と、図12に定義された総圧縮強度(P*)(圧縮変形
量δ−圧縮強度P曲線と横軸とより取囲まれた面積)
は、同図中に一点鎖線により示す二重波形板構造体6の
それよりは小さいが、破線により示す一層波形板構造体
5のそれよりも十分に大きい。
Further, in the two-layer corrugated plate structure 7 having the optimum height ratio, the compressive strength due to compressive deformation, in other words, the total compressive strength (P *) (compressive deformation amount δ−compressive strength) defined in FIG. Area surrounded by P curve and horizontal axis)
Is smaller than that of the double corrugated plate structure 6 indicated by a dashed line in the same figure, but is sufficiently larger than that of the single-layer corrugated plate structure 5 indicated by the broken line.

【0032】このように、高波形板3cの高さに対する
低波形板3dの高さの比を最適とすることにより、初期
緩衝効果は二重波形板構造体6よりは高く、一層波形板
構造体5と殆ど同じになる。また平面圧縮強度は、一層
波形板構造体5よりも十分に大きくなる。また、高波形
板3cが曲った後、圧縮強度が急激に減少することはな
い。このため、高強度と高い初期緩衝効果を兼備した波
形板構造体を提供することができる。
As described above, by optimizing the ratio of the height of the low corrugated plate 3d to the height of the high corrugated plate 3c, the initial buffer effect is higher than that of the double corrugated plate structure 6, and the more corrugated plate structure. It is almost the same as body 5. Further, the plane compressive strength is much higher than that of the corrugated plate structure 5. Further, after the high corrugated plate 3c is bent, the compressive strength does not suddenly decrease. Therefore, a corrugated plate structure having both high strength and a high initial buffer effect can be provided.

【0033】図15は、高波形板3cに対する低波形板
3dの高低比(Hlow /Hhigh)=0.85とした二層
波形板構造体7の平面圧縮特性の実測結果を示す図であ
り、図16は、この間の高波形板3c及び低波形板3d
の変形挙動の説明図である。図15には、比較例とし
て、一層波形板構造体5及び二重波形板構造体6の平面
圧縮特性を、破線及び一点鎖線により示してある。
FIG. 15 is a diagram showing the measured results of the plane compression characteristics of the two-layer corrugated plate structure 7 in which the height ratio (Hlow / Hhigh) of the low corrugated plate 3d to the high corrugated plate 3c is 0.85. FIG. 16 shows the high corrugated plate 3c and the low corrugated plate 3d during this time.
FIG. 4 is an explanatory diagram of a deformation behavior of the. In FIG. 15, as a comparative example, the plane compression characteristics of the single-layer corrugated plate structure 5 and the double-corrugated plate structure 6 are indicated by broken lines and alternate long and short dash lines.

【0034】同図に示すように、二層波形板構造体7の
初期圧縮変形量の増加による圧縮強度増加量(初期傾
斜)は、一層波形板構造体5のそれと殆ど同じであり、
二層波形板構造体7の圧縮変形による圧縮強度は、一層
波形板構造体5よりも十分に大きく、二重波形板構造体
6に近いことがわかる。
As shown in the figure, the amount of increase in the compressive strength (initial inclination) due to the increase in the amount of initial compressive deformation of the two-layer corrugated plate structure 7 is almost the same as that of the one-layer corrugated plate structure 5.
It can be seen that the compressive strength of the double-layer corrugated plate structure 7 due to compressive deformation is sufficiently higher than that of the single-layer corrugated plate structure 5 and close to that of the double-corrugated plate structure 6.

