JPH10325672A - Method and device for forecasting operation state of air liquefying and separating device - Google Patents
Method and device for forecasting operation state of air liquefying and separating deviceInfo
- Publication number
- JPH10325672A JPH10325672A JP9137199A JP13719997A JPH10325672A JP H10325672 A JPH10325672 A JP H10325672A JP 9137199 A JP9137199 A JP 9137199A JP 13719997 A JP13719997 A JP 13719997A JP H10325672 A JPH10325672 A JP H10325672A
- Authority
- JP
- Japan
- Prior art keywords
- liquefied
- pressure rectification
- nitrogen
- production amount
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/0406—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
- F25J3/04224—Cores associated with a liquefaction or refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
- F25J3/0426—The cryogenic component does not participate in the fractionation
- F25J3/04266—The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
- F25J3/04272—The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons and comprising means for reducing the risk of pollution of hydrocarbons into the air fractionation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04793—Rectification, e.g. columns; Reboiler-condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04848—Control strategy, e.g. advanced process control or dynamic modeling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/04—Mixing or blending of fluids with the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/42—Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、空気を液化してそ
の空気の成分である窒素、酸素などの各成分に分離する
ための空気液化分離装置の運転状況を予測するための方
法および装置に関し、特に空気液化分離装置の稼動率を
変更する際に液化窒素および液化酸素の製品抜き出し流
量を変更するための構成に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for predicting the operation state of an air liquefaction / separation apparatus for liquefying air and separating the constituents of the air into components such as nitrogen and oxygen. More particularly, the present invention relates to a configuration for changing the product extraction flow rates of liquefied nitrogen and liquefied oxygen when changing the operation rate of an air liquefaction / separation apparatus.
【0002】[0002]
【従来の技術】従来から、空気液化分離装置では、精留
塔に関連して、冷媒として窒素を用いる圧縮式冷凍機を
設け、液化した窒素ガスを精留塔に噴射し、この精留塔
に供給する循環窒素の流量である寒冷流量を変化して、
稼動率を調整する構成は、従来から当業者に知られてい
る。ここで稼動率ηというのは、空気液化分離装置から
分離して得られる液化窒素と液化酸素との合計の定格製
造量yR(単位Nm3/h)に対する実際の液化窒素の
製造量yN(単位Nm3/h)と実際の液化酸素の製造
量yO(単位Nm3/h)との和の比である。2. Description of the Related Art Conventionally, in an air liquefaction / separation apparatus, a compression refrigerator using nitrogen as a refrigerant is provided in connection with a rectification tower, and liquefied nitrogen gas is injected into the rectification tower. Change the cooling flow rate, which is the flow rate of circulating nitrogen supplied to
A configuration for adjusting the operation rate is conventionally known to those skilled in the art. Here, the operating rate η is the actual production amount of liquefied nitrogen yN (units) with respect to the total rated production amount yR (units Nm 3 / h) of liquefied nitrogen and liquefied oxygen obtained by separation from the air liquefaction separation device. Nm 3 / h) and the actual liquefied oxygen production amount yO (unit Nm 3 / h).
【0003】 η = (yN+yO)/yR …(1) 稼動率ηの変更時には、寒冷流量および原料空気の流量
を、空気液化分離装置全体のバランスを崩さないように
時間経過に伴って徐々に変化する必要がある。この寒冷
流量および原料空気流量の変更に伴って、液化窒素およ
び液化酸素の各製品の製造量yN,yOが、むだ時間経
過後に変化する。したがってその各製品製造量に対応し
て、液化窒素および液化酸素の製品抜き出し流量を変更
する必要がある。もしも液化窒素および液化酸素の製品
抜き出し流量が、製品製造量に一致しなくなると、空気
液化分離装置全体の動作のバランスが崩れ、製品純度が
悪化する。液化窒素および液化酸素の各製品製造量は、
空気液化分離装置の持つ内部パラメータのようなもので
あって、直接測定することは不可能である。Η = (yN + yO) / yR (1) When the operation rate η is changed, the flow rate of the cold and the flow rate of the raw material air are gradually changed with the lapse of time so as not to disturb the balance of the entire air liquefaction / separation apparatus. There is a need to. With the change of the cooling flow rate and the raw material air flow rate, the production amounts yN and yO of the products of liquefied nitrogen and liquefied oxygen change after a lapse of dead time. Therefore, it is necessary to change the product withdrawal flow rate of liquefied nitrogen and liquefied oxygen in accordance with each product production amount. If the product withdrawal flow rates of liquefied nitrogen and liquefied oxygen do not match the production volume of the product, the operation of the entire air liquefaction / separation apparatus will be out of balance, and the product purity will deteriorate. The production volume of each product of liquefied nitrogen and liquefied oxygen is
It is like an internal parameter of an air liquefaction separator and cannot be directly measured.
【0004】先行技術では、稼動率変更途中の液化窒素
および液化酸素の製品抜き出し流量は、熟練したオペレ
ータの経験によって、手動で決定している。したがって
オペレータは、高度の熟練を必要とする。またオペレー
タ個人毎に空気液化分離装置の運転状態が変動すること
になる。[0004] In the prior art, the product withdrawal flow rates of liquefied nitrogen and liquefied oxygen during the operation rate change are manually determined by the experience of a skilled operator. The operator therefore requires a high degree of skill. In addition, the operating state of the air liquefaction / separation apparatus varies for each individual operator.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、空気
液化分離装置の稼動率変更時に、その運転状況の予測を
正確に行うことができるようにした空気液化分離装置の
運転状況の予測方法および装置を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for predicting the operating state of an air liquefaction / separation apparatus, which can accurately predict the operation state when the operation rate of the air liquefaction / separation apparatus is changed. And equipment.
【0006】また本発明の目的は、空気液化分離装置の
稼動率変更時に、その装置全体の動作のバランスを崩す
ことなく安定に、したがって液化窒素および液化酸素の
製品純度が悪化することなく、良好に保ちつつ、運転を
行うことができるようにした空気液化分離装置の運転方
法および装置を提供することである。It is another object of the present invention to stably operate the air liquefaction / separation apparatus without changing the operation balance of the whole apparatus, without deteriorating the product purity of liquefied nitrogen and liquefied oxygen. It is an object of the present invention to provide a method and an apparatus for operating an air liquefaction / separation apparatus which can be operated while maintaining the same.
【0007】[0007]
【課題を解決するための手段】本発明は、上下に延びる
筒状ハウジング内に伝熱部材を介して、下方の高圧精留
塔と、上方の低圧精留塔とが形成された精留塔を準備
し、冷媒として窒素を用いる圧縮式冷凍機によって、高
圧精留塔から窒素ガスを抜き出して原料空気冷却用熱交
換器に導いて原料空気を冷却した後の窒素ガスを圧縮機
で圧縮し、冷熱源によって凝縮し、凝縮した液化窒素を
高圧精留塔に噴射して膨張し、高圧精留塔からの窒素ガ
スを原料空気冷却用熱交換器に抜き出して循環する閉ル
ープを形成し、原料空気冷却用熱交換器で冷却された原
料空気を高圧精留塔の下部に供給し、高圧精留塔の上部
で液化した液化窒素を取り出し、高圧精留塔の下部か
ら、酸素を主として含む液体を、低圧精留塔に供給し、
低圧精留塔の下部から液化酸素を取り出し、低圧精留塔
の上部から窒素ガスを排出し、圧縮式冷凍機によって高
圧精留塔に供給される液化窒素の寒冷流量xに対応する
むだ時間後の液化窒素と液化酸素との合計製造量yを、
寒冷流量xを変数とする予め定める1次関数によって予
測することを特徴とする空気液化分離装置の運転状況の
予測方法である。SUMMARY OF THE INVENTION The present invention is directed to a rectification tower in which a lower high-pressure rectification tower and an upper low-pressure rectification tower are formed in a vertically extending cylindrical housing via a heat transfer member. Prepared, by a compression refrigerator using nitrogen as a refrigerant, nitrogen gas was extracted from the high-pressure rectification column and led to a heat exchanger for cooling the raw material air, and after cooling the raw material air, the nitrogen gas was compressed by a compressor. The condensed liquefied nitrogen is condensed by a cold heat source, and is injected into the high-pressure rectification tower to expand it.Then, the nitrogen gas from the high-pressure rectification tower is extracted to the heat exchanger for cooling the raw material air to form a closed loop for circulation, The raw material air cooled by the air-cooling heat exchanger is supplied to the lower part of the high-pressure rectification tower, and liquefied nitrogen liquefied at the upper part of the high-pressure rectification tower is taken out. To the low pressure rectification column,
Liquefied oxygen is taken out from the lower part of the low-pressure rectification tower, nitrogen gas is discharged from the upper part of the low-pressure rectification tower, and after a dead time corresponding to the cooling flow rate x of the liquefied nitrogen supplied to the high-pressure rectification tower by the compression refrigerator. The total production amount y of liquefied nitrogen and liquefied oxygen of
This is a method for predicting the operation status of the air liquefaction / separation apparatus, wherein the prediction is performed by a predetermined linear function using the cooling flow rate x as a variable.
【0008】本発明に従えば、空気液化分離装置におい
て、原料空気は圧縮式冷凍機の冷媒である窒素が導かれ
る原料空気冷却用熱交換器で冷却され、高圧精留塔の下
部に供給され、ここで冷却され、液化される。高圧精留
塔の下部には、酸素を主として含む液体、すなわち酸素
リッチ液体が貯留され、この液体を低圧精留塔に供給
し、この低圧精留塔内で、高純度の液化酸素が製品とし
て製造され、低圧精留塔の下部に貯留される。精留塔の
下部に貯留された液化酸素は、製品として取り出され
る。According to the present invention, in the air liquefaction / separation apparatus, the raw air is cooled by a raw air cooling heat exchanger to which nitrogen, which is a refrigerant of a compression refrigerator, is introduced, and is supplied to a lower part of a high-pressure rectification column. , Where it is cooled and liquefied. In the lower part of the high-pressure rectification column, a liquid mainly containing oxygen, that is, an oxygen-rich liquid is stored, and this liquid is supplied to the low-pressure rectification column, where high-purity liquefied oxygen is produced as a product. It is manufactured and stored in the lower part of the low pressure rectification column. The liquefied oxygen stored in the lower part of the rectification column is taken out as a product.
【0009】高圧精留塔内では、窒素ガスが上昇し、高
圧精留塔と低圧精留塔とを仕切る伝熱部材を介して窒素
ガスが高圧精留塔の上部で冷却液化される。この液化し
た液化窒素を製品として取り出す。さらに低圧精留塔か
らは、アルゴンが取り出される。In the high-pressure rectification tower, the nitrogen gas rises, and the nitrogen gas is cooled and liquefied at the upper part of the high-pressure rectification tower via a heat transfer member separating the high-pressure rectification tower and the low-pressure rectification tower. The liquefied liquefied nitrogen is taken out as a product. Further, argon is extracted from the low-pressure rectification column.
