JPH10328539A - Polytetrafluoroethylene porous membrane and its production - Google Patents

Polytetrafluoroethylene porous membrane and its production

Info

Publication number
JPH10328539A
JPH10328539A JP14418897A JP14418897A JPH10328539A JP H10328539 A JPH10328539 A JP H10328539A JP 14418897 A JP14418897 A JP 14418897A JP 14418897 A JP14418897 A JP 14418897A JP H10328539 A JPH10328539 A JP H10328539A
Authority
JP
Japan
Prior art keywords
sheet
ptfe
rejection
performance
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14418897A
Other languages
Japanese (ja)
Inventor
Toshiteru Yanagi
俊輝 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP14418897A priority Critical patent/JPH10328539A/en
Publication of JPH10328539A publication Critical patent/JPH10328539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a porous membrane capable of removing a fine particle with a high probability by adding a lubricant into a polytetrafluoroethylene powder to mix, stretching a sheet like material obtained by an extrusion method or a press-rolling method to a specific magnification in the uniaxial direction and using >=2 pieces of sheets formed by sintering the sheet like material at >=the m.p. SOLUTION: At the time of manufacturing a precise filtration filter composed of the polytetrafluoroethylene (hereafter called PTFE) excellent in heat resistance and chemical resistance and particularly useful as a liquid chemical filter for semiconductor, the lubricant is added into the PTFE fine powder obtained by emulsion polymerization. And the sheet like material obtained by the extrusion method or the press rolling method of uniaxially stretched to 200 times in area magnification and >=2 pieces of the sheet formed by sintering the sheet like material at >= the m.p. are laminated to produce the membrane. As the PTFE porous membrane, one satisfying an equation, (X)>=0.22×LN(Z)+1.3 in the balance of the stop-off ratio (X) to a 0.102 μm polystyrene particle with ethanol FLUX (Z) is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリテトラフルオ
ロエチレン(以下、「PTFE」と称す。)多孔質膜及
びその製造方法に関する。
The present invention relates to a polytetrafluoroethylene (hereinafter referred to as "PTFE") porous membrane and a method for producing the same.

【0002】[0002]

【従来の技術】ポリテトラフルオロエチレン(以下、
「PTFE」と称す。)多孔質膜からなる精密濾過フィ
ルターは、耐熱性、耐薬品性の点で優れ、特に半導体用
薬液フィルターとして有用である。近年、このような半
導体製造産業では、高集積化が進展し、デバイスの最小
パターン寸法の微細化により、薬液フィルターに対する
除去対象粒子も微小化してきている。このため、これま
でよりも微細な粒子をより多く除去できるフィルターが
望まれている。一方、フィルターにおける透過性能は運
転コストに関わるもので、省エネルギーの見地から、優
れた透過性を有するフィルターが望まれている。従っ
て、微細な粒子をより多く除去でき、かつ優れた透過性
を有するフィルターが望まれている。
2. Description of the Related Art Polytetrafluoroethylene (hereinafter, referred to as polytetrafluoroethylene)
It is called "PTFE". The microfiltration filter comprising a porous membrane is excellent in heat resistance and chemical resistance, and is particularly useful as a chemical liquid filter for semiconductors. In recent years, in such a semiconductor manufacturing industry, high integration has progressed, and particles to be removed from a chemical liquid filter have been miniaturized due to miniaturization of the minimum pattern size of a device. For this reason, a filter that can remove more fine particles than ever has been desired. On the other hand, the permeation performance of the filter is related to the operating cost, and a filter having excellent permeability is desired from the viewpoint of energy saving. Therefore, a filter that can remove more fine particles and has excellent permeability is desired.

【0003】一般に、精密濾過フィルターとして使われ
るPTFE多孔質膜の粒子除去性能は、ポリスチレン粒
子を水に分散させた液体を濾過し、その上流側(原液)
と下流側(濾液)の濃度から算出して粒子除去率として
表される。粒子除去性能は、濾材のうち、材質が同じで
あれば、ほぼ孔径のみによって決まる。すなわち、孔径
が大きくなれば、除去性能は低くなり(粒子除去率が低
くなる)、その膜の孔径が小さくなれば、除去性能は高
くなる(粒子除去率が高くなる)。
[0003] Generally, the particle removal performance of a PTFE porous membrane used as a microfiltration filter is such that a liquid in which polystyrene particles are dispersed in water is filtered and the upstream side (undiluted solution) is used.
Calculated from the concentration on the downstream side (filtrate) and expressed as a particle removal rate. The particle removal performance is determined substantially only by the pore diameter if the material is the same among the filter media. That is, as the pore size increases, the removal performance decreases (particle removal rate decreases), and as the pore size of the film decreases, the removal performance increases (particle removal rate increases).

【0004】もう一方の重要な性能である透過性能は、
一定の差圧における液体(一般に、アルコール類、アセ
トン等が用いられる)の時間当たりの透過流量でテスト
される。この透過性能は、濾材の物性のうち、材質が同
じであれば、孔径、気孔率、膜厚によって決まる。すな
わち、孔径が大きく、気孔率が高く、膜厚が薄くなるほ
ど、透過性能は高くなり(透過流量が多くなる)、逆
に、孔径が小さく、気孔率が低く、膜厚が厚くなるほ
ど、透過性能は低くなる(透過流量が少なくなる)。
[0004] The transmission performance, which is another important performance, is as follows.
The liquid (generally alcohols, acetone, etc. is used) at a constant differential pressure is tested at the permeation flow rate per hour. The permeation performance is determined by the pore diameter, the porosity, and the film thickness, if the materials are the same among the physical properties of the filter medium. In other words, the larger the pore size, the higher the porosity, and the thinner the film thickness, the higher the permeation performance (the larger the permeation flow rate). Conversely, the smaller the pore size, the lower the porosity, and the thicker the film thickness, the more the permeation performance Is low (the permeation flow rate is low).