【0035】以下、二層波形板構造体7の平面圧縮変形
挙動を順に説明する。変形曲線上のa点において、二層
波形板構造体7の高波形板3c及び低波形板3dは、図
16(a)に示す如く、共に山峰形の断面形状をなす。
次いでb点では、図16(c)に示す如く高波形板3c
の断面形状が梯形となり、圧縮強度が増加し、図15の
圧縮変形量(δ)−圧縮強度(P)曲線上に第1ピーク
が生じる。このとき低波形板3dは、山峰形状を略保っ
た状態にある。
Hereinafter, the plane compressive deformation behavior of the two-layer corrugated plate structure 7 will be described in order. At point a on the deformation curve, the high corrugated plate 3c and the low corrugated plate 3d of the two-layer corrugated plate structure 7 both have a mountain-shaped cross-sectional shape as shown in FIG.
Next, at a point b, as shown in FIG.
Has a trapezoidal cross-sectional shape, the compressive strength increases, and a first peak occurs on the compressive deformation (δ) -compressive strength (P) curve in FIG. At this time, the low corrugated plate 3d is in a state where the peak shape is substantially maintained.

【0036】次いでc点では、図16(c)に示す如
く、高波形板3cが長方形となると共に低波形板3dが
梯形となるため、圧縮強度が急増し、図15のδ−P曲
線上に第2ピークが生じる。c点を過ぎると高波形板3
cが曲るため、圧縮強度は減少するが、この減少程度は
低波形板3dの変形により小さく保たれ、図16(d)
に示す如く、低波形板3dの断面形状が長方形となるた
め、図15のδ−P曲線上にd点として示す第3ピーク
が生じる。その後、低波形板3dも曲るが、高波形板3
cと低波形板3dとが曲った状態では、高波形板3cと
低波形板3dが長方形となった状態に似ているため、圧
縮強度は、前記第3ピークから少し増加した後に減少す
る。
Next, at point c, as shown in FIG. 16 (c), the high corrugated plate 3c becomes rectangular and the low corrugated plate 3d becomes trapezoidal, so that the compressive strength increases sharply and the δ-P curve shown in FIG. A second peak occurs. After point c, high corrugated plate 3
Since c is bent, the compressive strength decreases, but the degree of the decrease is kept small by the deformation of the low-corrugated plate 3d, and FIG.
As shown in FIG. 15, since the cross-sectional shape of the low-corrugated plate 3d is rectangular, a third peak shown as a point d occurs on the δ-P curve in FIG. After that, the low corrugated plate 3d also bends,
In the state where c and the low corrugated plate 3d are bent, the compressive strength decreases after slightly increasing from the third peak because the high corrugated plate 3c and the low corrugated plate 3d resemble a rectangular shape.

【0037】なお以上の実施の形態において、構造体7
を構成する高波形板3c及び低波形板3dの峰部と谷部
の形状は円弧としてあるが、円弧と直線との組み合わせ
により構成することもできる。構造体7を構成する平面
板1,2及び波形板3c,3dの材料としては、紙、プ
ラスチック、複合材料等の各種の非金属材、更には、ア
ルミニウム、スチール等の金属材等、種々の材料を使用
することができる。
In the above embodiment, the structure 7
The shape of the peaks and valleys of the high corrugated plate 3c and the low corrugated plate 3d is a circular arc, but may be configured by a combination of a circular arc and a straight line. As the material of the flat plates 1 and 2 and the corrugated plates 3c and 3d constituting the structure 7, various non-metallic materials such as paper, plastic, and composite materials, and various metal materials such as aluminum and steel can be used. Materials can be used.

【0038】図17は三層波形板構造体の波形板高低比
を最適にした場合を示す。本図に示す三層波形板構造体
8においては、高波形板3cの高さに対する第1低波形
板3dの高さの比(Hlow1/Hhigh)を0.85とする
と共に、第1低波形板3dの高さに対する第2低波形板
3eの高さの高低比(Hlow2/Hlow1)もまた0.85
としてある。
FIG. 17 shows a case where the corrugated plate height ratio of the three-layer corrugated plate structure is optimized. In the three-layer corrugated plate structure 8 shown in this figure, the ratio (Hlow1 / Hhigh) of the height of the first low corrugated plate 3d to the height of the high corrugated plate 3c is set to 0.85, and the first low corrugated plate 3d is formed. The height ratio (Hlow2 / Hlow1) of the height of the second low corrugated plate 3e to the height of the plate 3d is also 0.85.
There is.