【0010】上述の精留塔および圧縮式冷凍機を備える
空気液化分離装置において、本件発明者は、圧縮式冷凍
機によって高圧精留塔に供給される液化窒素の流量であ
る寒冷流量xを変化したとき、むだ時間T後に製品とし
て抜き出しが可能な液化窒素と液化酸素との合計製造量
yが、寒冷流量xを変数とする1次関数によって予測す
ることができることを、発見した。本件明細書中、「製
造量」というのは、単位時間あたりの体積または重量で
あり、たとえばその単位はNm3/hである。[0010] In the air liquefaction / separation apparatus provided with the rectification tower and the compression refrigerator described above, the present inventor changed the cooling flow rate x, which is the flow rate of liquefied nitrogen supplied to the high-pressure rectification tower by the compression refrigerator. Then, it has been found that the total production amount y of liquefied nitrogen and liquefied oxygen that can be extracted as a product after the dead time T can be predicted by a linear function having the cooling flow rate x as a variable. In the present specification, the “production amount” is a volume or a weight per unit time, for example, the unit is Nm 3 / h.
【0011】したがって現時点で変化設定した寒冷流量
xを一定に保ったとき、現時点からむだ時間T後の製品
の合計製造量y(=yN+yO)を演算して予測するこ
とができる。これによって液化窒素および液化酸素の製
品の抜き出し流量を、その各製造量に等しく選び、空気
液化分離装置の全体のバランスを崩すことなく、変更す
ることができるようになり、これによって製品純度を高
く保つことができる。こうして自動的に製品抜き出し流
量を変更することができ、空気液化分離装置の動作の安
定を保ちながら、稼動率の変更を短時間かつ確実に行う
ことができるようになる。Therefore, when the cold flow rate x that has been changed and set at the present time is kept constant, the total production amount y (= yN + yO) of the product after the dead time T from the present time can be calculated and predicted. This allows the extraction flow rates of liquefied nitrogen and liquefied oxygen products to be selected equal to their respective production volumes and to be changed without breaking the overall balance of the air liquefaction / separation device, thereby increasing the product purity. Can be kept. In this manner, the flow rate of the product withdrawal can be automatically changed, and the operation rate can be changed in a short time and reliably while keeping the operation of the air liquefaction / separation device stable.
【0012】また本発明は、前記合計製造量yと予め定
める定数Cとの積を演算して液化窒素の製造量zNを予
測することを特徴とする。Further, the present invention is characterized in that a product of the total production amount y and a predetermined constant C is calculated to predict the production amount zN of liquefied nitrogen.
【0013】本発明に従えば、液化窒素の製造量zN
は、前記合計製造量yと予め定める定数Cとの積(zN
=y・C)によって予測することができる。According to the present invention, the production amount of liquefied nitrogen zN
Is the product (zN) of the total production amount y and a predetermined constant C.
= Y · C).
【0014】また本発明は、前記合計製造量yから前記
液化窒素の製造量zNを減算して液化酸素の製造量zO
を予測することを特徴とする。The present invention also provides a method for producing a liquefied oxygen production amount zO by subtracting the liquefied nitrogen production amount zN from the total production amount y.
Is predicted.
【0015】本発明に従えば、液化酸素の製造量zO
は、前記合計製造量yから液化窒素の製造量zNを減算
して(zO=y−zN)予測することができる。According to the present invention, the production amount of liquefied oxygen zO
Can be predicted by subtracting the liquefied nitrogen production amount zN from the total production amount y (zO = y−zN).
【0016】本発明の他の考え方に従えば、液化窒素の
製造量zNは、zN=2・y/3とし、あるいはまた液
化酸素の製造量zOは、zO=y/3から演算して求め
ることもまた、可能である。According to another concept of the present invention, the production amount zN of liquefied nitrogen is set to zN = 2 · y / 3, or the production amount zO of liquefied oxygen is obtained by calculating from zO = y / 3. It is also possible.
【0017】本発明のさらに他の考え方に従えば、請求
項1の合計製造量yを予測する代わりに、合計製造量y
に基づいて、液化窒素の製造量zNを直接に予測するこ
とができ、また同様に液化酸素の製造量zOを直接に予
測することができる。According to yet another aspect of the present invention, instead of predicting the total production amount y in claim 1, the total production amount y
, The production amount zN of liquefied nitrogen can be directly predicted, and similarly, the production amount zO of liquefied oxygen can be directly predicted.
【0018】また本発明は、(a)空気液化分離装置で
あって、(a1)上下に延びる筒状ハウジング内に伝熱
部材を介して、下方の高圧精留塔と、上方の低圧精留塔
とが形成された精留塔と、(a2)圧縮式冷凍機であっ
て、この圧縮式冷凍機は、冷媒として窒素を用い、高圧
精留塔から窒素ガスを抜き出して原料空気冷却用熱交換
器に導いて原料空気を冷却した後の窒素ガスを圧縮機で
圧縮し、冷熱源によって凝縮し、凝縮した液化窒素を高
圧精留塔に噴射して膨張し、高圧精留塔からの窒素ガス
を原料空気冷却用熱交換器に抜き出して循環する閉ルー
プを形成する圧縮式冷凍機と、(a3)原料空気冷却用
熱交換器で冷却された原料空気を高圧精留塔の下部に供
給する管路と、(a4)高圧精留塔の下部から、酸素を
主として含む液体を取り出して、低圧精留塔に供給する
管路と、(a5)低圧精留塔の上部から窒素ガスを排出
する管路とを有する空気液化分離装置と、(b)圧縮式
冷凍機の凝縮した液化窒素が高圧精留塔に供給される寒
冷流量xを制御する寒冷流量制御手段と、(c)圧縮式
冷凍機によって高圧精留塔に供給される液化窒素の寒冷
流量xに対応するむだ時間後の液化窒素と液化酸素との
合計製造量yを、寒冷流量xを変数とする予め定める1
次関数によって予測する予測手段を含むことを特徴とす
る空気液化分離装置の運転状況の予測装置である。The present invention also provides (a) an air liquefaction / separation apparatus, in which (a1) a lower high-pressure rectification tower and an upper low-pressure rectification tower are provided via a heat transfer member in a vertically extending cylindrical housing. A rectification tower having a tower formed therein, and (a2) a compression chiller, which uses nitrogen as a refrigerant, extracts nitrogen gas from the high-pressure rectification tower, and supplies heat for cooling the raw material air. Nitrogen gas after cooling the raw material air by introducing it to an exchanger is compressed by a compressor, condensed by a cold heat source, and the condensed liquefied nitrogen is injected into a high-pressure rectification tower to expand, and nitrogen from the high-pressure rectification tower is expanded. A compression refrigerator that forms a closed loop for extracting and circulating the gas to the heat exchanger for cooling the raw material air, and (a3) supplying the raw material air cooled by the heat exchanger for cooling the raw material air to the lower part of the high-pressure rectification column. A liquid mainly containing oxygen from the pipe line and (a4) the lower part of the high-pressure rectification column An air liquefaction / separation device having a pipe that is taken out and supplied to the low-pressure rectification tower, (a5) a pipe that discharges nitrogen gas from the upper part of the low-pressure rectification tower, and (b) a condensate of a compression refrigerator. A cold flow rate control means for controlling a cold flow rate x at which liquefied nitrogen is supplied to the high-pressure rectification tower; and (c) a dead time corresponding to the cold flow rate x of liquefied nitrogen supplied to the high-pressure rectification tower by the compression refrigerator. The total production amount y of the liquefied nitrogen and liquefied oxygen is determined in advance by using the cooling flow rate x as a variable.
An apparatus for estimating the operating state of an air liquefaction / separation apparatus, comprising an estimating means for estimating by means of a next function.
【0019】本件運転状況の予測装置に従えば、前述の
ように、自動的に液化窒素と液化酸素との各製品の抜き
出し流量を変更することができるようになり、空気液化
分離装置の全体のバランスを崩すことなく、安定を保ち
ながら、稼動率変更を短時間かつ確実に行うことができ
る。According to the operating condition predicting apparatus, as described above, it is possible to automatically change the withdrawal flow rate of each product of liquefied nitrogen and liquefied oxygen. The operating rate can be changed in a short time and reliably while maintaining stability without breaking the balance.
【0020】また本発明は、上下に延びる筒状ハウジン
グ内に伝熱部材を介して、下方の高圧精留塔と、上方の
低圧精留塔とが形成された精留塔を準備し、冷媒として
窒素を用いる圧縮式冷凍機によって、高圧精留塔から窒
素ガスを抜き出して原料空気冷却用熱交換器に導いて原
料空気を冷却した後の窒素ガスを圧縮機で圧縮し、冷熱
源によって凝縮し、凝縮した液化窒素を高圧精留塔に噴
射して膨張し、高圧精留塔からの窒素ガスを原料空気冷
却用熱交換器に抜き出して循環する閉ループを形成し、
原料空気冷却用熱交換器で冷却された原料空気を高圧精
留塔の下部に供給し、高圧精留塔の上部で液化した液化
窒素を取り出し、高圧精留塔の下部から、酸素を主とし
て含む液体を、低圧精留塔に供給し、低圧精留塔の下部
から液化酸素を取り出し、低圧精留塔の上部から窒素ガ
スを排出し、液化窒素と液化酸素との合計の定格製造量
yRに対する実際の合計製造量yの比y/yRである稼
動率ηの目標値ηtを設定し、稼動率ηの変更開始時点
における合計製造量y1と、目標稼動率ηtに対応する
目標合計製造量ytとの間における予め定める制御周期
W毎の合計製造量yを、求め、制御周期W毎の合計製造
量yに対応する圧縮式冷凍機によって高圧精留塔に供給
される液化窒素の寒冷流量xを、前記合計製造量yとの
予め定める1次関数によって設定するとともに、原料空
気流量Qaを設定し、各制御周期Wからむだ時間T経過
後に、各制御周期W毎に求めた前記合計製造量yを、抜
き出すことを特徴とする空気液化分離装置の運転方法で
ある。The present invention also provides a rectification tower having a lower high-pressure rectification tower and an upper low-pressure rectification tower formed in a vertically extending tubular housing via a heat transfer member, The nitrogen gas is extracted from the high-pressure rectification column by a compression refrigerator using nitrogen as the gas, and then guided to a heat exchanger for cooling the raw material air, and after cooling the raw material air, the nitrogen gas is compressed by the compressor and condensed by a cold heat source. Then, the condensed liquefied nitrogen is injected into the high-pressure rectification tower to expand, forming a closed loop for extracting and circulating the nitrogen gas from the high-pressure rectification tower to the heat exchanger for cooling the raw material air,
The raw material air cooled by the raw material air cooling heat exchanger is supplied to the lower part of the high-pressure rectification tower, and liquefied nitrogen liquefied at the upper part of the high-pressure rectification tower is taken out, and mainly contains oxygen from the lower part of the high-pressure rectification tower The liquid is supplied to the low-pressure rectification column, liquefied oxygen is taken out from the lower portion of the low-pressure rectification column, nitrogen gas is discharged from the upper portion of the low-pressure rectification column, and the total rated production amount yR of liquefied nitrogen and liquefied oxygen is determined. A target value ηt of the operation rate η, which is the ratio y / yR of the actual total production amount y, is set, and the total production amount y1 at the start of the change of the operation rate η and the target total production amount yt corresponding to the target operation rate ηt And the total production amount y for each predetermined control cycle W is obtained, and the cooling flow rate x of the liquefied nitrogen supplied to the high-pressure rectification column by the compression refrigerator corresponding to the total production quantity y for each control cycle W Is a linear function determined in advance with the total production amount y. Therefore, the air liquefaction and separation apparatus is characterized in that the raw air flow rate Qa is set, and the total production amount y obtained for each control cycle W is extracted after the elapse of the dead time T from each control cycle W. It is a driving method.