【0005】ここで、濾材の物性(孔径、気孔率、膜
厚)が、その粒子除去性能と流体透過性能の両方に与え
る影響を考える。まず、孔径が大きくなれば、透過性能
は高くなるが、粒子除去性能は低くなる。逆に、孔径が
小さくなれば、粒子除去性能は高くなるが、透過性能は
低くなる。次に、気孔率が高くなれば、ほぼ粒子除去性
能とは無関係に透過性能は高くなり、気孔率が低くなれ
ば、ほぼ粒子除去性能とは無関係に透過性能は低くな
る。さらに、膜厚が薄くなれば、ほぼ粒子除去性能とは
無関係に透過性能は高くなり、膜厚が厚くなれば、ほぼ
粒子除去性能とは無関係に透過性能は低くなる。
Here, the influence of the physical properties (pore diameter, porosity, film thickness) of the filter medium on both its particle removal performance and fluid permeation performance will be considered. First, as the pore size increases, the permeation performance increases, but the particle removal performance decreases. Conversely, if the pore size is smaller, the particle removal performance is higher, but the permeation performance is lower. Next, the higher the porosity, the higher the permeation performance almost independently of the particle removal performance, and the lower the porosity, the lower the permeation performance almost independently of the particle removal performance. Further, as the film thickness decreases, the permeation performance increases substantially independently of the particle removal performance, and as the film thickness increases, the permeation performance decreases substantially regardless of the particle removal performance.

【0006】このように、粒子除去性能と透過性能と
は、相反する性質である。すなわち、粒子の除去性能を
高くしようとすれば、透過性能は低くなり、逆に透過性
能を高くしようとすれば、粒子除去性能は低くなる傾向
が強い。
[0006] As described above, the particle removal performance and the permeation performance are contradictory properties. That is, if the removal performance of the particles is to be increased, the permeation performance tends to be low, and if the permeation performance is to be increased, the removal performance of the particles tends to be low.

【0007】一般に、図1に示されているように、横軸
を流量、縦軸を除去率(ポリスチレン粒子(PSL)の
阻止率)とし、濾材の性能を考えた場合、図1の右上
(矢印の方向)に行くほど、優れた濾材であるといえ
る。従って、粒子除去性能と透過性能のバランスをいか
にコントロールするか、ひいてはいかにこの両性能を高
めていくことができるか、ということが大きな課題とな
っている。
In general, as shown in FIG. 1, the horizontal axis represents the flow rate, and the vertical axis represents the removal rate (rejection rate of polystyrene particles (PSL)). It can be said that the closer to (the direction of the arrow), the better the filter medium. Therefore, how to control the balance between the particle removal performance and the permeation performance, and how to improve both these performances, have become major issues.

【0008】[0008]

【発明が解決しようとする課題】従来より知られている
PTFE多孔質膜の製造方法(特公昭42−13560
号公報)では、気孔率や孔径を変える場合、延伸倍率に
よっていた。気孔率を高めるためには延伸倍率を大きく
し、孔径を小さくするためには延伸倍率を小さくしなけ
ればならないため、小孔径かつ高気孔率のフィルターを
実現しようとした場合、手段が相反してしまう。従っ
て、濾材の性能は、図1中で矢印の方向に変えることは
難しく、粒子除去性能と透過性能は同時に高くできなか
った。
A method for producing a conventionally known porous PTFE membrane (Japanese Patent Publication No. Sho 42-13560)
In the publication, when the porosity and the pore diameter are changed, the stretching ratio is used. In order to increase the porosity, the stretching ratio must be increased, and in order to reduce the pore size, the stretching ratio must be decreased.Therefore, when attempting to realize a filter having a small pore size and a high porosity, the means are contradictory. I will. Therefore, it was difficult to change the performance of the filter medium in the direction of the arrow in FIG. 1, and the particle removal performance and the permeation performance could not be simultaneously improved.

【0009】また、少なくとも2層の四弗化エチレン樹
脂多孔質体であって、0.109μmの粒子を90%以
上除去可能で、イソプロピルアルコールにより測定した
流量(IPA流量)が0.7ml/cm2・min以上
であることを特長とする四弗化エチレン樹脂多孔質体が
提案されているが(特開平8−174738号公報)、
そのフィルター性能としては充分なものではなかった。
[0009] At least two layers of a porous body of ethylene tetrafluoride resin, capable of removing 90% or more of particles of 0.109 µm, and having a flow rate (IPA flow rate) measured with isopropyl alcohol of 0.7 ml / cm. A porous body of ethylene tetrafluoride resin characterized by being at least 2 min has been proposed (Japanese Patent Application Laid-Open No. 8-174736).
The filter performance was not sufficient.

【0010】さらに、特開平8−174738号公報に
おいては、四弗化エチレンファインパウダーのペースト
押し出し成形体を少なくとも一軸方向に延伸したシート
を加圧により層間接着する方法、又は、さらにその後融
点未満で熱処理する方法が提案されているが、融点温度
以下の熱処理では、寸法安定性が低いことや、膜強度が
低いため、変形しやすい問題を有する。そのため、膜の
ハンドリング性や、圧力をかけて長期使用する場合の膜
の特性変化に問題があった。
Further, in Japanese Patent Application Laid-Open No. Hei 8-174736, a method in which a sheet obtained by stretching a paste extruded body of ethylene tetrafluoride fine powder in at least a uniaxial direction is interlayer-bonded by pressure, or thereafter, a method in which the temperature is less than the melting point. Although a method of performing heat treatment has been proposed, heat treatment at a temperature equal to or lower than the melting point has a problem of being easily deformed due to low dimensional stability and low film strength. Therefore, there is a problem in the handleability of the film and the change in the characteristics of the film when the film is used for a long time under pressure.

【0011】本発明は、前記従来の問題を解決するた
め、極めて微小な粒子を高い確率で除去することが可能
となり、かつ流量はできるだけ多く確保できるPTFE
多孔質膜を提供し、これによって、例えば半導体分野で
より精度の高い液体濾過が効率よく行うことができるポ
リテトラフルオロエチレン多孔質膜及びその製造方法を
提供することを目的とする。
According to the present invention, in order to solve the above-mentioned conventional problems, it is possible to remove extremely fine particles with a high probability, and to secure a flow rate as high as possible.
An object of the present invention is to provide a porous membrane, whereby a polytetrafluoroethylene porous membrane capable of efficiently performing liquid filtration with higher precision in the semiconductor field and a method for producing the same are provided.

