JPH10326718A - Paralleled magnetic field application structure - Google Patents

Paralleled magnetic field application structure

Info

Publication number
JPH10326718A
JPH10326718A JP13379397A JP13379397A JPH10326718A JP H10326718 A JPH10326718 A JP H10326718A JP 13379397 A JP13379397 A JP 13379397A JP 13379397 A JP13379397 A JP 13379397A JP H10326718 A JPH10326718 A JP H10326718A
Authority
JP
Japan
Prior art keywords
magnetic field
substrate
magnet
parallel
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13379397A
Other languages
Japanese (ja)
Inventor
Kokuka Chin
沈  国華
Yukio Kikuchi
幸男 菊地
Masatoshi Oba
昌俊 大庭
Osamu Kitahama
道 北浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP13379397A priority Critical patent/JPH10326718A/en
Publication of JPH10326718A publication Critical patent/JPH10326718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized paralleled magnetic field application structure, with which the direction of the magnetic field of substrate surface can be made uniform in parallel in a highly precise manner. SOLUTION: A magnet 11, which generates a magnetic field in parallel with the magnetic thin film, is provided on the end of a substrate in this structure. The substrate 10 is arranged in parallel with the surface of the source of a magnetic material right above or right under the source of the magnetic material in this magnetic field application structure, and a pole piece 12 consisting of a ferromagnetic material is provided on the side facing to the substrate end of the magnet 11. The pole piece 12 is formed in such a manner that the thickness A of its center part is thinner than the thickness (B) of the other part. The form of the above-mentioned magnet 11 may be used in the same manner as in the case of the pole piece 12 instead of providing the pole piece 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性薄膜を形成す
る際の平行磁界印加機構に関する。
The present invention relates to a parallel magnetic field applying mechanism for forming a magnetic thin film.

【0002】[0002]

【従来の技術】最近、磁気記録の分野において、高密度
記録化が進んでおり、その再生用として磁気抵抗効果を
利用した磁気ヘッド(以下、磁気抵抗ヘッドという)が
採用されるようになってきた。
2. Description of the Related Art In recent years, in the field of magnetic recording, high-density recording has been progressing, and a magnetic head utilizing a magnetoresistive effect (hereinafter referred to as a magnetoresistive head) has been adopted for reproduction. Was.

【0003】この磁気抵抗ヘッド用磁性薄膜の形成方法
としては、スパッタリング法や真空蒸着法等の真空成膜
法が用いられている。例えば、スパッタリング装置は、
特開昭62−109309号公報に記載されているよう
に、基板面及びその近傍に強磁性体板を配置し、基板面
内に一様な磁界を通すことにより、膜厚分布を均一にし
て、磁化容易軸の向きのばらつきの小さな磁性薄膜を形
成しようとしている。即ち、かかる磁気抵抗ヘッド用磁
性薄膜を形成するための装置は、前記公報の第1図に示
すように、スパッタ室が強磁性体ターゲット1、マグネ
トロン磁石2、マグネトロン磁石の漏洩磁界や印加した
外部磁界によりターゲット面上でプラズマ状態を乱さな
いこと及び基板3面に一様に磁界が印加できることを目
的とした強磁性体板4、並びに上記基板面に一様な磁界
を印加するためのヘルムホルツコイル5より構成されて
いる。また、電子材料、1994年11月号、第58頁
の図5にも、かかるヘルムホルツコイルを用いて均一磁
界印加を可能とする磁界印加機構を備えた磁性薄膜スパ
ッタ装置が記載されている。
As a method of forming the magnetic thin film for the magnetoresistive head, a vacuum film forming method such as a sputtering method or a vacuum evaporation method is used. For example, the sputtering device
As described in JP-A-62-109309, a ferromagnetic plate is arranged on the substrate surface and in the vicinity thereof, and a uniform magnetic field is passed through the substrate surface to make the film thickness distribution uniform. It is intended to form a magnetic thin film having a small variation in the direction of the axis of easy magnetization. That is, in the apparatus for forming such a magnetic thin film for a magnetoresistive head, as shown in FIG. 1 of the above-mentioned publication, the sputtering chamber includes a ferromagnetic target 1, a magnetron magnet 2, a leakage magnetic field of the magnetron magnet, and an applied external magnetic field. A ferromagnetic plate 4 for preventing a plasma state from being disturbed on a target surface by a magnetic field and for applying a magnetic field uniformly to the substrate 3 surface, and a Helmholtz coil for applying a uniform magnetic field to the substrate surface 5. FIG. 5 on page 58 of Electronic Materials, November 1994, also describes a magnetic thin film sputtering apparatus provided with a magnetic field applying mechanism that enables a uniform magnetic field to be applied using such a Helmholtz coil.