【0021】本発明に従えば、稼動率ηの目標値である
目標稼動率ηtを設定し、現時点である稼動率η1の変
更開始時点から、予め定める制御周期W毎に、目標稼動
率ηtとなるまでの合計製造量yを演算して求める。こ
れらの制御周期W毎に求めた前記合計製造量yに対応す
る寒冷流量xを、その寒冷流量xと合計製造量yとの予
め定める1次関数に従って演算して求める。またこの合
計製造量y、したがって寒冷流量xに対応する原料空気
流量Qaとを演算して設定する。各制御周期W毎の各開
始時点からむだ時間T経過後に、予測して求めた前記合
計製造量yを抜き出す。これによって空気液化分離装置
の全体のバランスを崩すことなく、現時点の稼動率η1
から目標稼動率ηtに自動的に変更することが短時間で
かつ確実に可能になる。According to the present invention, the target operating rate ηt, which is the target value of the operating rate η, is set, and the target operating rate ηt and the target operating rate ηt are set every predetermined control cycle W from the start of the change of the current operating rate η1. Is calculated and obtained. A cold flow rate x corresponding to the total production amount y obtained for each control cycle W is calculated and calculated according to a predetermined linear function of the cold flow rate x and the total production amount y. Further, the total production amount y, that is, the raw material air flow rate Qa corresponding to the cold flow rate x is calculated and set. After a lapse of the dead time T from each start point in each control cycle W, the total production amount y predicted and obtained is extracted. As a result, the current operation rate η1 is maintained without breaking the overall balance of the air liquefaction / separation apparatus.
Automatically changes to the target operation rate ηt in a short time and reliably.
【0022】また本発明は、前記合計製造量yと予め定
める定数Cとの積を演算して液化窒素の製造量zNを抜
き出すことを特徴とする。Further, the present invention is characterized in that a product of the total production amount y and a predetermined constant C is calculated to extract a production amount zN of liquefied nitrogen.
【0023】また本発明は、前記合計製造量yから前記
液化窒素の製造量zNを減算して液化酸素の製造量zO
を抜き出すことを特徴とする。The present invention also provides a method for producing a liquefied oxygen production amount zO by subtracting the production amount of liquefied nitrogen zN from the total production amount y.
It is characterized by extracting
【0024】本発明に従えば、液化窒素および液化酸素
の製造量zN,zOに一致した抜き出し流量を、自動的
に演算して求めることができる。これによって稼動率の
変更の自動化が上述のように可能になる。According to the present invention, it is possible to automatically calculate and obtain the extraction flow rate corresponding to the production amounts zN and zO of liquefied nitrogen and liquefied oxygen. This makes it possible to automate the change of the operation rate as described above.
【0025】また本発明は、(a)空気液化分離装置で
あって、(a1)上下に延びる筒状ハウジング内に伝熱
部材を介して、下方の高圧精留塔と、上方の低圧精留塔
とが形成された精留塔と、(a2)圧縮式冷凍機であっ
て、この圧縮式冷凍機は、冷媒として窒素を用い、高圧
精留塔から窒素ガスを抜き出して原料空気冷却用熱交換
器に導いて原料空気を冷却した後の窒素ガスを圧縮機で
圧縮し、冷熱源によって凝縮し、凝縮した液化窒素を高
圧精留塔に噴射して膨張し、高圧精留塔からの窒素ガス
を原料空気冷却用熱交換器に抜き出して循環する閉ルー
プを形成する圧縮式冷凍機と、(a3)原料空気冷却用
熱交換器で冷却された原料空気を高圧精留塔の下部に供
給する管路と、(a4)高圧精留塔の下部から、酸素を
主として含む液体を取り出して、低圧精留塔に供給する
管路と、(a5)低圧精留塔の上部から窒素ガスを排出
する管路とを有する空気液化分離装置と、(b)高圧精
留塔の上部で液化した液化窒素を製品として取り出す流
量制御弁と、(c)低圧精留塔の下部で液化した液化酸
素を製品として取り出す流量制御弁と、(d)圧縮式冷
凍機の凝縮した液化窒素が高圧精留塔に供給される寒冷
流量xを制御する寒冷流量制御手段と、(e)原料空気
冷却用熱交換器に供給する原料空気流量Qaを制御する
原料空気流量制御手段と、(f)制御手段であって、液
化窒素と液化酸素との合計の定格製造量yRに対する実
際の合計製造量yの比y/yRである稼動率ηの目標値
ηtを設定し、稼動率ηの変更開始時点における合計製
造量y1と、目標稼動率ηに対応する目標合計製造量y
tとの間における予め定める制御周期W毎の合計製造量
yを、求め、制御周期W毎の合計製造量yに対応する圧
縮式冷凍機によって高圧精留塔に供給される液化窒素の
寒冷流量xを、前記合計製造量yとの予め定める1次関
数によって設定するとともに、原料空気流量Qaを設定
し、各制御周期Wからむだ時間T経過後に、前記液化窒
素流量制御弁と前記液化酸素流量制御弁との開度を制御
して、各制御周期W毎に求めた前記合計製造量yを、抜
き出す制御手段とを含むことを特徴とする空気液化分離
装置の運転装置である。The present invention also provides (a) an air liquefaction / separation apparatus, wherein (a1) a lower high-pressure rectification tower and an upper low-pressure rectification tower via a heat transfer member in a vertically extending cylindrical housing. A rectification tower having a tower formed therein, and (a2) a compression chiller, which uses nitrogen as a refrigerant, extracts nitrogen gas from the high-pressure rectification tower, and supplies heat for cooling the raw material air. Nitrogen gas after cooling the raw material air by introducing it to an exchanger is compressed by a compressor, condensed by a cold heat source, and the condensed liquefied nitrogen is injected into a high-pressure rectification tower to expand, and nitrogen from the high-pressure rectification tower is expanded. A compression refrigerator that forms a closed loop for extracting and circulating the gas to the heat exchanger for cooling the raw material air, and (a3) supplying the raw material air cooled by the heat exchanger for cooling the raw material air to the lower part of the high-pressure rectification column. A liquid mainly containing oxygen from the pipe line and (a4) the lower part of the high-pressure rectification column (A5) an air liquefaction / separation device having a pipe for discharging nitrogen gas from the upper part of the low-pressure rectification tower, and (b) a pipe for discharging nitrogen gas from the upper part of the low-pressure rectification tower. A flow control valve for extracting liquefied liquefied nitrogen as a product; (c) a flow control valve for extracting liquefied oxygen liquefied at the lower part of the low-pressure rectification column as a product; and (d) a condensed liquefied nitrogen of a compression refrigerator having a high pressure. A cold flow control means for controlling a cold flow x supplied to the rectification column, (e) a raw air flow control means for controlling a raw air flow Qa supplied to the raw air cooling heat exchanger, and (f) control Means for setting a target value ηt of an operation rate η, which is a ratio y / yR of an actual total production amount y to a total rated production amount yR of liquefied nitrogen and liquefied oxygen, at the time of starting the change of the operation rate η Corresponding to the total production amount y1 and the target operation rate η Standard total production amount y
t, the total amount of production y per control cycle W determined in advance, and the cooling flow rate of liquefied nitrogen supplied to the high-pressure rectification column by the compression refrigerator corresponding to the total production amount y per control cycle W x is set by a predetermined linear function with the total production amount y, and the raw material air flow rate Qa is set. After a dead time T from each control cycle W, the liquefied nitrogen flow control valve and the liquefied oxygen flow rate are set. An operation device for an air liquefaction / separation device, comprising: a control means for controlling an opening degree with a control valve to extract the total production amount y obtained for each control cycle W.
【0026】本発明に従えば、寒冷流量制御手段によっ
て寒冷流量xを制御するとともに、原料空気流量制御手
段によって原料空気流量Qaを制御し、これによって現
時点の稼動率η1から目標稼動率ηtまでの制御周期W
毎に寒冷流量xと原料空気流量Qaとを変化して、各制
御周期Wの開始時点からむだ時間経過後に、液化窒素流
量制御弁から液化窒素を取り出し、また液化酸素流量制
御弁から液化酸素を取り出す。According to the present invention, the cold flow rate control means controls the cold flow rate x, and the raw material air flow rate control means controls the raw material air flow rate Qa, thereby controlling the current operating rate η1 to the target operating rate ηt. Control cycle W
The cooling flow rate x and the raw material air flow rate Qa are changed every time, and after a lapse of dead time from the start of each control cycle W, liquefied nitrogen is taken out from the liquefied nitrogen flow control valve, and liquefied oxygen is taken out from the liquefied oxygen flow control valve. Take out.
【0027】また本発明は、前記冷熱源は、液化天然ガ
スによって圧縮空気で圧縮された窒素ガスを凝縮する液
化天然ガス熱交換器を有し、前記制御手段は、液化天然
ガス熱交換器に供給する液化天然ガスの流量を制御する
温度制御用流量制御弁と、圧縮機の入口と出口との間に
介在され、窒素ガスの吐出圧を制御する吐出圧制御用流
量制御弁と、寒冷流量xに対応して温度制御用流量制御
弁と吐出圧制御用流量制御弁との開度を制御する弁開度
制御手段とを含むことを特徴とする。Further, in the present invention, the cold heat source includes a liquefied natural gas heat exchanger for condensing nitrogen gas compressed by compressed air with liquefied natural gas, and the control means includes a liquefied natural gas heat exchanger. A flow rate control valve for temperature control for controlling the flow rate of liquefied natural gas to be supplied, a flow rate control valve for discharge pressure control interposed between the inlet and the outlet of the compressor to control the discharge pressure of nitrogen gas, and a cold flow rate and a valve opening control means for controlling the opening of the temperature control flow control valve and the discharge pressure control flow control valve corresponding to x.
【0028】また本発明は、弁開度制御手段は、液化天
然ガス熱交換器の出側の液化窒素の温度を検出する温度
検出手段と、温度検出手段の出力に応答し、温度検出手
段によって検出される温度が、寒冷流量xに対応する値
になるように、温度制御用流量制御弁の開度を制御する
手段とを含むことを特徴とする。Further, according to the present invention, the valve opening control means includes a temperature detecting means for detecting a temperature of liquefied nitrogen on the outlet side of the liquefied natural gas heat exchanger, and a temperature detecting means responsive to an output of the temperature detecting means. Means for controlling the opening of the temperature control flow control valve so that the detected temperature becomes a value corresponding to the cooling flow rate x.
【0029】本発明に従えば、圧縮式冷凍機の冷熱源
は、液化天然ガスを用いる液化天然ガス熱交換器を有
し、圧縮機で圧縮された窒素ガスが凝縮される。According to the present invention, the cold heat source of the compression refrigerator has a liquefied natural gas heat exchanger using liquefied natural gas, and the nitrogen gas compressed by the compressor is condensed.