【0012】[0012]

【課題を解決するための手段】前記課題を解決するた
め、本発明のPTFE多孔質膜の製造方法は、乳化重合
により得られたポリテトラフルオロエチレン微粉末に潤
滑剤を加えて混合し、押出法及び圧延法から選ばれる少
なくとも一つの方法により得たシート状物を、少なくと
も一軸方向に面積倍率で200倍以上延伸し、融点温度
以上で焼結したシートを、2枚以上重ね合わせるか又は
貼り合わせることを特徴とする。前記において、融点温
度以上とは、327℃以上の温度をいう。400℃以上
の温度では、PTFEの熱分解速度が急速に進行するの
で好ましくないが、熱分解を大きくしないための短時間
熱処理であれば、400℃以上の高温でも使用できる。
Means for Solving the Problems To solve the above problems, a method for producing a porous PTFE membrane of the present invention comprises adding a lubricant to polytetrafluoroethylene fine powder obtained by emulsion polymerization, mixing, extruding, Sheet obtained by at least one method selected from the following methods and rolling methods, stretched at least 200 times in area ratio in at least one axial direction, and two or more sheets sintered at the melting point temperature or higher are laminated or laminated. It is characterized by matching. In the above description, the temperature of the melting point or higher refers to a temperature of 327 ° C. or higher. At a temperature of 400 ° C. or higher, the rate of thermal decomposition of PTFE rapidly increases, which is not preferable. However, if heat treatment is performed for a short time so as not to increase thermal decomposition, a high temperature of 400 ° C. or higher can be used.

【0013】また、本発明のPTFE多孔質膜は、0.
102μmのポリスチレン粒子の阻止率(X)とエタノ
ールFLUX(Z)とのバランスが下記式(I)を満足
することを特徴とする。 (X)>−0.22×LN(Z)+1.3 (I)
Further, the porous PTFE membrane of the present invention has a capacity of 0.1%.
The balance between the rejection (X) of 102 μm polystyrene particles and ethanol FLUX (Z) satisfies the following formula (I). (X)> − 0.22 × LN (Z) +1.3 (I)

【0014】さらに、本発明のPTFE多孔質膜は、
0.055μmのポリスチレン粒子の阻止率(Y)とエ
タノールFLUX(Z)とのバランスが下記式(II)を
満足することを特徴とする。 (Y)>−0.22×LN(Z)+0.5 (II)
Further, the PTFE porous membrane of the present invention comprises:
The balance between the rejection (Y) of 0.055 μm polystyrene particles and ethanol FLUX (Z) satisfies the following expression (II). (Y)> − 0.22 × LN (Z) +0.5 (II)

【0015】前記したように、孔径を小さくすれば、粒
子除去性能は高くなり(粒子除去率が高くなる)、孔径
を大きくし、気孔率を高くし、膜厚を薄くすれば、透過
性能は高くなる(透過流量が多くなる)。従って、粒子
除去性能と透過性能の両方をできるだけ高めるために
は、孔径を小さくし、気孔率を高くし、膜厚を薄くする
ということが考えられる。ここで、孔径、気孔率、膜厚
のそれぞれについて分析すると、次のようになる。
As described above, if the pore size is reduced, the particle removal performance is increased (the particle removal rate is increased). If the pore size is increased, the porosity is increased, and the film thickness is reduced, the transmission performance is improved. Higher (permeation flow rate increases). Therefore, in order to increase both the particle removal performance and the permeation performance as much as possible, it is conceivable to reduce the pore diameter, increase the porosity, and reduce the film thickness. Here, analysis of each of the pore diameter, porosity, and film thickness is as follows.

【0016】まず、孔径は小さい方が、粒子除去性能は
高くなるが、透過性能は低くなる。一方、目的とする除
去粒子の直径を定めれば、その粒子を100%除去でき
る孔径も決まるため、それ以上孔径を小さくしても粒子
除去率は上がらず、透過性能は低くなるだけである。従
って、目標とする除去性能に至るまで孔径を小さくしな
ければならないが、透過性能を考慮して必要最小限にと
どめる方がよい。
First, the smaller the pore size, the higher the particle removal performance, but the lower the permeation performance. On the other hand, if the diameter of the target particles to be removed is determined, the pore diameter at which the particles can be removed by 100% is also determined. Therefore, even if the pore diameter is further reduced, the particle removal rate does not increase, and only the permeability is reduced. Therefore, the pore size must be reduced until the target removal performance is reached, but it is better to keep it to the minimum necessary in consideration of the permeation performance.

【0017】次に、気孔率を高くすれば、ほぼ粒子除去
性能とは無関係に透過性能は高くなる。但し、あまりに
も気孔率が高過ぎた場合、膜強度やハンドリング性等に
問題が生じることが危惧される。
Next, when the porosity is increased, the permeation performance is increased almost independently of the particle removal performance. However, if the porosity is too high, there is a concern that problems may occur in the film strength, handleability, and the like.

【0018】さらに、膜厚を薄くすれば、ほぼ粒子除去
性能とは無関係に透過性能は高くなる。しかし、膜厚が
薄過ぎれば、濾材としての加工性、膜強度、及びハンド
リング性等に問題が生じてくるため、薄過ぎても問題が
ある。
Further, when the film thickness is reduced, the permeation performance increases almost independently of the particle removal performance. However, if the film thickness is too thin, problems arise in workability, film strength, handleability, and the like as a filter medium.

【0019】従って、孔径、気孔率及び膜厚を最適にコ
ントロールすることが、問題解決の鍵となる。すなわ
ち、粒子除去性能と流体透過性能の高い濾材を実現する
ためには、基本的に薄膜を高気孔率化及び小孔径化する
のがよいと考え、鋭意検討の結果、上記製造方法を完成
するに至った。
Therefore, optimal control of the pore diameter, porosity, and film thickness is the key to solving the problem. That is, in order to realize a filter medium having a high particle removal performance and a high fluid permeation performance, it is basically considered that the thin film should have a high porosity and a small pore size. Reached.

【0020】[0020]

【発明の実施の形態】以下、本発明のPTFE多孔質膜
の製造方法を具体的に説明する。まず、乳化重合により
得られたPTFE微粉末に潤滑剤を加えて混合し、押出
法及び圧延法から選ばれる少なくとも一つの方法によ
り、未焼成のシート状物を作成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for producing a porous PTFE membrane of the present invention will be specifically described. First, a lubricant is added to and mixed with the PTFE fine powder obtained by emulsion polymerization, and an unsintered sheet is produced by at least one method selected from an extrusion method and a rolling method.