【0039】このような三層波形板構造体8において
も、波形板3c,3d,3eの峰部と谷部の形状は円
弧、又は直線により多様に表現されることができ、前記
構造体8を構成する平面板1,2、及び波形板3c,3
d,3eの材料も、紙、プラスチック、複合材料、金属
等、広範囲な種類の材料が使用できる。
In the three-layer corrugated plate structure 8 as well, the shapes of the peaks and valleys of the corrugated plates 3c, 3d, 3e can be variously represented by arcs or straight lines. Plane plates 1 and 2 and corrugated plates 3c and 3
As the materials d and 3e, a wide variety of materials such as paper, plastic, composite materials, and metals can be used.

【0040】[0040]

【発明の効果】以上説明したように、本発明は、最適の
高低比を有する複層の波形板を備えた構造体とすること
により、高さに差のない同一枚数の波形板を重ねて構成
した構造体よりは初期緩衝効果が高く、波形板の枚数が
一枚少なく波形板の高さが殆ど同一である波形板構造体
よりは平面圧縮強度が高くなる。更に、同一枚数の波形
板波形板を重ねて構成した波形板構造体に比べて低波形
板が低い分、構造体の材料を節減することができる。
As described above, according to the present invention, the same number of corrugated plates having no difference in height are stacked by forming a structure having a multilayer corrugated plate having an optimum height ratio. The initial buffer effect is higher than the structured structure, and the plane compressive strength is higher than the corrugated plate structure having one less corrugated plate and almost the same height. Further, compared to a corrugated plate structure formed by laminating the same number of corrugated plates, the material of the structure can be saved because the low corrugated plate is lower.

【0041】また同一枚数の波形板を重ねた波形板構造
体は、波形板の厚さが増加して、波形板の形状を加工し
にくいが、本発明の構造体は波形板の厚さが極端に大き
くならないため、波形板の形状の加工が容易になる。
In a corrugated plate structure in which the same number of corrugated plates are stacked, the thickness of the corrugated plate is increased, so that it is difficult to process the shape of the corrugated plate. Since it does not become extremely large, processing of the shape of the corrugated plate becomes easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一層波形板構造体の概略断面図である。FIG. 1 is a schematic sectional view of a single-layer corrugated plate structure.

【図2】図1に示す一層波形板構造体の平面圧縮特性を
示す図である。
FIG. 2 is a view showing a plane compression characteristic of the single-layer corrugated plate structure shown in FIG.

【図3】図1に示す一層波形板構造体の変形挙動の説明
図である。
FIG. 3 is an explanatory view of a deformation behavior of the single-layer corrugated plate structure shown in FIG.

【図4】二重波形板構造体の概略断面図である。FIG. 4 is a schematic sectional view of a double corrugated plate structure.

【図5】図4に示す二重波形板構造体の平面圧縮特性を
示す図である。
FIG. 5 is a view showing a plane compression characteristic of the double corrugated plate structure shown in FIG. 4;

【図6】図4に示す二重波形板構造体の変形挙動の説明
図である。
6 is an explanatory diagram of a deformation behavior of the double corrugated plate structure shown in FIG.

【図7】二層波形板構造体の概略断面図である。FIG. 7 is a schematic sectional view of a two-layer corrugated plate structure.

【図8】図7に示す二層波形板構造体の平面圧縮特性を
示す図である。
FIG. 8 is a view showing a plane compression characteristic of the two-layer corrugated plate structure shown in FIG. 7;

【図9】図7(A)に示す二層波形板構造体の変形挙動
の説明図である。
9 is an explanatory diagram of a deformation behavior of the two-layer corrugated plate structure shown in FIG. 7 (A).