【0030】寒冷流量xを変化して設定するために、液
化天然ガス熱交換器で凝縮された液化窒素の温度を変化
するとともに、圧縮機の出口における窒素ガスの吐出圧
を変化する。液化天然ガス熱交換器で凝縮された液化窒
素の温度を制御するためには、その液化天然ガス熱交換
器に供給する液化天然ガスの流量を、温度制御用流量制
御弁の開度によって制御する。温度制御用流量制御弁の
開度に関しては、液化天然ガス熱交換器の出側の液化窒
素の温度を温度検出手段によって検出し、この温度検出
手段によって検出される液化窒素の温度が、寒冷流量x
に対応する値になるように、温度制御用流量制御弁の開
度、したがって液化天然ガスの流量が制御される。In order to change and set the cooling flow rate x, the temperature of the liquefied nitrogen condensed in the liquefied natural gas heat exchanger is changed, and the discharge pressure of the nitrogen gas at the outlet of the compressor is changed. In order to control the temperature of liquefied nitrogen condensed in the liquefied natural gas heat exchanger, the flow rate of liquefied natural gas supplied to the liquefied natural gas heat exchanger is controlled by the opening of a temperature control flow control valve. . Regarding the opening degree of the temperature control flow control valve, the temperature of the liquefied nitrogen on the outlet side of the liquefied natural gas heat exchanger is detected by the temperature detecting means, and the temperature of the liquefied nitrogen detected by the temperature detecting means is the cold flow rate. x
, The opening of the temperature control flow control valve, that is, the flow rate of the liquefied natural gas is controlled.
【0031】また圧縮機の吐出圧を制御するためには、
その圧縮機の入口と出口との間にバイパス管路を接続
し、このバイパス管路に吐出圧制御用流量制御弁を介在
する。In order to control the discharge pressure of the compressor,
A bypass pipe is connected between the inlet and the outlet of the compressor, and a discharge pressure control flow control valve is interposed in the bypass pipe.
【0032】[0032]
【発明の実施の形態】図1は、本発明の実施の一形態の
全体の構成を示すブロック図である。この空気液化分離
装置1は、図2に簡略化して示されるように、原料空気
が管路2から供給され、これによって製品である液化窒
素がタンク3に貯留されて得られ、製品である液化酸素
がタンク4に得られ、さらに液化アルゴンがタンク5に
得られる。この原料空気の液化分離のために、管路40
から液化天然ガス(略称LNG)がたとえば圧力50k
g/cm2、−150℃で供給され、その冷熱が用いら
れる。この空気液化分離装置1内では、冷媒として用い
られる循環窒素の寒冷が利用される。FIG. 1 is a block diagram showing the overall configuration of an embodiment of the present invention. In the air liquefaction / separation apparatus 1, as shown in a simplified form in FIG. 2, raw air is supplied from a pipe line 2, whereby liquefied nitrogen as a product is stored in a tank 3. Oxygen is obtained in tank 4 and liquefied argon is obtained in tank 5. For the liquefaction and separation of the feed air, a line 40
Liquefied natural gas (abbreviated as LNG) at a pressure of 50 k
g / cm 2 , supplied at −150 ° C., and the cold heat is used. In the air liquefaction / separation apparatus 1, cold of circulating nitrogen used as a refrigerant is used.
【0033】空気液化分離装置1は基本的には、精留塔
6と圧縮式冷凍機7とを含む。原料空気は、管路2から
流量制御弁8を経て圧縮機9でたとえば5kg/cm2
とされ、除去装置10を経てさらにコードボックス11
の流量空気冷却用熱交換器12を経て、精留塔6に、管
路13から供給される。除去装置10は、原料空気に含
まれるCO,H2を除去する。The air liquefaction / separation apparatus 1 basically includes a rectification column 6 and a compression refrigerator 7. The raw material air is supplied to the compressor 9 from the pipe 2 via the flow control valve 8 by, for example, 5 kg / cm 2.
And the code box 11
Is supplied to the rectification tower 6 from the pipe 13 via the air-cooling heat exchanger 12. The removal device 10 removes CO and H 2 contained in the raw material air.
【0034】精留塔6は、上下に延びるほぼ円筒状など
の筒状ハウジング14内にステンレス鋼板などから成る
伝熱部材41を介して、下方の高圧精留塔15と、上方
の低圧精留塔16とが形成されて構成される。The rectification tower 6 is connected to a lower high-pressure rectification tower 15 and an upper low-pressure rectification tower via a heat transfer member 41 made of a stainless steel plate or the like in a cylindrical housing 14 having a substantially cylindrical shape extending vertically. A tower 16 is formed and configured.
【0035】図3は、精留塔6の拡大断面図である。図
1をも参照して、管路13からの原料空気は、高圧精留
塔15の下部に供給される。高圧精留塔15内には、上
下に間隔をあけて複数の邪魔板17が設けられ、上下に
ジグザグに屈曲した気体の通路が形成される。圧縮式冷
凍機7の管路18からの液化窒素は、高圧精留塔15の
上部でノズル19からその高圧精留塔15内に噴射され
て断熱膨張される。FIG. 3 is an enlarged sectional view of the rectification column 6. Referring also to FIG. 1, the raw material air from line 13 is supplied to a lower part of high-pressure rectification column 15. A plurality of baffle plates 17 are provided in the high-pressure rectification tower 15 at intervals up and down, and a gas passage bent zigzag up and down is formed. The liquefied nitrogen from the line 18 of the compression refrigerator 7 is injected into the high-pressure rectification tower 15 from the nozzle 19 at the upper part of the high-pressure rectification tower 15 and is adiabatically expanded.
【0036】高圧精留塔15の管路13との接続位置よ
りも下方の貯留部20には、酸素を主として含む液体が
貯留される。窒素を主として含むガスは、高圧精留塔1
5内を上昇し、伝熱部材41によって冷却されて液化さ
れ、その液化された窒素は、貯留部21内に貯留され
る。この貯留部21内の液化窒素は、製品として管路2
2から取り出される。この液化窒素は、液化窒素流量制
御弁23を介して、前述のタンク3に貯留される。高圧
精留塔15内はたとえば5kg/cm2であり、低圧精
留塔16内はたとえば0.5kg/cm2である。高圧
精留塔15の下部の貯留部20に貯留される液体は、酸
素をたとえば約50%含み、約−170℃である。A liquid containing mainly oxygen is stored in a storage section 20 below a position where the high-pressure rectification tower 15 is connected to the pipe 13. The gas mainly containing nitrogen is supplied to the high-pressure rectification column 1
5, is cooled and liquefied by the heat transfer member 41, and the liquefied nitrogen is stored in the storage unit 21. The liquefied nitrogen in the storage unit 21 is supplied to the pipeline 2 as a product.
Take out from 2. This liquefied nitrogen is stored in the above-mentioned tank 3 via the liquefied nitrogen flow control valve 23. The inside of the high-pressure rectification column 15 is, for example, 5 kg / cm 2 , and the inside of the low-pressure rectification column 16 is, for example, 0.5 kg / cm 2 . The liquid stored in the storage section 20 below the high-pressure rectification column 15 contains, for example, about 50% oxygen and has a temperature of about -170 ° C.
【0037】高圧精留塔15の上部において、液化窒素
貯留部21よりも下方には、圧縮式冷凍機7の冷媒とし
ての窒素ガスを取り出して循環する管路24が接続され
る。In the upper part of the high-pressure rectification column 15, below the liquefied nitrogen storage part 21, there is connected a conduit 24 for taking out and circulating nitrogen gas as a refrigerant of the compression refrigerator 7.
【0038】高圧精留塔15の下部には、管路25が接
続され、貯留部20内に貯留された酸素リッチ液体が低
圧精留塔16の上部に供給される。低圧精留塔16内に
は、上下に間隔をあけて設けられる複数の邪魔板26が
設けられる。管路25からの酸素を主として含む液体
は、低圧精留塔16内を邪魔板26の働きによる上下に
ジグザクの経路を経て、低圧精留塔16の下部の伝熱部
材41によって形成される貯留部に参照符27で示され
るように貯留される。この貯留部27における液化酸素
の液位LOは、液位センサ28によって検出され、本件
空気液化分離装置1の運転状況である液化酸素の製造量
を知ることができる。低圧精留塔16のほぼ中間位置付
近には、管路29が接続され、液化アルゴンArが取り
出される。A pipe 25 is connected to the lower part of the high-pressure rectification tower 15, and the oxygen-rich liquid stored in the storage part 20 is supplied to the upper part of the low-pressure rectification tower 16. A plurality of baffles 26 are provided in the low-pressure rectification column 16 at intervals above and below. The liquid mainly containing oxygen from the pipe 25 flows through the low-pressure rectification column 16 through a zigzag path up and down by the action of the baffle plate 26, and is stored by the heat transfer member 41 below the low-pressure rectification column 16. The part is stored as indicated by reference numeral 27. The liquid level LO of the liquefied oxygen in the storage unit 27 is detected by the liquid level sensor 28, and the production amount of the liquefied oxygen, which is the operation status of the air liquefaction / separation apparatus 1, can be known. Near the middle position of the low pressure rectification column 16, a pipe line 29 is connected, and liquefied argon Ar is taken out.
【0039】高圧精留塔15のほぼ中間の位置からは、
ガスが管路30および流量制御弁31を介して低圧精留
塔16の上部に導かれる。低圧精留塔16の塔頂から
は、管路32を経て窒素ガスが排出され、流量制御弁3
3から原料ガス冷却用熱交換器12を経て、消音塔34
から大気放散されるとともに、その窒素ガスの一部は流
量制御弁35から管路36を経て原料空気用圧縮機9の
入側の管路2に戻される。From a substantially intermediate position of the high-pressure rectification column 15,
The gas is led to the upper part of the low-pressure rectification column 16 via the line 30 and the flow control valve 31. From the top of the low-pressure rectification column 16, nitrogen gas is discharged through a pipe 32, and the flow control valve 3
3 through the heat exchanger 12 for cooling the raw material gas,
And a part of the nitrogen gas is returned from the flow control valve 35 to the pipe 2 on the inlet side of the raw air compressor 9 via the pipe 36.
【0040】低圧精留塔16の下部の貯留部27に貯留
された液化酸素は、管路37からポンプ38を経て流量
制御弁39からタンク4に導かれて貯留される。The liquefied oxygen stored in the storage part 27 at the lower part of the low-pressure rectification tower 16 is guided from the pipe 37 through the pump 38 to the tank 4 from the flow control valve 39 and stored therein.
【0041】管路41aからの都市ガスは、水素製造装
置42に導かれて水素が製造され、水素ホルダ43に貯
留され、管路44から、液化Arの管路29に混入され
る。アルゴン精製器45には、管路29からのArと管
路44からの水素ガスとの混合物が管路46を介して供
給され、この管路46のガスに含まれる酸素を、管路4
4からの水素の燃焼によって除く。アルゴン精製器45
からの液化アルゴンは管路47からタンク5に導かれて
貯留される。The city gas from the pipe 41a is led to a hydrogen producing device 42 to produce hydrogen, stored in a hydrogen holder 43, and mixed into the liquefied Ar pipe 29 from a pipe 44. A mixture of Ar from the line 29 and hydrogen gas from the line 44 is supplied to the argon purifier 45 via the line 46, and oxygen contained in the gas in the line 46 is supplied to the argon purifier 45.