【0021】ここで、乳化重合により得られたPTFE
微粉末としては、例えばダイキン工業社製「ポリフロン
F104」(商品名)、旭アイシーアイフロロポリマー
ズ社製「CD1」、「CD4」、「CD123」(商品
名)等がある。
Here, PTFE obtained by emulsion polymerization
Examples of the fine powder include “Polyflon F104” (trade name) manufactured by Daikin Industries, Ltd., “CD1”, “CD4”, and “CD123” (trade name) manufactured by Asahi ICI Fluoropolymers.

【0022】潤滑剤としては、流動パラフィン、ナフ
サ、ホワイトガソリン、トルエン、キシレン等の炭化水
素の他、アルコール類、ケトン類、エステル類、及びこ
れらの中から選ばれる2種類以上の混合物等が挙げられ
る。潤滑剤の添加量としてはPTFE微粉末100重量
部に対して20〜40重量部が好ましい。
Examples of the lubricant include hydrocarbons such as liquid paraffin, naphtha, white gasoline, toluene, xylene and the like, alcohols, ketones, esters, and mixtures of two or more kinds selected from these. Can be The amount of the lubricant to be added is preferably 20 to 40 parts by weight based on 100 parts by weight of the PTFE fine powder.

【0023】次に、得られたシート状物を、PTFEの
融点未満の温度で少なくとも一軸方向に面積倍率で20
0倍以上延伸し、融点温度以上で焼結する。尚、延伸倍
率としては、高気孔率を得るために面積倍率で概ね50
0倍以上が好ましい。このようにして、充分な膜強度と
寸法安定性、及び高い気孔率を持った、薄いPTFE多
孔質を得る。このような膜は、優れた流体透過性能を有
するが、延伸倍率を大きくしているため、その孔径は概
ね0.5μm以上となることが多く、精密濾過フィルタ
ー用の濾材として、充分な粒子除去性能を得られない。
Next, the obtained sheet is subjected to an area magnification of at least one axis at a temperature lower than the melting point of PTFE by a factor of 20.
It is stretched 0 times or more and sintered at the melting point temperature or more. The stretching ratio is approximately 50 in area ratio in order to obtain a high porosity.
It is preferably at least 0 times. In this way, a thin PTFE porous material having sufficient film strength, dimensional stability, and high porosity is obtained. Although such a membrane has excellent fluid permeability, the pore size is often about 0.5 μm or more in many cases because the stretching ratio is large, and sufficient particle removal as a filter medium for a microfiltration filter is performed. Performance cannot be obtained.

【0024】そこで、最後に、上記PTFE多孔質膜
を、2枚以上重ね合わせるか又は貼り合わせる。その結
果、PTFE多孔質膜を、図2に示すように、積層枚数
に反比例のような形で、その孔径を小さくできる。積層
する多孔質膜としては、同じような特性(主に孔径)を
持った膜を積層した場合でも、異なる特性を持った膜を
積層した場合でも、いずれも孔径を小さくすることがで
きる。従って、このようなPTFE多孔質膜を2枚以上
重ね合わせることによって、孔径をコントロールでき、
それに伴って、粒子除去性能もコントロールできる。よ
って、このような方法によって、流体透過性能をできる
だけ低下させずに、粒子除去性能を高めることができ
る。
Therefore, finally, two or more PTFE porous membranes are laminated or bonded. As a result, as shown in FIG. 2, the pore diameter of the porous PTFE membrane can be reduced in a manner inversely proportional to the number of laminated layers. Regarding the porous membrane to be laminated, the pore diameter can be reduced in both cases where films having similar characteristics (mainly, pore size) are laminated and films having different characteristics are laminated. Therefore, the pore size can be controlled by stacking two or more such PTFE porous membranes,
Along with that, the particle removal performance can also be controlled. Therefore, by such a method, the particle removal performance can be enhanced without lowering the fluid permeation performance as much as possible.

【0025】尚、積層枚数を増やせば、粒子除去性能は
高くなるが、孔径は小さくなる上に、厚みは厚くなるの
で、流体透過性能は低下する。従って、このことを考慮
しながら、流体透過性能と粒子阻止率のどちらをどれだ
け重視するか等により、積層枚数を決定するのが好まし
い。
When the number of layers is increased, the particle removing performance is increased, but the pore diameter is reduced and the thickness is increased, so that the fluid permeability is reduced. Therefore, it is preferable to determine the number of laminated layers depending on how much importance is given to the fluid permeation performance and the particle rejection ratio while considering this fact.

【0026】積層した後、必ずしも圧着又は接着する必
要はないが、膜の加工性や強度及びハンドリング性を考
えれば、気孔率をできるだけ低下させないように且つ孔
を塞がない程度に圧着又は接着等するのが好ましい。
After lamination, it is not always necessary to perform pressure bonding or bonding. However, considering the workability, strength and handling properties of the film, pressure bonding or bonding is performed so as not to reduce the porosity as much as possible and not to block the holes. Is preferred.

【0027】圧着の方法は、カレンダーロール、ラミネ
ートロール、及び平板プレスによるもの等があるが、特
にここでは限定しない。また、圧着時の温度も特に限定
しない。圧着時の圧力を大きくすれば、剥離強度が増
し、孔径は小さくできるので、粒子除去性能は良くなる
が、気孔率は低下するので、流体透過性能は悪くなる。
従って、このことを考慮して、適当な圧力を選択するの
が好ましい。また、接着する場合は、孔を塞がないよう
に、点接着などの方法を用いるのが好ましい。
The method of pressure bonding includes a calender roll, a laminating roll, a flat plate press, and the like, but is not particularly limited here. The temperature at the time of pressure bonding is not particularly limited. If the pressure at the time of press bonding is increased, the peel strength is increased and the pore diameter can be reduced, so that the particle removal performance is improved, but the porosity is reduced, and the fluid permeability is deteriorated.
Therefore, it is preferable to select an appropriate pressure in consideration of this. In the case of bonding, it is preferable to use a method such as spot bonding so as not to block the holes.