【0004】また、真空蒸着装置においては、例えば、
特開平5−339711号公報に記載されているよう
に、基板に近接して磁石を配置し、この磁石によって基
板の蒸着面に対して常に一定の方向を向いた磁界を蒸着
面に沿って発生させるために、該基板を取り付ける支持
板に、基板の中心を通る径方向の直線に関して対称な位
置でかつ該基板に近接して2つの棒状の磁石を取り付け
るようにした磁界印加機構が知られている。
In a vacuum deposition apparatus, for example,
As described in Japanese Patent Application Laid-Open No. 5-339711, a magnet is arranged in close proximity to a substrate, and a magnetic field is generated along the deposition surface by the magnet so as to always face a fixed direction with respect to the deposition surface of the substrate. For this purpose, there is known a magnetic field application mechanism in which two rod-shaped magnets are mounted on a support plate on which the substrate is mounted at a position symmetrical with respect to a radial straight line passing through the center of the substrate and close to the substrate. I have.

【0005】[0005]

【発明が解決しようとする課題】一方、磁気ヘッドの生
産性を上げるために基板の大型化が進み、それに伴い膜
厚の均一性ばかりでなく、形成される磁性薄膜の磁化容
易軸の向きが基板面内のどの位置でも同じ方向を向くよ
うにすることが求められている。
On the other hand, in order to increase the productivity of the magnetic head, the size of the substrate has been increased. As a result, not only the film thickness becomes uniform, but also the direction of the axis of easy magnetization of the formed magnetic thin film has to be changed. It is demanded that the same direction is directed at any position in the plane of the substrate.

【0006】しかし、前記スパッタリング装置では、基
板の大型化に伴って磁界を印加する磁界発生部であるヘ
ルムホルツコイルの寸法が大きくなり、そのためにスパ
ッタ室が大きくなって、コストが増加するという問題が
ある。
However, in the sputtering apparatus, the size of the Helmholtz coil, which is a magnetic field generator for applying a magnetic field, increases with the increase in the size of the substrate, thereby increasing the size of the sputtering chamber and increasing the cost. is there.

【0007】また、前記真空蒸着装置のように、基板の
中心を通る径方向の直線に対して対称な位置でかつ該基
板に近接して2つの棒状の磁石を取り付けただけでは、
基板面内に一様に方向のそろった平行磁界が得られず、
形成される磁性薄膜の磁化容易軸の向きのばらつきを十
分に小さくすることはできないという問題がある。
Further, only two rod-shaped magnets are mounted at positions symmetrical with respect to a radial straight line passing through the center of the substrate and close to the substrate as in the above-mentioned vacuum vapor deposition apparatus.
A parallel magnetic field with a uniform direction cannot be obtained in the substrate plane,
There is a problem that variation in the direction of the easy axis of magnetization of the formed magnetic thin film cannot be sufficiently reduced.

【0008】本発明の目的は、前記従来技術の問題点を
解消し、小型化された、基板面内の磁界の向きを精度よ
く平行に揃えられる磁界印加手段としての磁性薄膜形成
用平行磁界印加機構を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to reduce the size of a parallel magnetic field for forming a magnetic thin film as a magnetic field applying means capable of precisely aligning the direction of a magnetic field in a substrate surface in parallel. It is to provide a mechanism.

【0009】[0009]

【課題を解決するための手段】本発明の平行磁界印加機
構は、基板の磁性薄膜形成面に沿って平行な磁界を発生
する磁石を該基板端部に配設した平行磁界印加機構であ
って、該基板を磁性材料源の真上又は真下に該磁性材料
源の面に平行に配置し、該磁石の基板端部に面する側に
強磁性材料からなるポールピースを設け、該ポールピー
スを、磁界方向に垂直な長さ方向において、その中心部
の厚さが他の部分の厚さより薄くなるように形成してあ
る。
A parallel magnetic field applying mechanism according to the present invention is a parallel magnetic field applying mechanism in which a magnet that generates a parallel magnetic field along a surface on which a magnetic thin film is formed on a substrate is disposed at an end of the substrate. Disposing the substrate directly above or below the magnetic material source in parallel with the surface of the magnetic material source, providing a pole piece made of a ferromagnetic material on the side of the magnet facing the end of the substrate, In the length direction perpendicular to the magnetic field direction, the thickness of the central portion is formed to be smaller than the thickness of other portions.