Removed by combustion of hydrogen from 4. Argon purifier 45
The liquefied argon from is introduced into the tank 5 from the pipe line 47 and stored therein.
【0042】圧縮式冷凍機7において、冷媒として窒素
が用いられ、高圧精留塔15から管路24を経て取り出
された窒素ガスは、原料空気冷却用熱交換器12に導か
れて原料空気を冷却した後、管路49を経て、窒素冷却
器50に導かれる。窒素冷却器50からの窒素ガスは、
低圧圧縮機51によって圧縮され、管路52を経て窒素
冷却器50で再び冷却され、その後、高圧圧縮機53で
さらに圧縮される。この高圧圧縮機53からのたとえば
60kg/cm2の窒素ガスは、管路54から、液化天
然ガス熱交換器55に導かれて冷却されて凝縮される。
液化天然ガス熱交換器55からの液化窒素は、管路56
からフラッシュボトル57に供給され、断熱膨張し窒素
ガスは液化する。一部液化しないガスが除去され、たと
えば25kg/cm2となる。フラッシュボトル57か
らの液化窒素は、前述のように管路18から高圧精留塔
15内にノズル19から噴射されて断熱膨張して蒸発
し、こうして圧縮式冷凍機7において冷媒としての窒素
が循環される。In the compression refrigerator 7, nitrogen is used as a refrigerant, and the nitrogen gas extracted from the high-pressure rectification tower 15 via the pipe 24 is led to the heat exchanger 12 for cooling the raw material air to convert the raw material air. After cooling, it is led to a nitrogen cooler 50 via a pipe 49. The nitrogen gas from the nitrogen cooler 50 is
It is compressed by the low-pressure compressor 51, cooled again by the nitrogen cooler 50 via the pipe 52, and then further compressed by the high-pressure compressor 53. The nitrogen gas of, for example, 60 kg / cm 2 from the high-pressure compressor 53 is led from a pipe 54 to a liquefied natural gas heat exchanger 55 to be cooled and condensed.
Liquefied nitrogen from the liquefied natural gas heat exchanger 55 is supplied to a line 56.
Is supplied to the flash bottle 57 and adiabatically expanded to liquefy the nitrogen gas. Partially unliquefied gas is removed, for example, to 25 kg / cm 2 . As described above, the liquefied nitrogen from the flash bottle 57 is injected from the nozzle 19 into the high-pressure rectification tower 15 through the pipe 18 and adiabatically expanded to evaporate. Thus, the nitrogen as a refrigerant circulates in the compression refrigerator 7. Is done.
【0043】圧縮式冷凍機7において、低圧圧縮機51
では、その入口と出口との間にバイパス管路66が接続
される。このバイパス管路66には、流量制御弁67が
介在される。高圧圧縮機53の入口と出口との間には、
バイパス管路68が接続される。このバイパス管路68
には、流量制御弁69が介在される。これらの流量制御
弁69、さらには67の開度が制御されることによっ
て、管路54内の窒素ガスの圧力P1を制御することが
できる。In the compression refrigerator 7, the low pressure compressor 51
Then, a bypass line 66 is connected between the inlet and the outlet. A flow control valve 67 is interposed in the bypass line 66. Between the inlet and the outlet of the high-pressure compressor 53,
The bypass line 68 is connected. This bypass line 68
, A flow control valve 69 is interposed. By controlling the degree of opening of these flow control valves 69 and 67, the pressure P1 of the nitrogen gas in the pipeline 54 can be controlled.
【0044】窒素冷却器50と液化天然ガス熱交換器5
5との間には、フロンポンプ59によって管路60を介
して冷媒であるフロンが循環される。これによって液化
天然ガスの冷熱によって、各圧縮機51,53に導かれ
る窒素ガスが冷却される。Nitrogen cooler 50 and liquefied natural gas heat exchanger 5
The refrigerant 5 is circulated between the refrigerant 5 and the refrigerant 5 through a pipe 60 by a fluorocarbon pump 59. Thereby, the nitrogen gas guided to each of the compressors 51 and 53 is cooled by the cold heat of the liquefied natural gas.
【0045】管路40からの液化天然ガスは、流量制御
弁61を経て液化天然ガス熱交換器55に導かれる。こ
れによって前述のように管路54の窒素ガスが凝縮され
るとともに、前述のフロンポンプ59によって循環して
いるフロンが凝縮される。The liquefied natural gas from the line 40 is led to the liquefied natural gas heat exchanger 55 via the flow control valve 61. Thus, the nitrogen gas in the conduit 54 is condensed as described above, and the Freon circulated by the Freon pump 59 is condensed.
【0046】液化天然ガス熱交換器55から管路62を
介する気化した液化天然ガスは、天然ガス加温器63
で、管路64を介して流れる循環冷却水によって加温さ
れる。加温器63からの天然ガスは、管路65から、た
とえば30kg/cm2で都市ガスとして導かれる。The vaporized liquefied natural gas from the liquefied natural gas heat exchanger 55 via a pipe 62 is supplied to a natural gas heater 63.
Then, it is heated by the circulating cooling water flowing through the pipe 64. The natural gas from the heater 63 is guided as city gas from the pipe 65 at, for example, 30 kg / cm 2 .
【0047】図4は、図1〜図3に示される本発明の実
施の一形態の電気的構成を示すブロック図である。空気
液化分離装置1の稼動率ηは、オペレータによって入力
されるキーボードなどを含む入力手段72から入力さ
れ、マイクロコンピュータなどによって実現される処理
回路73に与えられる。液化酸素の貯留部27における
液位を検出する液位センサ28の出力はまた、処理回路
73に与えられ、これによって、むだ時間Tの計測を行
うことができる。さらに管路54には圧力計74が設け
られる。また管路56には、温度計75が設けられる。
さらに液化天然ガス熱交換器55から管路60を経て取
り出されるフロンの温度は温度計76によって検出され
る。FIG. 4 is a block diagram showing an electrical configuration of the embodiment of the present invention shown in FIGS. The operation rate η of the air liquefaction / separation apparatus 1 is input from input means 72 including a keyboard and the like input by an operator, and is provided to a processing circuit 73 implemented by a microcomputer or the like. The output of the liquid level sensor 28 for detecting the liquid level in the liquefied oxygen storage section 27 is also supplied to the processing circuit 73, whereby the dead time T can be measured. Further, a pressure gauge 74 is provided in the conduit 54. A thermometer 75 is provided in the conduit 56.
Further, the temperature of the chlorofluorocarbon removed from the liquefied natural gas heat exchanger 55 via the line 60 is detected by a thermometer 76.
【0048】圧縮式冷凍機7の管路18には、流量計7
7が介在される。この流量計77は、管路18を流れる
液体窒素の流量、したがって寒冷流量xを計測する。寒
冷流量xの変化は、前述のように管路54の圧力P1お
よび管路56の温度TEの変化によって、行うことがで
きる。処理回路73は、原料空気の流量Qaを変化調整
するために、原料空気用流量制御弁8の開度を制御する
とともに、製品である液化窒素の取り出し流量を制御す
る流量制御弁23の開度を制御し、さらに製品である液
化酸素の取り出し流量を設定制御する流量制御弁39の
開度を制御する。さらに管路54における窒素ガスの圧
力P1を変化するために、バイパス弁67,69の開度
を制御する。さらに管路56における液化窒素の温度を
制御するために、処理回路73は、管路40に介在され
ている流量制御弁61の開度を制御して液化天然ガスの
流量を制御する。The flow meter 7 is connected to the line 18 of the compression refrigerator 7.
7 are interposed. The flow meter 77 measures the flow rate of the liquid nitrogen flowing through the pipe 18 and thus the cold flow rate x. The change in the cold flow rate x can be performed by changing the pressure P1 in the pipe 54 and the temperature TE in the pipe 56 as described above. The processing circuit 73 controls the opening degree of the raw air flow control valve 8 and the opening degree of the flow control valve 23 which controls the flow rate of liquefied nitrogen as a product in order to change and adjust the flow rate Qa of the raw air. , And the opening of a flow control valve 39 for setting and controlling the flow rate of liquefied oxygen as a product. Further, in order to change the pressure P1 of the nitrogen gas in the pipe 54, the opening degrees of the bypass valves 67 and 69 are controlled. Further, in order to control the temperature of the liquefied nitrogen in the line 56, the processing circuit 73 controls the opening degree of the flow control valve 61 interposed in the line 40 to control the flow rate of the liquefied natural gas.
【0049】図5は、圧縮式冷凍機7における管路18
の液化窒素の流量である寒冷流量xとそれに対応して管
路2から原料空気用圧縮機9に供給されるべき原料空気
の流量Qaとの関係を示す図である。寒冷流量xを増大
するにつれて、原料空気流量を増大する。これによって
本件空気液化分離装置1全体のバランスがとれて、安定
な動作を保つことができる。FIG. 5 is a diagram showing a pipeline 18 in the compression refrigerator 7.
FIG. 3 is a diagram showing a relationship between a cooling flow rate x, which is a flow rate of liquefied nitrogen, and a flow rate Qa of raw air to be supplied from the pipeline 2 to the raw air compressor 9. As the cold flow rate x is increased, the feed air flow rate is increased. As a result, the entire air liquefaction / separation apparatus 1 is balanced, and stable operation can be maintained.
【0050】図6は、圧縮式冷凍機7の管路18を介し
て高圧精留塔15に噴射される液化窒素の流量である寒
冷流量xと、その寒冷流量xを達成するための圧縮機5
3の出側の管路54における窒素ガスの圧力P1との関
係を示すグラフである。寒冷流量xを増大するために、
この管路54における窒素ガスの圧力を増大する。FIG. 6 shows a cooling flow rate x, which is a flow rate of liquefied nitrogen injected into the high-pressure rectification tower 15 via the pipe 18 of the compression refrigerator 7, and a compressor for achieving the cooling flow rate x. 5
3 is a graph showing the relationship with the nitrogen gas pressure P1 in the outlet line 54 of FIG. In order to increase the cold flow x,
The pressure of the nitrogen gas in the pipe 54 is increased.
【0051】図7は、圧縮式冷凍機7における寒冷流量
xと、その寒冷流量xを達成するための管路56におけ
る液化窒素の温度TEとの関係を示すグラフである。寒
冷流量xを増大するには、管路56における液化窒素の
温度TEを低下する。寒冷流量xを変化させるには、図
6のように高圧圧縮機53から管路54に供給される窒
素ガスの圧力P1と、図7のように液化天然ガス熱交換
器55から管路56に導かれる液化窒素の温度TEとを
変化する必要がある。FIG. 7 is a graph showing the relationship between the cooling flow rate x in the compression refrigerator 7 and the temperature TE of the liquefied nitrogen in the pipeline 56 for achieving the cooling flow rate x. To increase the cooling flow rate x, the temperature TE of the liquefied nitrogen in the line 56 is decreased. To change the cooling flow rate x, as shown in FIG. 6, the pressure P1 of the nitrogen gas supplied from the high-pressure compressor 53 to the pipe 54 and the liquefied natural gas heat exchanger 55 to the pipe 56 as shown in FIG. It is necessary to change the temperature TE of the introduced liquefied nitrogen.