【0028】このようにして得られたPTFE多孔質膜
は、目的の孔径を持ちつつ、同孔径で単層のPTFE多
孔質膜に比べて、気孔率の高いPTFE多孔質膜を得る
ことができる。このような積層PTFE多孔質膜は、高
気孔率を持ちつつ、小孔径化することが容易である。従
って、優れた粒子阻止性能と透過性能とを兼ね備えたP
TFE多孔質膜の設計及び製造が可能な他、粒子阻止性
能と透過性能のバランスをコントロールすることが容易
である。
The PTFE porous membrane thus obtained can have a target pore diameter and a higher porosity than a single-layer PTFE porous membrane having the same pore diameter. . Such a laminated porous PTFE membrane has a high porosity and can be easily reduced in pore size. Therefore, P having both excellent particle rejection performance and transmission performance
In addition to being able to design and manufacture a TFE porous membrane, it is easy to control the balance between particle rejection performance and permeation performance.

【0029】具体的には、本発明の製造方法によって、
0.102μmのポリスチレン粒子の阻止率(X)とエ
タノールFLUX(Z)とのバランスが下記式(I)を
満足するか、又は0.055μmのポリスチレン粒子の
阻止率(Y)とエタノールFLUX(Z)とのバランス
が下記式(II)を満足するPTFE多孔質膜、すなわち
粒子阻止性能と透過性能のバランスがとれたPTFE多
孔質膜を得ることができる。 (X)>−0.22×LN(Z)+1.3 (I) (Y)>−0.22×LN(Z)+0.5 (II)
Specifically, according to the production method of the present invention,
The balance between the rejection (X) of 0.102 μm polystyrene particles and ethanol FLUX (Z) satisfies the following formula (I), or the rejection (Y) of 0.055 μm polystyrene particles and ethanol FLUX (Z) ), A PTFE porous membrane that satisfies the following formula (II), that is, a PTFE porous membrane having a good balance between the particle rejection performance and the permeation performance can be obtained. (X)> − 0.22 × LN (Z) +1.3 (I) (Y)> − 0.22 × LN (Z) +0.5 (II)

【0030】また、本発明の積層PTFE多孔質膜は、
融点温度以上で焼成されているため、膜強度、寸法安定
性、及び高温加工性等に優れている。従って、優れた透
過性を兼ね備えたフィルターを実現でき、半導体製造産
業等で使用される薬液フィルターの分野で有用なものと
なる。
Further, the laminated porous PTFE membrane of the present invention
Since it is fired at a temperature equal to or higher than the melting point, it is excellent in film strength, dimensional stability, high-temperature processability, and the like. Therefore, a filter having excellent permeability can be realized, which is useful in the field of a chemical solution filter used in the semiconductor manufacturing industry and the like.

【0031】[0031]

【実施例】次に、本発明の実施例を説明するが、本発明
はこの実施例に限定されるもものではない。
Next, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.

【0032】[0032]

【実施例1】PTFEファインパウダー(旭ICI社
製、CD−123)100重量部に対して、潤滑剤とし
て流動パラフィン30重量部を配合した混和物を予備成
形後、押し出し、圧延を行ない、溶剤層を通して、潤滑
剤を除去し、約0.3mm厚のシート状物を得る。これ
を300℃の雰囲気中で長さ方向に2000%延伸し、
続いて90℃の雰囲気中で幅方向に3000%延伸し、
寸法を固定した状態で350℃の熱処理を行なう。この
ようにして作られたPTFE多孔質シートを8枚重ね、
常温で、4.5kg/cm2 で圧着した。このようにし
て得られたシートを用いてPSL阻止率(0.102μ
m)とエタノールFLUXを測定したところ次のように
なった。
Example 1 An admixture containing 100 parts by weight of PTFE fine powder (CD-123, manufactured by Asahi ICI) and 30 parts by weight of liquid paraffin as a lubricant was preformed, extruded, rolled, and subjected to solvent The lubricant is removed through the layers to give a sheet of about 0.3 mm thickness. This is stretched 2,000% in the length direction in an atmosphere of 300 ° C.
Subsequently, it is stretched 3000% in the width direction in an atmosphere of 90 ° C.
A heat treatment at 350 ° C. is performed with the dimensions fixed. Eight PTFE porous sheets made in this way,
Crimping was performed at room temperature at 4.5 kg / cm 2 . Using the sheet thus obtained, the PSL rejection (0.102 μ
m) and ethanol FLUX were measured and the results were as follows.

【0033】 PSL阻止率(0.102μm):100%、 エタノールFLUX:11.1ml/cm2・min PSL阻止率(0.102μm):90%、 エタノールFLUX:14.8ml/cm2・minPSL rejection (0.102 μm): 100%, ethanol FLUX: 11.1 ml / cm 2 · min PSL rejection (0.102 μm): 90%, ethanol FLUX: 14.8 ml / cm 2 · min

【0034】上記数値をPSL阻止率とエタノールFL
UXとのバランスを表す式(I)にて計算すると、以下
のようになり、式(I)を満足する。 1.0>−0.22×LN(11.1)+1.3=
0.77 0.9>−0.22×LN(14.8)+1.3=
0.71
The above values were calculated using the PSL rejection and ethanol FL.
Calculation using the expression (I) representing the balance with the UX satisfies the following expression and satisfies the expression (I). 1.0> −0.22 × LN (11.1) + 1.3 =
0.77 0.9> −0.22 × LN (14.8) + 1.3 =
0.71

【0035】[0035]

【実施例2】PTFEファインパウダー(旭ICI社
製、CD−123)100重量部に対して、潤滑剤とし
て流動パラフィン30重量部を配合した混和物を予備成
形後、押し出し、圧延を行ない、溶剤層を通して、潤滑
剤を除去し、約0.3mm厚のシート状物を得る。これ
を300℃の雰囲気中で長さ方向に2000%延伸し、
続いて90℃の雰囲気中で幅方向に3000%延伸し、
寸法を固定した状態で350℃の熱処理を行なう。この
ようにして作られたPTFE多孔質シートを80枚重
ね、常温で、4.5kg/cm2 で圧着した。このよう
にして得られたシートを用いてPSL阻止率(0.05
5μm)とエタノールFLUXを測定したところ、PS
L阻止率(0.055μm)が96%、エタノールFL
UXが0.3ml/cm2・minであった。
Example 2 A mixture of 100 parts by weight of PTFE fine powder (manufactured by Asahi ICI, CD-123) and 30 parts by weight of liquid paraffin as a lubricant was preformed, extruded, rolled, and subjected to a solvent treatment. The lubricant is removed through the layers to give a sheet of about 0.3 mm thickness. This is stretched 2,000% in the length direction in an atmosphere of 300 ° C.
Subsequently, it is stretched 3000% in the width direction in an atmosphere of 90 ° C.
A heat treatment at 350 ° C. is performed with the dimensions fixed. Eighty PTFE porous sheets thus produced were stacked and pressed at room temperature at 4.5 kg / cm 2 . Using the sheet thus obtained, the PSL rejection (0.05
5 μm) and ethanol FLUX were measured.
L rejection (0.055 μm) is 96%, ethanol FL
UX was 0.3 ml / cm 2 · min.