【0010】また、前記平行磁界印加機構において、ポ
ールピースを設ける代わりに、該磁石自体を、磁界方向
に垂直な長さ方向において、その中心部の厚さが他の部
分の厚さより薄くなるように形成してもよい。
In the above-mentioned parallel magnetic field applying mechanism, instead of providing a pole piece, the magnet itself is formed such that the thickness of the center portion in the length direction perpendicular to the magnetic field direction is smaller than the thickness of the other portions. May be formed.

【0011】前記磁石は永久磁石又は電磁石であり、前
記基板と前記磁界との相対的な位置関係が磁性薄膜形成
中に変化しないようになっていることが望ましい。さら
に、前記基板は、磁性薄膜形成中、該磁石又はポールピ
ースの高さの半分の位置の平面内に配置されていること
が望ましい。
It is preferable that the magnet is a permanent magnet or an electromagnet, and the relative positional relationship between the substrate and the magnetic field does not change during the formation of the magnetic thin film. Further, it is desirable that the substrate is arranged in a plane at a position half the height of the magnet or the pole piece during the formation of the magnetic thin film.

【0012】[0012]

【発明の実施の形態】次に、本発明の実施の形態を図面
を参照して説明するが、これは単なる説明のためのもの
で本発明を何ら限定するものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings, but this is merely for explanation and does not limit the present invention in any way.

【0013】2つの棒状の磁石を、基板の中心を通る径
方向の直線に対して対称な位置でかつ該基板に近接し
て、磁石の基板端部に面する側の極性が異なるようにし
て配置しただけでは、基板の成膜面における磁界分布は
図1に示す如く磁力線の平行性が悪い。この場合に、平
行性の良い磁界を発生するためには、磁石1の長さ
(L)が基板2の直径(D)よりかなり大きく、例えば
L/Dを2倍以上とすることが必要である。図1中、θ
は円周上の位置を表す角度を示す。この図1の円形基板
の円周上のスキュー角の分布状態を図2に示す。図2か
ら明らかなように、基板円周上でのスキュー角は広い範
囲で変化し、最大値も大きな値をとり、円形基板の成膜
面上の磁力線の平行性が位置によって非常に悪くなって
いることがわかる。
The two rod-shaped magnets are positioned symmetrically with respect to a radial straight line passing through the center of the substrate and close to the substrate so that the magnets facing the substrate end have different polarities. With only the arrangement, the magnetic field distribution on the film formation surface of the substrate has poor parallelism of the lines of magnetic force as shown in FIG. In this case, in order to generate a magnetic field with good parallelism, it is necessary that the length (L) of the magnet 1 is considerably larger than the diameter (D) of the substrate 2, for example, L / D is twice or more. is there. In FIG. 1, θ
Indicates an angle representing a position on the circumference. FIG. 2 shows the distribution of skew angles on the circumference of the circular substrate of FIG. As is clear from FIG. 2, the skew angle on the substrate circumference varies over a wide range, the maximum value also takes a large value, and the parallelism of the magnetic force lines on the deposition surface of the circular substrate becomes extremely poor depending on the position. You can see that it is.

【0014】これに対し、本発明の平行磁界印加機構
は、図3に示すように、磁性材料を基板10に堆積する
際の基板の磁性薄膜形成面に沿って平行な磁界を発生す
るための磁石11を、基板の両端部に、基板の中心部を
通る径方向の直線に対して対称的な位置でかつ該基板に
近接して配設するようにし、該基板を磁性材料源(図示
せず)の真上又は真下に該磁性材料源の面に平行に配置
し、該磁石の基板端部に面する側に強磁性材料からなる
ポールピース12を設け、該ポールピースを、磁界方向
に垂直な長さ方向において、その中心部の厚さ(A)が
他の部分の厚さ(B)より薄くなるように形成してあ
る。かくして、図4に示す如く、円形基板の成膜面にお
ける磁力線の平行性は極めて良好である。図4中、θは
円周上の位置を表す角度を示す。この図4の円形基板
(直径D)の円周上のスキュー角の分布状態を示す図5
から明らかなように、磁界角度分布は±1.00°の範
囲内にあり、平行性が良好であることがわかる。
On the other hand, the parallel magnetic field applying mechanism of the present invention, as shown in FIG. 3, generates a parallel magnetic field along the magnetic thin film forming surface of the substrate when depositing the magnetic material on the substrate 10. The magnets 11 are arranged at both ends of the substrate at positions symmetrical with respect to a radial straight line passing through the center of the substrate and close to the substrate, and the substrate is provided with a magnetic material source (not shown). And a pole piece 12 made of a ferromagnetic material disposed directly above or directly below the surface of the magnetic material source on the side of the magnet facing the substrate end. In the vertical length direction, it is formed so that the thickness (A) of the central portion is smaller than the thickness (B) of the other portions. Thus, as shown in FIG. 4, the parallelism of the lines of magnetic force on the deposition surface of the circular substrate is extremely good. In FIG. 4, θ indicates an angle representing a position on the circumference. FIG. 5 showing the distribution of skew angles on the circumference of the circular substrate (diameter D) of FIG.
As is clear from the figure, the magnetic field angle distribution is within the range of ± 1.00 °, and it is understood that the parallelism is good.