【0052】上述の図1〜図7に関連して述べた空気液
化分離装置1において、本件発明者によれば、図8に示
されるように、流量制御弁23を介する液体窒素の取り
出し流量yNと流量制御弁39を介する液化酸素の取り
出し流量yOとの合計製造量y(=yN+yO)は、寒
冷流量xを変数とする予め定める1次関数 y = Ax+B …(2) に基づいて予測することができることが判った。In the air liquefaction / separation apparatus 1 described with reference to FIGS. 1 to 7, according to the present inventor, as shown in FIG. The total production amount y (= yN + yO) of the liquefied oxygen withdrawal flow rate yO through the flow control valve 39 is predicted based on a predetermined linear function y = Ax + B (2) using the cooling flow rate x as a variable. I found that I could do it.
【0053】上述の式2で示される1次関数のパラメー
タA,Bは、図8から明らかなように、実験によって2
点以上採取した寒冷流量K1,K2と、それに対応する
合計製造量ON1,ON2から、2元連立方程式に基づ
いて、求めることができる。As is clear from FIG. 8, the parameters A and B of the linear function represented by the above equation 2 are 2
From the cold flow rates K1 and K2 collected at or above the point and the corresponding total production amounts ON1 and ON2, it can be obtained based on a two-way simultaneous equation.
【0054】寒冷流量xに対応する合計製造量yは、む
だ時間T後に得られる。このむだ時間Tというのは、空
気液化分離装置1の動作の安定状態において、製品であ
る液化窒素および液化酸素の抜き出し流量を一定に保っ
た状態で、寒冷流量xを変更し、この寒冷流量xの変更
に応じて、その寒冷流量xに対応する原料空気流量Qa
を変更したとき、低圧精留塔16の下部の貯留部27に
貯留する液化酸素の貯留量が、変化するまでの時間であ
る。この貯留部27に貯留される液化酸素の貯留量、し
たがって液位は、液位センサ28によって前述のように
検出することができる。このようにして図9(1)に示
されるように、時刻t11で寒冷流量xをたとえば大き
く変化するとともに、原料空気の流量Qaを変化し、時
刻t11以降、一定値に保ったとき、貯留部27に貯留
される液化酸素の貯留量は、むだ時間Tだけ時刻t11
から経過した時刻t12において大きくなるように変化
する。The total production amount y corresponding to the cooling flow rate x is obtained after the dead time T. The dead time T is defined as a change in the cooling flow rate x in a state where the operation of the air liquefaction / separation apparatus 1 is in a stable state and in which the extraction flow rates of the products liquefied nitrogen and liquefied oxygen are kept constant. , The raw material air flow rate Qa corresponding to the cold flow rate x
Is the time until the stored amount of liquefied oxygen stored in the storage section 27 below the low-pressure rectification column 16 changes. The storage amount of liquefied oxygen stored in the storage unit 27, that is, the liquid level, can be detected by the liquid level sensor 28 as described above. In this way, as shown in FIG. 9A, the cooling flow rate x is greatly changed at time t11, for example, and the flow rate Qa of the raw air is changed. The stored amount of liquefied oxygen stored in the tank 27 is equal to the time t11 by the dead time T.
It changes so as to become larger at time t12 after elapse.
【0055】図10は、圧縮式冷凍機7における管路1
8に流れる液体窒素の流量の変化量である寒冷変化量Δ
xと、むだ時間Tとの関係を示すグラフである。寒冷変
化量Δxが大きい程、むだ時間Tは予め定める1次関数
で大きくなるように変化する。FIG. 10 shows a line 1 in the compression refrigerator 7.
8 which is the amount of change in the flow rate of liquid nitrogen flowing through
6 is a graph showing a relationship between x and a dead time T. As the cooling change amount Δx increases, the dead time T changes so as to increase according to a predetermined linear function.
【0056】図11は、本発明の動作の根拠を説明する
ためのフローチャートである。図11のステップr1に
おいて、本件空気液化分離装置1の動作を安定状態に保
ちながらバランスをとって稼動率ηを初期値η1から目
標稼動率ηtに変更する必要があるときには、次のステ
ップr2に示されるように、現時点の稼動率η1から目
標稼動率ηtへの稼動率変更途中における液化窒素およ
び液化酸素の製品の流量制御弁23,39による製品抜
き出し流量を、前記安定状態を保つのに最適な値である
製品の製造量yN,yOに設定する必要がある。そのた
めにはステップr3に示されるように、稼動率ηの変更
途中において、単位時間あたりの製品製造量yN,yO
を予測し、その予測値yN,yOに等しい各流量で液化
窒素および液化酸素を抜き出す必要がある。そのために
はステップr4に示されるように、寒冷流量xに基づ
き、その寒冷流量xの設定後からむだ時間T経過した時
点における液化窒素および液化酸素の製品の各製造量y
N,yOを予測しなければならない。本発明では、この
寒冷流量xの設定からむだ時間T経過した時点における
製品製造量yN,yOを、前述の図8に関連して述べた
ように1次関数から予測する。FIG. 11 is a flowchart for explaining the basis of the operation of the present invention. In step r1 of FIG. 11, when it is necessary to change the operation rate η from the initial value η1 to the target operation rate ηt while maintaining the operation of the air liquefaction and separation apparatus 1 in a stable state, the operation proceeds to the next step r2. As shown in the figure, during the change of the operation rate from the current operation rate η1 to the target operation rate ηt, the product withdrawal flow rate of the products of liquefied nitrogen and liquefied oxygen by the flow rate control valves 23 and 39 is optimal for maintaining the stable state. It is necessary to set the product production amounts yN and yO, which are appropriate values. For this purpose, as shown in step r3, during the change of the operation rate η, the product production amount yN, yO per unit time
It is necessary to extract liquefied nitrogen and liquefied oxygen at each flow rate equal to the predicted values yN and yO. For this purpose, as shown in step r4, based on the cold flow rate x, the respective production amounts y of the products of liquefied nitrogen and liquefied oxygen at the time when the dead time T has elapsed after the setting of the cold flow rate x
N, yO must be predicted. In the present invention, the product production amounts yN and yO at the time when the dead time T has elapsed from the setting of the cooling flow rate x are predicted from the linear function as described with reference to FIG.
【0057】図12は、図1〜図11に示される本発明
の実施の一形態の全体の動作を説明するためのフローチ
ャートである。稼動率ηを、現時点の稼動率η1から目
標稼動率ηtにたとえば増量して変更するにあたって
は、予め定める各制御周期W毎に、ステップs1におい
て寒冷流量xを増加するとともに、前述の図5に関連し
て述べたように原料空気流量Qaを、寒冷流量xに対応
してステップ状に増加する。ステップs2に示されるむ
だ時間T後には、精留塔6で得られる液化窒素の製品製
造量yNおよび液化酸素の製品製造量yOが増加する。
これに応じてステップs4では、前記製品製造量yN,
yOと同一流量がタンク3,4に抜き出されるように、
流量制御弁23,39の開度を増大する。FIG. 12 is a flowchart for explaining the overall operation of the embodiment of the present invention shown in FIGS. When changing the operation rate η from the current operation rate η1 to the target operation rate ηt, for example, by increasing the amount, the cooling flow rate x is increased in step s1 for each predetermined control cycle W, and as shown in FIG. As described above, the raw material air flow rate Qa is increased stepwise in accordance with the cold flow rate x. After the dead time T shown in step s2, the product production amount yN of liquefied nitrogen and the product production amount yO of liquefied oxygen obtained in the rectification column 6 increase.
Accordingly, in step s4, the product production amount yN,
so that the same flow rate as yO is extracted to tanks 3 and 4
The degree of opening of the flow control valves 23 and 39 is increased.
【0058】寒冷流量xおよび原料空気流量Qaを前述
のステップs1において設定してからむだ時間T経過後
における製品製造量yN,yOを予測するには、図12
の参照符78で示されるように順次的に次の演算を行
う。先ず、現在の時刻において変化させた寒冷流量x
を、流量計77によって測定する。次に、むだ時間T後
の合計製造量yを、流量計77によって測定した寒冷流
量xを用いて、前述の図8に関連して述べたようにして
式2の1次関数から予測する。To estimate the product production amounts yN and yO after the lapse of the dead time T after setting the cooling flow rate x and the raw material air flow rate Qa in step s1 described above, FIG.
The following operations are sequentially performed as indicated by reference numeral 78 in FIG. First, the cold flow rate x changed at the current time
Is measured by the flow meter 77. Next, the total production amount y after the dead time T is predicted from the linear function of Expression 2 as described with reference to FIG. 8 described above, using the cooling flow rate x measured by the flow meter 77.
【0059】この合計製造量yのうち、液化窒素の製造
量yNは、予め定める定数をCとするとき、式3に基づ
いて予測することができる。Of the total production amount y, the production amount yN of liquefied nitrogen can be predicted based on Equation 3, where C is a predetermined constant.
【0060】 yN = y・C …(3) また前記合計製造量yのうち、液化酸素の製造量は、式
4に基づいて予測することができる。YN = y · C (3) Further, of the total production amount y, the production amount of liquefied oxygen can be predicted based on Equation 4.
【0061】 yO = y−yN …(4) 本発明の実施の他の形態では、前述の合計製造量yを予
測する代わりに、寒冷流量xを用いて前述の式2,3,
4から、液化窒素および液化酸素の製造量yN,yOを
直接に求めて予測するようにしてもよい。YO = y−yN (4) In another embodiment of the present invention, instead of predicting the above-mentioned total production amount y, using the cooling flow rate x, the above-described formulas 2, 3,
From 4, the production amounts yN and yO of liquefied nitrogen and liquefied oxygen may be directly obtained and predicted.
【0062】図12におけるステップs1の寒冷流量x
および原料空気流量Qaの増加は、図4に関連して前述
した入力手段72の入力データである現時点の合計製造
量y1と目標製造量ytと演算して求めた各製造周期W
毎の合計製造量yなどとに基づいて処理回路73が自動
的に演算して求めてもよいけれども、オペレータがそれ
らの値x,Qaを設定してもよい。またステップs4に
おける製品抜き出し量の設定のために流量制御弁23,
39の開度を調整する動作は、処理回路73によって自
動的に行われてもよいけれども、オペレータがその開度
を調整設定するようにしてもよい。The cooling flow rate x in step s1 in FIG.
The increase in the raw material air flow rate Qa is based on each production cycle W calculated by calculating the current total production amount y1 and the target production amount yt, which are the input data of the input means 72 described above with reference to FIG.
Although the processing circuit 73 may automatically calculate and obtain the values x and Qa based on the total production amount y for each case, the operator may set the values x and Qa. Also, for setting the product withdrawal amount in step s4, the flow control valve 23,
Although the operation of adjusting the opening degree of the opening 39 may be automatically performed by the processing circuit 73, the operator may adjust and set the opening degree.