【0036】上記数値をPSL阻止率とエタノールFL
UXとのバランスを表す式(II)にて計算すると、以下
のようになり、式(II)を満足する。 0.961.0>−0.22×LN(0.3)+0.5
=0.76
The above values were used as PSL rejection and ethanol FL.
Calculation using the expression (II) representing the balance with UX results in the following, which satisfies the expression (II). 0.961.0> −0.22 × LN (0.3) +0.5
= 0.76

【0037】[0037]

【比較例1】PTFEファインパウダー(旭ICI社
製、CD−123)100重量部に対して、潤滑剤とし
て流動パラフィン30重量部を配合した混和物を予備成
形後、シート状に押し出し、これをさらに圧延し、その
後、加熱により潤滑剤を除去して0.3mm厚の乾燥シ
ートを作成した。次いで、このシートをシートの押し出
し方向に280℃で200%延伸し、次いで、押し出し
方向と垂直な方向に延伸ゾーン温度70℃、熱固定ゾー
ン温度300℃で1500%延伸した。このようにして
作られた延伸シートを2枚重ねてロール温度室温で、元
の膜厚の60%になるように再圧延し、多孔質PTFE
積層体を得た。この多孔質PTFE積層体のPSL阻止
率(0.102μm及び0.055μm)とエタノール
FLUXを測定したところ次のようになった。
Comparative Example 1 A mixture of 100 parts by weight of PTFE fine powder (manufactured by Asahi ICI, CD-123) and 30 parts by weight of liquid paraffin as a lubricant was preformed and extruded into a sheet. After further rolling, the lubricant was removed by heating to produce a 0.3 mm thick dry sheet. Next, this sheet was stretched by 200% at 280 ° C. in the extrusion direction of the sheet, and then stretched in a direction perpendicular to the extrusion direction by 1500% at a stretching zone temperature of 70 ° C. and a heat setting zone temperature of 300 ° C. The two stretched sheets thus produced are stacked and rolled again at room temperature at a roll temperature of 60% of the original film thickness.
A laminate was obtained. The PSL rejection (0.102 μm and 0.055 μm) of this porous PTFE laminate and the measurement of ethanol FLUX were as follows.

【0038】 PSL阻止率(0.102μm):100%、 エタノールFLUX:0.6ml/cm2・min PSL阻止率(0.055μm):35%、 エタノールFLUX:0.6ml/cm2・minPSL rejection (0.102 μm): 100%, ethanol FLUX: 0.6 ml / cm 2 · min PSL rejection (0.055 μm): 35%, ethanol FLUX: 0.6 ml / cm 2 · min

【0039】上記数値をPSL阻止率とエタノールFL
UXとのバランスを表す式(I)及び式(II)にて計算
すると、以下のようになり、式(I)及び式(II)をい
ずれも満足しない。 1.0>−0.22×LN(0.6)+1.3=
1.41 0.35>−0.22×LN(0.6)+0.5=
0.61
The above values were used as the PSL rejection and ethanol FL.
Calculations using formulas (I) and (II) representing the balance with UX result in the following, and neither formula (I) nor formula (II) is satisfied. 1.0> −0.22 × LN (0.6) + 1.3 =
1.41 0.35> −0.22 × LN (0.6) + 0.5 =
0.61

【0040】[0040]

【比較例2】PTFEファインパウダー(ダイキン社
製、F104)100重量部に対して、潤滑剤として流
動パラフィン30重量部を配合した混和物を予備成形
後、シート状に押し出し、これをさらに圧延し、その
後、加熱により潤滑剤を除去して0.3mm厚の乾燥シ
ートを作成した。次いで、このシートをシートの押し出
し方向に280℃で250%延伸し、次いで、押し出し
方向と垂直な方向に延伸ゾーン温度70℃、熱固定ゾー
ン温度300℃で1500%延伸した。このようにして
作られた延伸シートを2枚重ねてロール温度室温で、元
の膜厚の60%になるように再圧延し、多孔質PTFE
積層体を得た。この多孔質PTFE積層体のPSL阻止
率(0.102μm及び0.055μm)とエタノール
FLUXを測定したところ次のようになった。
Comparative Example 2 A mixture of 100 parts by weight of PTFE fine powder (F104, manufactured by Daikin Co.) and 30 parts by weight of liquid paraffin as a lubricant was preformed, extruded into a sheet, and further rolled. Thereafter, the lubricant was removed by heating to produce a dry sheet having a thickness of 0.3 mm. Next, this sheet was stretched at 280 ° C in the extrusion direction of the sheet by 250%, and then stretched in a direction perpendicular to the extrusion direction at a stretching zone temperature of 70 ° C and a heat setting zone temperature of 300 ° C by 1500%. The two stretched sheets thus produced are stacked and rolled again at room temperature at a roll temperature of 60% of the original film thickness.
A laminate was obtained. The PSL rejection (0.102 μm and 0.055 μm) of this porous PTFE laminate and the measurement of ethanol FLUX were as follows.