【0015】上記磁性材料源としては、真空成膜法で用
いられる種々の材料からなるターゲット又は蒸発源を使
用することができる。
As the magnetic material source, targets or evaporation sources made of various materials used in a vacuum film forming method can be used.

【0016】ポールピースは、前記したように、磁界方
向に垂直な長さ方向において、その中心部の厚さが他の
部分の厚さより薄くなるように形成されているが、この
形状は特に制限されるものではなく、平行な磁力線が形
成され得るようになる形状であればよい。例えば、ポー
ルピースは、その中心部の厚さが他の部分の厚さより薄
くなるように、その基板端部に面する側が階段状に又は
勾配をもって形成され、また、その基板端部に面する側
と反対側の面は対向する磁石の面と平行となるように形
成されればよい。
As described above, the pole piece is formed so that the thickness at the center thereof is smaller than the thickness at other portions in the length direction perpendicular to the magnetic field direction, but this shape is particularly limited. However, the shape may be any shape as long as parallel lines of magnetic force can be formed. For example, the pole piece is formed so that the side facing the substrate end is stepped or inclined so that the thickness of the center portion is smaller than the thickness of the other portions, and the pole piece faces the substrate end. The surface on the side opposite to the side may be formed so as to be parallel to the surface of the facing magnet.

【0017】前記ポールピースを設ける代わりに、前記
磁石自体を、磁界方向に垂直な長さ方向において、その
中心部の厚さが他の部分の厚さより薄くなるように形成
してもよい。その場合の磁石の形状は前記ポールピース
の場合と同じである。
Instead of providing the pole piece, the magnet itself may be formed such that the thickness of the center portion thereof in the length direction perpendicular to the magnetic field direction is smaller than the thickness of other portions. In this case, the shape of the magnet is the same as that of the pole piece.

【0018】前記基板は、磁性薄膜形成中、該磁石又は
ポールピースの高さの半分の位置にあるようにxz平面
内に配置されていることが望ましい。図6に、磁石又は
ポールピースの高さの半分の位置のxz平面内に基板を
配置した場合(図中の基板X)及び磁石又はポールピー
スの高さ方向の端部の位置のxz平面に基板を配置した
場合(図中の基板Y)について、磁性薄膜形成面と磁力
線との位置関係を示す。図6に示された基板(X及び
Y)についてのZ/RとATAN Bx/Bzとの関係
を示すグラフ(図7)から明らかなように、磁石又はポ
ールピースの高さの半分の位置のxz平面内に基板を配
置すれば、所期の目的が達成される。
It is desirable that the substrate is disposed in the xz plane so as to be at a position half the height of the magnet or the pole piece during the formation of the magnetic thin film. FIG. 6 shows a case where the substrate is arranged in the xz plane at half the height of the magnet or pole piece (substrate X in the figure) and in the xz plane at the position of the end of the magnet or pole piece in the height direction. The positional relationship between the surface on which the magnetic thin film is formed and the lines of magnetic force is shown when a substrate is arranged (substrate Y in the figure). As is clear from the graph (FIG. 7) showing the relationship between Z / R and ATAN Bx / Bz for the substrates (X and Y) shown in FIG. 6, the height of the magnet or the pole piece is half the height. By arranging the substrate in the xz plane, the intended purpose is achieved.