【0063】図13は、本発明の実施の一形態の動作を
説明するためのグラフである。寒冷流量xを参照符81
で示されるように予め定める制御周期W毎に段階的に変
化し、これに応じて原料空気流量Qaもまた同様に変化
させる。制御周期Wは、たとえば3分であってもよい。
このような寒冷流量xおよび原料空気流量Qaの増加に
応じて、精留塔6における合計製造量yは、図13の参
照符82で示されるように時間経過に伴って連続的に増
大してゆく。この合計製造量yは、寒冷流量xおよび原
料空気流量Qaの変化時点からむだ時間Tだけ遅れる。
むだ時間Tは、たとえば9分であってもよい。この合計
製造量yは、前述の図8に関連して述べたように予測す
ることができる。したがってこの合計製造量yに対応し
て、液化窒素および液化酸素毎の各流量制御弁23,3
9の開度を、寒冷流量xの各制御周期W毎にむだ時間T
だけ遅れて、設定して制御し、製品を抜き出す。制御周
期Wは、むだ時間T以下(W≦T)に選び、さらに制御
周期Wは、むだ時間Tの自然数分の1に選んでもよいけ
れども、本発明の実施の他の形態では、W>Tに選んで
もよい。制御周期Wを比較的短い時間に設定することに
よって、合計抜き出し流量Fを、合計製造量yにほぼ近
似した連続した値にすることができる。FIG. 13 is a graph for explaining the operation of the embodiment of the present invention. Refer to the cold flow rate x 81
As shown by, the flow rate changes stepwise at every predetermined control cycle W, and the raw air flow rate Qa also changes accordingly. The control cycle W may be, for example, three minutes.
In response to such an increase in the cold flow rate x and the raw material air flow rate Qa, the total production amount y in the rectification tower 6 continuously increases with time as indicated by reference numeral 82 in FIG. go. This total production amount y is delayed by a dead time T from the point of change of the cold flow rate x and the raw material air flow rate Qa.
The dead time T may be, for example, 9 minutes. This total production amount y can be predicted as described in connection with FIG. 8 described above. Therefore, corresponding to this total production amount y, each flow control valve 23, 3 for each of liquefied nitrogen and liquefied oxygen.
9, the dead time T for each control cycle W of the cooling flow rate x.
Just delay, set and control, extract the product. The control period W may be selected to be equal to or less than the dead time T (W ≦ T), and the control period W may be selected to be a natural number of the dead time T. However, in another embodiment of the present invention, W> T You may choose. By setting the control cycle W to a relatively short time, the total extraction flow rate F can be set to a continuous value that is approximately similar to the total production amount y.
【0064】図14は、前述の図1に示される空気液化
分離装置1の稼動率ηを増量または減量して自動的な運
転を行うための図4に示される処理回路73の動作を説
明するためのフローチャートである。ステップu1にお
いてオペレータは、入力手段72によって稼動率ηの増
量であるかまたは減量であるかに関するデータを入力す
るとともに、目標稼動率ηtを入力し、さらに制御周期
Wおよびむだ時間Tを入力して設定するとともに、寒冷
流量xを変数とする合計製造量yを予測するための前述
の式2における1次関数のパラメータA,Bを入力す
る。このようなパラメータA,Bは、空気液化分離装置
1の実験によって予め設定しておく。FIG. 14 explains the operation of the processing circuit 73 shown in FIG. 4 for performing the automatic operation by increasing or decreasing the operation rate η of the air liquefaction / separation apparatus 1 shown in FIG. It is a flowchart for the. In step u1, the operator inputs data on whether the operating rate η is to be increased or decreased by the input means 72, inputs the target operating rate ηt, and further inputs the control cycle W and the dead time T. At the same time, the parameters A and B of the linear function in Equation 2 for predicting the total production amount y using the cooling flow rate x as a variable are input. Such parameters A and B are set in advance by experiments on the air liquefaction / separation apparatus 1.
【0065】処理回路73は、ステップu2において、
稼動率変更のための前処理として次の演算を行う。
(1)制御周期W毎の管路18における液化窒素の寒冷
流量xを現時点t1における稼動率η1と目標稼動率η
tとにそれぞれ対応する合計製造量y1,ytとに基づ
き、たとえば1次関数で合計製造量yが変化させるもの
として、複数の各制御周期W毎の寒冷流量xを、前述の
式2の1次関数に基づいて演算し、こうして得られた制
御周期W毎の寒冷流量xに対応する管路54における窒
素ガスの圧力P1および管路56における液化窒素の温
度TE、(2)制御周期W毎の寒冷流量xに対応する前
述の図5から得られる原料空気流量Qa、(3)高圧精
留塔15から低圧精留塔16に管路30を介して窒素を
還流する流量Q1、ならびに(4)ポンプ59による循
環フロンの温度計76によって検出されるべき温度T1
などを算出する。さらに前述の式3における定数Cを実
験データから算出して求める。この定数Cは、ステップ
u1においてオペレータによって入力手段72から入力
されてもよい。The processing circuit 73 determines in step u2
The following calculation is performed as preprocessing for changing the operation rate.
(1) The cooling flow rate x of the liquefied nitrogen in the pipe line 18 for each control cycle W is determined by comparing the operating rate η1 and the target operating rate η at the current time t1.
Based on the total production amounts y1 and yt respectively corresponding to t and the cooling amount x for each of the plurality of control cycles W, assuming that the total production amount y is changed by a linear function, for example, 1 Calculated based on the following function, the nitrogen gas pressure P1 in the pipe 54 and the liquefied nitrogen temperature TE in the pipe 56 corresponding to the thus obtained cooling flow rate x for each control cycle W, (2) for each control cycle W 5 corresponding to the cold flow rate x of (1), (3) a flow rate Q1 of refluxing nitrogen from the high-pressure rectification tower 15 to the low-pressure rectification tower 16 via the pipe line 30, and (4) ) Temperature T1 to be detected by thermometer 76 for circulating Freon by pump 59
Is calculated. Further, the constant C in Equation 3 described above is calculated and obtained from experimental data. This constant C may be input from the input means 72 by the operator in step u1.
【0066】ステップu3において、稼動率ηの変化を
行うべき初期の時刻t1から、またはその後の稼動率変
更開始時点t2,t3,…から制御周期W経過していれ
ば、次のステップu4に移る。各制御周期W毎の図13
に示される時刻t1,t2,t3,t4,t5,…毎
に、次の稼動率ηの変更処理を行う。(1)圧力計74
によって検出される圧力が、ステップu2において求め
た吐出圧力P1に一致するように、高圧圧縮機53のバ
イパス管路68に介在されている流量制御弁69の開度
を調整制御し、さらには低圧圧縮機51のバイパス管路
66に介在されている流量制御弁67の開度を調整制御
する。(2)温度計75によって検出される液化窒素の
温度が、前述のステップu2において定められた値TE
になるように、管路40に介在されている液化天然ガス
の流量制御弁61の開度を制御する。(3)原料空気流
量Qaが達成されるように、流量制御弁8の開度を制御
する。(4)窒素ガスの還流流量がステップu2で設定
した値になるように流量制御弁31の開度を設定する。
(5)温度計76によって検出されるフロンの温度が、
ステップu2において算出されて定められた温度になる
ように、モータ59の回転速度などを制御する。In step u3, if the control cycle W has elapsed from the initial time t1 at which the change in the operation rate η should be performed or from the start times t2, t3,... Of the change in the operation rate, the flow proceeds to the next step u4. . FIG. 13 for each control cycle W
Are performed at the times t1, t2, t3, t4, t5,... Shown in FIG. (1) Pressure gauge 74
The opening degree of the flow control valve 69 interposed in the bypass line 68 of the high-pressure compressor 53 is adjusted and controlled so that the pressure detected by the step S2 coincides with the discharge pressure P1 obtained in step u2. The opening degree of the flow control valve 67 interposed in the bypass line 66 of the compressor 51 is adjusted and controlled. (2) The temperature of the liquefied nitrogen detected by the thermometer 75 is equal to the value TE determined in the aforementioned step u2.
The opening of the liquefied natural gas flow control valve 61 interposed in the pipeline 40 is controlled so that (3) The opening of the flow control valve 8 is controlled so that the raw material air flow Qa is achieved. (4) The opening of the flow control valve 31 is set so that the reflux flow rate of the nitrogen gas becomes the value set in step u2.
(5) The temperature of Freon detected by the thermometer 76 is
The rotation speed of the motor 59 and the like are controlled so as to reach the temperature calculated and determined in step u2.
【0067】なお流量制御弁31の開度は、稼動率ηの
減量時には、後述のステップu6におけるむだ時間Tの
タイミングで変更する。また温度計75によって検出さ
れる液化窒素の温度は、プログラムスタート後の1回の
み、すなわち図13の時刻t1において変更し、その後
は流量制御弁61の開度を保つ。The opening of the flow control valve 31 is changed at the timing of the dead time T in step u6 described later when the operating rate η is reduced. The temperature of the liquefied nitrogen detected by the thermometer 75 is changed only once after the start of the program, that is, at the time t1 in FIG. 13, and thereafter, the opening of the flow control valve 61 is maintained.
【0068】さらに現時点、すなわち図13の時刻t1
〜t5,…における寒冷流量xを算出し、むだ時間T後
の液化窒素製造量yNおよび液化酸素製造量yOを算出
して予測する。この予測は、前述3,4に基づいて演算
される。Further, at the present time, that is, at time t1 in FIG.
.., And the liquefied nitrogen production amount yN and the liquefied oxygen production amount yO after the dead time T are calculated and predicted. This prediction is calculated based on the above 3 and 4.
【0069】ステップu5においてむだ時間Tが経過し
たかどうかが判断され、経過していれば、次のステップ
u6に移る。このステップu6では、前述のステップu
4において演算して予測された液化窒素製造量yNおよ
び液化酸素製造量yOにそれぞれ等しい抜き出し流量と
なるように、流量制御弁23,39の開度を変更する。
たとえば前述の図13において、時刻t1において寒冷
流量xおよび原料空気流量Qaを段階的に変化し、その
状態を時刻t1〜t2において保ち、時刻t2において
寒冷流量xおよび原料空気流量Qaを変更し、その各値
を時刻t2〜t3において保ち、以下同様な動作を各制
御周期W毎に順次的に行う。流量制御弁23,39の開
度は、時刻t1からむだ時間T経過した時刻t21にお
いて行い、この時刻t21における流量制御弁23,3
9の開度は、時刻t1において設定された寒冷流量xを
用いて前述の式2〜4によって演算された液化窒素製造
量yNおよび液化酸素製造量yOに一致した値である。
また同様に時刻t2からむだ時間T経過した時刻t22
では、流量制御弁23,39の開度を、時刻t2におい
て変更して設定された寒冷流量xに基づいて前述の式2
〜4を用いて演算して得られた値である。時刻t21,
t22,t23,…は、図13における時刻t4,t
5,t6,…に一致していてもよいけれども、一致して
いなくてもよい。In step u5, it is determined whether or not the dead time T has elapsed. If so, the flow advances to the next step u6. In this step u6, the aforementioned step u
The opening degrees of the flow control valves 23 and 39 are changed so that the extraction flow rates are equal to the liquefied nitrogen production amount yN and the liquefied oxygen production amount yO calculated and predicted in 4, respectively.
For example, in FIG. 13 described above, the cold flow rate x and the raw material air flow rate Qa are changed stepwise at time t1, and the state is maintained from time t1 to t2, and the cold flow rate x and the raw material air flow rate Qa are changed at time t2. The respective values are maintained between times t2 and t3, and similar operations are sequentially performed for each control cycle W. The opening of the flow control valves 23 and 39 is performed at time t21 when the dead time T has elapsed from time t1, and the flow control valves 23 and 3 at this time t21.