【0041】 PSL阻止率(0.102μm):90%、 エタノールFLUX:2.0ml/cm2・min PSL阻止率(0.055μm):10%、 エタノールFLUX:2.0ml/cm2・minPSL rejection (0.102 μm): 90%, ethanol FLUX: 2.0 ml / cm 2 · min PSL rejection (0.055 μm): 10%, ethanol FLUX: 2.0 ml / cm 2 · min

【0042】上記数値をPSL阻止率とエタノールFL
UXとのバランスを表す式(I)及び式(II)にて計算
すると、以下のようになり、式(I)及び式(II)をい
ずれも満足しない。 0.9>−0.22×LN(2.0)+1.3=
1.15 0.1>−0.22×LN(2.0)+0.5=
0.35
The above values were used as PSL rejection and ethanol FL.
Calculations using formulas (I) and (II) representing the balance with UX result in the following, and neither formula (I) nor formula (II) is satisfied. 0.9> −0.22 × LN (2.0) + 1.3 =
1.15 0.1> −0.22 × LN (2.0) + 0.5 =
0.35

【0043】[0043]

【比較例3】PTFEファインパウダー(旭ICI社
製、CD−123)100重量部に対して、潤滑剤とし
て流動パラフィン30重量部重量部を配合した混和物を
予備成形後、シート状に押し出し、これをさらに圧延
し、その後、加熱により潤滑剤を除去して0.3mm厚
の乾燥シートを作成した。次いで、このシートをシート
の押し出し方向に280℃で200%延伸し、次いで、
押し出し方向と垂直な方向に延伸ゾーン温度70℃、熱
固定ゾーン温度300℃で1500%延伸した。このよ
うにして作られた延伸シートを2枚重ねてロール温度室
温で、元の膜厚の60%になるように再圧延し、325
℃で熱処理し、多孔質PTFE積層体を得た。この多孔
質PTFE積層体のPSL阻止率(0.102μm及び
0.055μm)とエタノールFLUXを測定したとこ
ろ次のようになった。
Comparative Example 3 An admixture of 100 parts by weight of PTFE fine powder (manufactured by Asahi ICI, CD-123) and 30 parts by weight of liquid paraffin as a lubricant was preformed and extruded into a sheet. This was further rolled, and then the lubricant was removed by heating to produce a 0.3 mm thick dry sheet. The sheet is then stretched 200% at 280 ° C. in the sheet extrusion direction,
The film was stretched 1500% in a direction perpendicular to the extrusion direction at a stretching zone temperature of 70 ° C and a heat setting zone temperature of 300 ° C. Two sheets of the stretched sheet thus produced are stacked and rolled again at room temperature at a roll temperature of 60% of the original film thickness.
It heat-processed at ℃, and obtained the porous PTFE laminated body. The PSL rejection (0.102 μm and 0.055 μm) of this porous PTFE laminate and the measurement of ethanol FLUX were as follows.

【0044】 PSL阻止率(0.102μm):100%、 エタノールFLUX:0.9ml/cm2・min PSL阻止率(0.055μm):30%、 エタノールFLUX:0.9ml/cm2・minPSL rejection (0.102 μm): 100%, ethanol FLUX: 0.9 ml / cm 2 · min PSL rejection (0.055 μm): 30%, ethanol FLUX: 0.9 ml / cm 2 · min

【0045】上記数値をPSL阻止率とエタノールFL
UXとのバランスを表す式(I)及び式(II)にて計算
すると、以下のようになり、式(I)及び式(II)をい
ずれも満足しない。 1.0>−0.22×LN(0.9)+1.3=
1.32 0.3>−0.22×LN(0.9)+0.5=
0.52
The above values were used as the PSL rejection and ethanol FL.
Calculations using formulas (I) and (II) representing the balance with UX result in the following, and neither formula (I) nor formula (II) is satisfied. 1.0> −0.22 × LN (0.9) + 1.3 =
1.32 0.3> −0.22 × LN (0.9) + 0.5 =
0.52

【0046】以上の本発明の実施例1〜2及び比較例1
〜3の多孔質PTFE積層体のPSL阻止率(0.10
2μm及び0.055μm)とエタノールFLUXとの
バランスを表す式(I)及び式(II)にて計算した値を
まとめると、式(I)については図3に、式(II)につ
いては図4に示すとおりとなった。
Examples 1 and 2 of the present invention and Comparative Example 1
PSL rejection of the porous PTFE laminates (0.10 to 0.10)
2 and 0.055 μm) and the values calculated by the formulas (I) and (II), which represent the balance between ethanol and FLUX, are summarized in FIG. 3 for the formula (I) and FIG. 4 for the formula (II). It became as shown in.

【0047】[0047]

【発明の効果】本発明の製造方法によって、極めて微小
な粒子を高い確率で除去することが可能となり、かつ流
量はできるだけ多く確保できるPTFE多孔質膜が得ら
れる。これによって、半導体分野でより精度の高い液体
濾過が効率よく行うことができる。
According to the production method of the present invention, it is possible to obtain a PTFE porous membrane capable of removing extremely minute particles with a high probability and securing a flow rate as high as possible. Thereby, more accurate liquid filtration can be efficiently performed in the semiconductor field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 PTFE多孔質膜における粒子除去性能と透
過性能の関係を表すグラフである。
FIG. 1 is a graph showing the relationship between particle removal performance and permeation performance in a PTFE porous membrane.

【図2】 PTFE多孔質膜における孔径と積層枚数の
関係を表すグラフである。
FIG. 2 is a graph showing the relationship between the pore size and the number of stacked layers in a PTFE porous membrane.

【図3】 本発明の実施例1〜2及び比較例1〜3の多
孔質PTFE積層体のPSL阻止率(0.102μm及
び0.055μm)とエタノールFLUXとのバランス
を表す式(I)にて計算した値をまとめたグラフ。
FIG. 3 is a graph showing the balance between PSL rejection (0.102 μm and 0.055 μm) and ethanol FLUX of the porous PTFE laminates of Examples 1 to 2 and Comparative Examples 1 to 3 of the present invention. A graph summarizing the values calculated.