【図10】図7(B)に示す二層波形板構造体の変形挙
動の説明図である。
FIG. 10 is an explanatory diagram of a deformation behavior of the two-layer corrugated plate structure shown in FIG. 7 (B).

【図11】二層波形板構造体の波形板の高低比(Hlow
/Hhigh)と総圧縮強度及び初期緩衝量との関係を示す
図である。
FIG. 11 shows a height ratio (Hlow) of a corrugated plate of a two-layer corrugated plate structure.
/ Hhigh) and the relationship between the total compressive strength and the initial buffer amount.

【図12】総圧縮強度及び圧縮緩衝量の説明図である。FIG. 12 is an explanatory diagram of a total compression strength and a compression buffer amount.

【図13】二層波形板構造体を平面圧縮するときの高波
形板及び低波形板の変形挙動の説明図である。
FIG. 13 is an explanatory diagram of deformation behavior of a high corrugated plate and a low corrugated plate when a two-layer corrugated plate structure is compressed in a plane.

【図14】最適の高低比を有する二層波形板構造体の平
面圧縮特性を一層波形板構造体及び二重波形板構造体の
平面圧縮特性と比較した実験結果を示す図である。
FIG. 14 is a diagram showing an experimental result in which the planar compression characteristics of a two-layer corrugated plate structure having an optimum height ratio are compared with those of a single-layer corrugated plate structure and a double-corrugated plate structure.

【図15】高波形板に対する低波形板の高低比を0.8
5に設定した二層波形板構造体の平面圧縮特性の実測結
果を示す図である。
FIG. 15 shows a height ratio of a low corrugated plate to a high corrugated plate of 0.8.
It is a figure showing the measurement result of plane compression characteristics of the two-layer corrugated board structure set to 5.

【図16】最適の高低比を有する二層波形板構造体の変
形挙動の説明図である。
FIG. 16 is an explanatory diagram of a deformation behavior of a two-layer corrugated plate structure having an optimum height ratio.

【図17】最適の波形板高低比を有する三層波形板構造
体の概略断面図である。
FIG. 17 is a schematic cross-sectional view of a three-layer corrugated plate structure having an optimum corrugated plate height ratio.

【符号の説明】[Explanation of symbols]

1,2 平面板 3,3a,3b,3c,3d,3e 波形板 4,4a,4b 接着剤 5 一層波形板構造体 6 二重波形板構造体 7 二層波形板構造体 8 三層波形板構造体 1, 2 plane plate 3, 3a, 3b, 3c, 3d, 3e corrugated plate 4, 4a, 4b adhesive 5 one-layer corrugated plate structure 6 double corrugated plate structure 7 two-layer corrugated plate structure 8 three-layer corrugated plate Structure

───────────────────────────────────────────────────── フロントページの続き (72)発明者 キ ジョン キム 大韓民国 キョンキ−ドー 425−090,ア ンサン−シ,ボノ−ドン 872−20 ウー スン アパートメント 1−1001 (72)発明者 関 征治 広島県三原市糸岐町5007番地 三菱重工業 株式会社三原製作所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ki-Jung Kim South Korea Gyeonggi-do 425-090, Ansan-shi, Bono-dong 872-20 Woosun Apartment 1-1001 (72) Inventor Seiji Seki Mihara, Hiroshima 5007 Itoki-cho, Mitsubishi Mihara Works, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高さの異なる波形断面を有する二層以上
の波形板を二枚の平面板間に備える構造体において、 前記波形板の相互の高低比が、前記二枚の平面板に対し
て垂直に圧縮力を加えて高波形板を長方形断面に変形せ
しめたとき、低波形板が梯形断面に変形する高低比か
ら、低波形板が高波形板と接触する高低比までの範囲に
設定してあることを特徴とする構造体。
1. A structure comprising two or more corrugated plates having a corrugated cross section having different heights between two flat plates, wherein a height ratio of the corrugated plates is higher than that of the two flat plates. When a high-corrugated plate is deformed into a rectangular cross-section by applying vertical compression force, the low-corrugated plate is transformed into a trapezoidal cross-section, and the low-corrugated plate comes into contact with the high-corrugated plate. A structure characterized in that:
【請求項2】 高波形板に対する低波形板の高低比が、
0.8〜0.95であることを特徴とする請求項1記載
の構造体。
2. The height ratio of a low corrugated plate to a high corrugated plate is:
2. The structure according to claim 1, wherein the ratio is 0.8 to 0.95.
JP10005182A 1997-05-23 1998-01-13 Structure with multilayer corrugated board with optimal height ratio Expired - Lifetime JP2928782B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1997P20367 1997-05-23
KR1019970020367A KR100245115B1 (en) 1997-05-23 1997-05-23 Plural seam curved pipe having structure material of h. low/ h. high