【0019】本発明の上記平行磁界印加機構は、既知の
磁性薄膜形成装置、例えば、スパッタリング法や真空蒸
着法等の真空成膜法で用いる磁性薄膜形成装置に適用で
きる。
The parallel magnetic field applying mechanism of the present invention can be applied to a known magnetic thin film forming apparatus, for example, a magnetic thin film forming apparatus used in a vacuum film forming method such as a sputtering method or a vacuum evaporation method.

【0020】[0020]

【発明の効果】本発明の平行磁界印加機構は、小型化さ
れた、基板面内の磁界の向きを精度よく平行に揃えられ
る磁界印加手段として有用である。
The parallel magnetic field applying mechanism according to the present invention is useful as a miniaturized magnetic field applying means capable of accurately aligning the directions of magnetic fields in a substrate plane in parallel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の磁界発生手段による基板上の磁力線の方
向を模式的に示す平面図。
FIG. 1 is a plan view schematically showing the direction of lines of magnetic force on a substrate by a conventional magnetic field generating means.

【図2】図1の円形基板の円周上のスキュー角の分布状
態を示すグラフ。
FIG. 2 is a graph showing a distribution state of a skew angle on a circumference of the circular substrate of FIG. 1;

【図3】本発明の平行磁界印加機構の一実施態様を示す
斜視図。
FIG. 3 is a perspective view showing an embodiment of a parallel magnetic field applying mechanism of the present invention.

【図4】本発明の平行磁界印加機構による基板上の磁力
線の方向を模式的に示す平面図。
FIG. 4 is a plan view schematically showing directions of lines of magnetic force on a substrate by a parallel magnetic field applying mechanism of the present invention.

【図5】図4の円形基板の円周上のスキュー角の分布状
態を示すグラフ。
FIG. 5 is a graph showing a distribution state of a skew angle on a circumference of the circular substrate of FIG. 4;

【図6】基板の配置位置による薄膜形成面と磁力線との
関係を模式的に示す断面図。
FIG. 6 is a cross-sectional view schematically showing the relationship between the thin film formation surface and the magnetic field lines depending on the arrangement position of the substrate.

【図7】図6に示された基板について、Z/RとATA
N Bx/Bzとの関係を示すグラフ。
FIG. 7 shows Z / R and ATA for the substrate shown in FIG.
9 is a graph showing a relationship with NBx / Bz.

【符号の説明】[Explanation of symbols]

1 磁石 2 基板 10 基板
11 磁石 12 ポールピース A ポール
ピースの中心部の厚さ B ポールピースの中心部以外の厚さ D 基板の直
径 L 磁石の長さ X 基板
Y 基板
1 magnet 2 substrate 10 substrate
11 Magnet 12 Polepiece A Thickness of the center of the polepiece B Thickness other than the center of the polepiece D Board diameter L Magnet length X Board
Y substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北浜 道 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Michi Kitahama, 2500 Hagizono, Chigasaki-shi, Kanagawa Japan Nippon Vacuum Engineering Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板の磁性薄膜形成面に沿って平行な磁
界を発生する磁石を該基板端部に配設した平行磁界印加
機構であって、該基板は磁性材料源の真上又は真下に該
磁性材料源の面に平行に配置され、該磁石の基板端部に
面する側に強磁性材料からなるポールピースが設けら
れ、該ポールピースが、磁界方向に垂直な長さ方向にお
いて、その中心部の厚さが他の部分の厚さより薄く形成
されていることを特徴とする平行磁界印加機構。
1. A parallel magnetic field applying mechanism in which a magnet that generates a parallel magnetic field along a magnetic thin film forming surface of a substrate is provided at an end of the substrate, wherein the substrate is located directly above or below a magnetic material source. A pole piece made of a ferromagnetic material is provided on the side of the magnet facing the substrate end, the pole piece being disposed parallel to the plane of the magnetic material source, and the pole piece is arranged in a length direction perpendicular to the magnetic field direction. A parallel magnetic field applying mechanism wherein a thickness of a central portion is formed smaller than thicknesses of other portions.
【請求項2】 基板の磁性薄膜形成面に沿って平行な磁
界を発生する磁石を該基板端部に配設した平行磁界印加
機構であって、該基板は磁性材料源の真上又は真下に該
磁性材料源の面に平行に配置され、該磁石が、磁界方向
に垂直な長さ方向において、その中心部の厚さが他の部
分の厚さより薄く形成されていることを特徴とする平行
磁界印加機構。
2. A parallel magnetic field applying mechanism in which a magnet for generating a parallel magnetic field along a surface of a substrate on which a magnetic thin film is formed is disposed at an end of the substrate, wherein the substrate is located directly above or below a magnetic material source. The magnet is disposed parallel to the plane of the magnetic material source, and the magnet is formed such that a thickness of a central portion thereof is smaller than a thickness of other portions in a length direction perpendicular to a magnetic field direction. Magnetic field application mechanism.
【請求項3】 前記磁石が永久磁石若しくは電磁石であ
る請求項1又は2記載の平行磁界印加機構。
3. The parallel magnetic field applying mechanism according to claim 1, wherein the magnet is a permanent magnet or an electromagnet.
【請求項4】 前記基板と前記磁界との相対的な位置関
係が磁性薄膜形成中に変化しないようになっている請求
項1〜3のいずれかに記載の平行磁界印加機構。
4. The parallel magnetic field applying mechanism according to claim 1, wherein a relative positional relationship between the substrate and the magnetic field does not change during the formation of the magnetic thin film.
【請求項5】 前記基板が、磁性薄膜形成中、前記磁石
又はポールピースの高さの半分の位置の平面内に配置さ
れている請求項1〜4のいずれかに記載の平行磁界印加
機構。
5. The parallel magnetic field applying mechanism according to claim 1, wherein the substrate is disposed in a plane at a position half the height of the magnet or the pole piece during the formation of the magnetic thin film.
JP13379397A 1997-05-23 1997-05-23 Paralleled magnetic field application structure Pending JPH10326718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13379397A JPH10326718A (en) 1997-05-23 1997-05-23 Paralleled magnetic field application structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13379397A JPH10326718A (en) 1997-05-23 1997-05-23 Paralleled magnetic field application structure