【図4】 本発明の実施例1〜2及び比較例1〜3の多
孔質PTFE積層体のPSL阻止率(0.102μm及
び0.055μm)とエタノールFLUXとのバランス
を表す式(II)にて計算した値をまとめたグラフ。
FIG. 4 is a graph showing the balance between the PSL rejection (0.102 μm and 0.055 μm) and the ethanol FLUX of the porous PTFE laminates of Examples 1 to 2 and Comparative Examples 1 to 3 of the present invention. A graph summarizing the values calculated.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 乳化重合により得られたポリテトラフル
オロエチレン微粉末に潤滑剤を加えて混合し、押出法及
び圧延法から選ばれる少なくとも一つの方法により得た
シート状物を、少なくとも一軸方向に面積倍率で200
倍以上延伸し、融点温度以上で焼結したシートを、2枚
以上重ね合わせるか又は貼り合わせることを特徴とする
ポリテトラフルオロエチレン多孔質膜の製造方法。
1. A polytetrafluoroethylene fine powder obtained by emulsion polymerization, a lubricant is added and mixed, and a sheet-like material obtained by at least one method selected from an extrusion method and a rolling method is subjected to at least one axial direction. 200 in area magnification
A method for producing a porous polytetrafluoroethylene membrane, comprising laminating or laminating two or more sheets stretched twice or more and sintered at a melting point or higher.
【請求項2】 0.102μmのポリスチレン粒子の阻
止率(X)とエタノールFLUX(Z)とのバランスが
下記式(I)を満足するポリテトラフルオロエチレン多
孔質膜。 (X)>−0.22×LN(Z)+1.3 (I)
2. A polytetrafluoroethylene porous membrane in which the balance between the rejection (X) of 0.102 μm polystyrene particles and ethanol FLUX (Z) satisfies the following formula (I). (X)> − 0.22 × LN (Z) +1.3 (I)
【請求項3】 0.055μmのポリスチレン粒子の阻
止率(Y)とエタノールFLUX(Z)とのバランスが
下記式(II)を満足するポリテトラフルオロエチレン多
孔質膜。 (Y)>−0.22×LN(Z)+0.5 (II)
3. A polytetrafluoroethylene porous membrane wherein the balance between the rejection (Y) of 0.055 μm polystyrene particles and ethanol FLUX (Z) satisfies the following formula (II). (Y)> − 0.22 × LN (Z) +0.5 (II)
JP14418897A 1997-06-02 1997-06-02 Polytetrafluoroethylene porous membrane and its production Pending JPH10328539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14418897A JPH10328539A (en) 1997-06-02 1997-06-02 Polytetrafluoroethylene porous membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14418897A JPH10328539A (en) 1997-06-02 1997-06-02 Polytetrafluoroethylene porous membrane and its production

Publications (1)

Publication Number Publication Date
JPH10328539A true JPH10328539A (en) 1998-12-15

Family

ID=15356258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14418897A Pending JPH10328539A (en) 1997-06-02 1997-06-02 Polytetrafluoroethylene porous membrane and its production

Country Status (1)

Country Link
JP (1) JPH10328539A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119662A (en) * 2006-11-15 2008-05-29 Sumitomo Electric Fine Polymer Inc Filter and its manufacturing method
JP2008521972A (en) * 2004-11-24 2008-06-26 ドナルドソン カンパニー,インコーポレイティド PTFE membrane
JP5684953B1 (en) * 2013-05-07 2015-03-18 帝人株式会社 Liquid filter substrate
JP5684952B1 (en) * 2013-05-07 2015-03-18 帝人株式会社 Liquid filter substrate
JP5684951B1 (en) * 2013-05-07 2015-03-18 帝人株式会社 Liquid filter substrate
CN105013343A (en) * 2014-04-22 2015-11-04 成都百途医药科技有限公司 Preparation method of super-hydrophobic polytetrafluoroethylene fiber film
CN105233707A (en) * 2015-09-17 2016-01-13 重庆润泽医药有限公司 Preparation method for polytetrafluoroethylene film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521972A (en) * 2004-11-24 2008-06-26 ドナルドソン カンパニー,インコーポレイティド PTFE membrane
JP2008119662A (en) * 2006-11-15 2008-05-29 Sumitomo Electric Fine Polymer Inc Filter and its manufacturing method
JP5684953B1 (en) * 2013-05-07 2015-03-18 帝人株式会社 Liquid filter substrate
JP5684952B1 (en) * 2013-05-07 2015-03-18 帝人株式会社 Liquid filter substrate
JP5684951B1 (en) * 2013-05-07 2015-03-18 帝人株式会社 Liquid filter substrate
CN105013343A (en) * 2014-04-22 2015-11-04 成都百途医药科技有限公司 Preparation method of super-hydrophobic polytetrafluoroethylene fiber film
CN105233707A (en) * 2015-09-17 2016-01-13 重庆润泽医药有限公司 Preparation method for polytetrafluoroethylene film

Similar Documents

Publication Publication Date Title
EP2596853B1 (en) Fluororesin membrane, fluororesin composite, porous fluororesin composite, manufacturing methods thereof, and separation membrane element
JP4944864B2 (en) Polytetrafluoroethylene porous membrane, method for producing the same, and waterproof air-permeable filter
US5064593A (en) Process for producing multilayer polytetrafluoroethylene porous membrane
JP3099416B2 (en) Method for producing polytetrafluoroethylene porous membrane with asymmetric pore size
JP2012176361A (en) Porous multilayered filter
CN103987449B (en) Polytetrafluoroethylporous porous membrane, polytetrafluoroethylporous porous membrane complex and separating film element
JP7060201B2 (en) Fluorine-based resin porous membrane and its manufacturing method
CN111093948A (en) Method for preparing porous film of fluorine-based resin
JP2008055407A (en) Method for manufacturing polytetrafluoroethylene porous film and air filter filtering medium
KR102190864B1 (en) Preparation method of porous fluorine resin sheet
JPH10328539A (en) Polytetrafluoroethylene porous membrane and its production
KR102242547B1 (en) Porous fluorine resin film
CN103561851B (en) Microporous modified polytetrafluoroethylene film, porous modified polytetrafluoroethylene resin film composite and method for producing same, and membrane separation element
JP2014042869A (en) Porous multi-layer filter
JP2021178948A (en) Porous membrane composed of polytetrafluoroethylene and/or modified polytetrafluoroethylene having high strength and small pore diameter
JP2013237808A (en) Micropore film made of modified polytetrafluoroethylene and method of manufacturing the same, porous resin film composite, and filter element
WO2021060328A1 (en) Polytetrafluoroethylene porous film having high strength and small pore diameter
KR102145535B1 (en) Preparation method of porous fluorine resin sheet and porous fluorine resin sheet
CN112423869B (en) High flow liquid filtration device comprising porous parylene film or porous parylene/polytetrafluoroethylene composite film
CN111655358B (en) Fluorine-based resin porous membrane and method for preparing same
JPH08174738A (en) Porous tetrafluoroethylene resin laminate and production thereof
WO2023139869A1 (en) Porous membrane and porous membrane laminate
KR20190078389A (en) Multi-layer film for air purification filter
KR102160652B1 (en) Porous fluorine resin film
CN115551625A (en) Porous membrane laminate, filter element, and method for producing porous membrane laminate