Publications (2)

Publication Number Publication Date
JPH10329251A true JPH10329251A (en) 1998-12-15
JP2928782B2 JP2928782B2 (en) 1999-08-03

Family

ID=19506914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10005182A Expired - Lifetime JP2928782B2 (en) 1997-05-23 1998-01-13 Structure with multilayer corrugated board with optimal height ratio

Country Status (2)

Country Link
JP (1) JP2928782B2 (en)
KR (1) KR100245115B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504025A (en) * 2014-01-17 2017-02-02 ディーエス スミス パッケージング リミテッド Board testing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504025A (en) * 2014-01-17 2017-02-02 ディーエス スミス パッケージング リミテッド Board testing equipment
JP2019132851A (en) * 2014-01-17 2019-08-08 ディーエス スミス パッケージング リミテッド Corrugated board testing machine, blank, and corrugated blank production line

Also Published As

Publication number Publication date
KR19980084540A (en) 1998-12-05
JP2928782B2 (en) 1999-08-03
KR100245115B1 (en) 2000-03-02

Similar Documents

Publication Publication Date Title
Kamal et al. A uniform pressure electromagnetic actuator for forming flat sheets
WO2011058922A1 (en) Plate material having concave/convex sections, and laminate structure and vehicle panel using said plate material
US20130183498A1 (en) Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
JP2013544667A (en) Multilayer cellular metallic glass structure
CN101147422B (en) Membrane with high resistance against buckling and/or crinkling
EP3100796A1 (en) Press-forming method and method of manufacturing press-formed product
JP2928782B2 (en) Structure with multilayer corrugated board with optimal height ratio
US20130288015A1 (en) Sheet material having a concave-convex part, and a vehicle panel and laminated structure using the same
JP5402677B2 (en) Can with bead
US8920908B2 (en) Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
JP4136322B2 (en) Method for manufacturing metal container member
CN102265056B (en) Spring
JP6696937B2 (en) Method for manufacturing press-formed products
JP2021088824A (en) Buckling restrained building material and method for manufacturing buckling restrained building material
JP2006137029A (en) Panel structural material
WO2014069306A1 (en) Substrate and metal layer manufacturing method
Srinivasan et al. Experimental study on bending behaviour of aluminium-copper clad sheets in V-bending process
JP2011087423A (en) Actuator and method for manufacturing the same
CN111255841B (en) Three-layer laminating pressure lever and transient vibration suppression structure based on same
KR20020080212A (en) Multi-Layered Metal Plate with Excellent Damping Capacity
JPH1129064A (en) Energy absorbing member excellent in axial collapse characteristic, formed of alluminium alloy extruded structural angle material
EP2811179A1 (en) Structure and method for mounting a metal collar
JP2001001061A (en) Press and sheet metal member
JP2580648Y2 (en) Wave spring with nonlinear load characteristics
JP7039848B2 (en) Capacitors and their manufacturing methods