Publications (1)

Publication Number Publication Date
JPH10326718A true JPH10326718A (en) 1998-12-08

Family

ID=15113159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13379397A Pending JPH10326718A (en) 1997-05-23 1997-05-23 Paralleled magnetic field application structure

Country Status (1)

Country Link
JP (1) JPH10326718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377270B2 (en) 2008-12-03 2013-02-19 Canon Anelva Corporation Plasma processing apparatus, magnetoresistive device manufacturing apparatus, magnetic thin film forming method, and film formation control program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377270B2 (en) 2008-12-03 2013-02-19 Canon Anelva Corporation Plasma processing apparatus, magnetoresistive device manufacturing apparatus, magnetic thin film forming method, and film formation control program

Similar Documents

Publication Publication Date Title
US5746897A (en) High magnetic flux permanent magnet array apparatus and method for high productivity physical vapor deposition
JP2627651B2 (en) Magnetron sputtering equipment
US5902466A (en) Sputtering apparatus with magnetic orienting device for thin film deposition
US5026470A (en) Sputtering apparatus
US6510025B2 (en) Thin film magnetic head including a protrusion structure and an insulation film in a magnetic core
JPH11302839A (en) Sputtering system
JPH0411625B2 (en)
JPH0133548B2 (en)
JPWO2009040892A1 (en) Magnet assembly capable of generating magnetic field having uniform direction and changing direction, and sputtering apparatus using the same
JPH10326718A (en) Paralleled magnetic field application structure
JPS6151410B2 (en)
JP3944946B2 (en) Thin film forming equipment
US7294242B1 (en) Collimated and long throw magnetron sputtering of nickel/iron films for magnetic recording head applications
JPH10245675A (en) Magnetic thin film forming device
US6373364B1 (en) Electromagnet for thin-film processing with winding pattern for reducing skew
JP4028063B2 (en) Device having a magnetic field applying mechanism and method for arranging the same
US5290416A (en) Unidirectional field generator
JP2001207257A (en) Method and system for manufacturing gmr film
JPH0359139B2 (en)
JP3942218B2 (en) Apparatus for simultaneously forming both sides of magnetic thin film and method for manufacturing magnetic thin film
JPH11158616A (en) Sputtering device and sputtering method
JPS5963706A (en) Magnetic thin film body
JP2823862B2 (en) Magnetron sputtering equipment
JP2604442B2 (en) Magnetron sputtering equipment
JP2002004044A (en) Sputtering system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040419

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060818

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061114

A521 Written amendment

Effective date: 20070112

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070205

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20070223

Free format text: JAPANESE INTERMEDIATE CODE: A912

A521 Written amendment

Effective date: 20070518

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518