The opening degree 9 is a value that matches the liquefied nitrogen production amount yN and the liquefied oxygen production amount yO calculated using the cooling flow rate x set at the time t1 by the above-described equations 2 to 4.
Similarly, at time t22 when dead time T has elapsed from time t2
Then, based on the cold flow rate x set by changing the opening degrees of the flow control valves 23 and 39 at the time t2, the above-described equation (2) is used.
This is a value obtained by calculation using. At time t21,
t22, t23,... correspond to times t4, t
5, t6,..., But not necessarily.
【0070】ステップu7において稼動率ηが、目標稼
動率ηtに到達したことが判断されると、ステップu8
において一連の動作を終了する。When it is determined in step u7 that the operating rate η has reached the target operating rate ηt, step u8 is performed.
Ends a series of operations.
【0071】[0071]
【発明の効果】請求項1の本発明によれば、精留塔と、
精留塔に供給される原料空気を冷却するための冷媒とし
て窒素を用いる圧縮式冷凍機とを含む空気液化分離装置
による液化窒素と液化酸素との合計製造量yが寒冷流量
xと1次関数で対応することを発見し、したがってその
寒冷流量xを変化することによって、その変化時点から
むだ時間経過した後の合計製造量yを予測することがで
きるようになる。According to the present invention of claim 1, a rectification column,
The total production amount y of liquefied nitrogen and liquefied oxygen by an air liquefaction / separation apparatus including a compression refrigerator using nitrogen as a refrigerant for cooling the raw material air supplied to the rectification column is represented by a cooling flow rate x and a linear function. Therefore, by changing the cooling flow rate x, it becomes possible to predict the total production amount y after a lapse of dead time from the time point of the change.
【0072】また合計製造量yを設定することによっ
て、その合計製造量yに対応する寒冷流量xを演算して
求めることができる。Further, by setting the total production amount y, the cold flow rate x corresponding to the total production amount y can be calculated and obtained.
【0073】このように合計製造量yを予測することが
できるので、自動的に液化窒素および液化酸素の抜き出
し流量を変更することが可能になる。こうして空気液化
分離装置全体の動作の安定を保ちながら、その動作のバ
ランスを崩すことなく、稼動率の変更を短時間かつ確実
に行うことができる。こうして液化窒素と液化酸素との
製品純度を高く保つことができる。As described above, since the total production amount y can be predicted, it is possible to automatically change the extraction flow rates of liquefied nitrogen and liquefied oxygen. In this way, the operation rate can be changed in a short time and reliably without breaking the balance of the operation while maintaining the stability of the operation of the entire air liquefaction / separation apparatus. Thus, the product purity of liquefied nitrogen and liquefied oxygen can be kept high.
【0074】請求項2の本発明によれば、液化窒素の製
造量zNを、前記予測していた合計製造量yから自動的
に予測することが可能になる。According to the second aspect of the present invention, it is possible to automatically predict the production amount zN of liquefied nitrogen from the predicted total production amount y.
【0075】請求項3の本発明によれば、液化酸素の製
造量zOを、前記予測して求めた合計製造量yから自動
的に予測することが可能になる。According to the third aspect of the present invention, the production amount zO of liquefied oxygen can be automatically predicted from the total production amount y obtained by the prediction.
【0076】請求項4の本発明によれば、前述のように
寒冷流量xを変化してからむだ時間T経過した時点にお
ける液化窒素と液化酸素との合計製造量yは、寒冷流量
xと1次関数の関係があることによって、合計製造量y
を自動的に予測する予測装置を実現することができる。According to the fourth aspect of the present invention, the total production amount y of liquefied nitrogen and liquefied oxygen at the time point when the dead time T elapses after the cooling flow rate x is changed as described above is equal to the cooling flow rate x and 1 Due to the relationship of the following function, the total production amount y
Can be realized automatically.
【0077】請求項5の本発明によれば、現時点の稼動
率η1から目標稼動率ηtに、制御周期W毎に寒冷流量
xと原料空気流量Qaとを段階的に設定して変更しつ
つ、製品である液化窒素および液化酸素とを、空気液化
分離装置の全体のバランスを崩すことなく安定を保ちな
がら、抜き出し、こうして稼動率変更を短時間に確実に
行うことができ、製品純度が悪化することはない。According to the fifth aspect of the present invention, the cold flow rate x and the raw material air flow rate Qa are set and changed stepwise from the current operating rate η1 to the target operating rate ηt for each control cycle W. Liquefied nitrogen and liquefied oxygen, which are products, can be extracted while maintaining stability without breaking the overall balance of the air liquefaction / separation unit, and thus the operation rate can be reliably changed in a short time, resulting in deterioration of product purity. Never.
【0078】請求項6,7の本発明によれば、前述のよ
うに液化窒素および液化酸素の各製造量zN,zOにそ
れぞれ一致した流量でそれぞれ自動的に抜き出すことが
できる。According to the sixth and seventh aspects of the present invention, as described above, the liquefied nitrogen and the liquefied oxygen can be automatically extracted at flow rates respectively corresponding to the production amounts zN and zO.
【0079】請求項8の本発明によれば、空気液化分離
装置における寒冷流量xと前記合計製造量yとが1次関
数の関係にあることを発見したことによって、稼動率η
の現時点である初期値η1から目標値ηtまでの範囲で
稼動率ηを予め定める変更期間中に時間経過に伴って、
たとえば直線的に変化するものとして、その変化期間中
における予め定める制御周期W毎の稼動率ηに対応した
合計製造量yを設定し、この制御周期W毎の合計製造量
yに対応して、制御周期W毎に寒冷流量xと原料空気流
量Qaとを段階的に変化する。各制御周期Wの開始時点
からむだ時間T経過した時点で、前記合計製造量yを抜
き出す。これによって空気液化分離装置の全体のバラン
スを崩すことなく、動作の安定を保ちながら、稼動率η
のη1からηtまでの変更を短時間かつ確実に行うこと
が可能になる。According to the eighth aspect of the present invention, it has been discovered that the cooling flow rate x and the total production amount y in the air liquefaction / separation apparatus have a linear function relationship, and the operation rate η
With the lapse of time during a predetermined change period of the operation rate η within a range from the current initial value η1 to the target value ηt,
For example, assuming that the amount changes linearly, a total production amount y corresponding to the operating rate η for each predetermined control cycle W during the change period is set, and corresponding to the total production amount y for each control cycle W, The cooling flow rate x and the raw material air flow rate Qa are changed stepwise in each control cycle W. When a dead time T has elapsed from the start of each control cycle W, the total production amount y is extracted. As a result, the operation rate η can be maintained while maintaining stable operation without breaking the overall balance of the air liquefaction / separation apparatus.
Can be reliably changed in a short time from η1 to ηt.
【0080】請求項9の本発明によれば、圧縮式冷凍機
の冷熱源は、循環する窒素を凝縮する凝縮器として働く
液化天然ガス熱交換器を有し、寒冷流量xを変化するた
めに、温度制御用流量制御弁によって液化天然ガスの流
量を制御して液化天然ガス熱交換器から供給される液化
窒素の温度を制御して、これによって液化天然ガスの冷
熱を利用して、空気液化分離を行うことができるととも
に、圧縮機から液化天然ガス熱交換器に供給される窒素
ガスの吐出圧を制御する。これによって寒冷流量xを変
更して設定することができる。According to the ninth aspect of the present invention, the cold heat source of the compression refrigerator has a liquefied natural gas heat exchanger acting as a condenser for condensing circulating nitrogen. The flow rate of liquefied natural gas is controlled by a temperature control flow control valve to control the temperature of liquefied nitrogen supplied from the liquefied natural gas heat exchanger, thereby utilizing the cold heat of liquefied natural gas to liquefy air. Separation can be performed, and the discharge pressure of nitrogen gas supplied from the compressor to the liquefied natural gas heat exchanger is controlled. Thus, the cooling flow rate x can be changed and set.
【0081】請求項10の本発明によれば、液化天然ガ
ス熱交換器の出側の液化窒素の温度が、寒冷流量xに対
応する値になるように、液化天然ガス熱交換器に供給さ
れる液化天然ガスの流量を制御する。こうして低圧精留
塔に噴射される液化窒素の温度を容易に制御して調整す
ることができる。According to the tenth aspect of the present invention, the temperature of the liquefied nitrogen at the outlet of the liquefied natural gas heat exchanger is supplied to the liquefied natural gas heat exchanger such that the temperature corresponds to the cooling flow rate x. Control the flow rate of liquefied natural gas. Thus, the temperature of the liquefied nitrogen injected into the low-pressure rectification column can be easily controlled and adjusted.
【図1】本発明の実施の一形態の全体の構成を示すブロ
ック図である。FIG. 1 is a block diagram showing an overall configuration of an embodiment of the present invention.
【図2】図1に示される空気液化分離装置1の働きを簡
略化して示すブロック図である。FIG. 2 is a simplified block diagram showing the operation of the air liquefaction / separation apparatus 1 shown in FIG.
【図3】精留塔6の拡大断面図である。FIG. 3 is an enlarged sectional view of the rectification column 6.
【図4】図1〜図3に示される本発明の実施の一形態の
電気的構成を示すブロック図である。FIG. 4 is a block diagram showing an electrical configuration of the embodiment of the present invention shown in FIGS. 1 to 3;
【図5】圧縮式冷凍機7における管路18の液化窒素の
流量である寒冷流量xと、それに対応して管路2から原
料空気用圧縮機9に供給されるべき原料空気の流量Qa
との関係を示す図である。FIG. 5 is a cooling flow rate x which is a flow rate of liquefied nitrogen in a pipe 18 in the compression refrigerator 7 and a flow rate Qa of raw air to be supplied from the pipe 2 to the raw air compressor 9 in correspondence thereto.
FIG.
【図6】圧縮式冷凍機7の管路18を介して高圧精留塔
15に噴射される液化窒素の流量である寒冷流量xと、
その寒冷流量xを達成するための圧縮機53の出側の管
路54における窒素ガスの圧力P1との関係を示す図で
ある。FIG. 6 is a cooling flow rate x, which is a flow rate of liquefied nitrogen injected into the high-pressure rectification column 15 via a line 18 of the compression refrigerator 7;
It is a figure which shows the relationship with the pressure P1 of the nitrogen gas in the pipe line 54 of the outlet side of the compressor 53 for achieving the cold flow rate x.
【図7】圧縮式冷凍機7における寒冷流量xと、その寒
冷流量xを達成するための管路56における液化窒素の
温度TEとの関係を示す図である。FIG. 7 is a diagram showing a relationship between a cold flow rate x in the compression refrigerator 7 and a temperature TE of liquefied nitrogen in a pipeline 56 for achieving the cold flow rate x.
【図8】寒冷流量xと、製品として得られる液化窒素お
よび液化酸素の合計の製造量yとの関係を示すグラフで
ある。FIG. 8 is a graph showing a relationship between a cooling flow rate x and a total production amount y of liquefied nitrogen and liquefied oxygen obtained as a product.
【図9】空気液化分離装置1のむだ時間Tを説明するた
めの図である。FIG. 9 is a diagram for explaining a dead time T of the air liquefaction / separation apparatus 1.
【図10】圧縮式冷凍機7における管路18の液化窒素
の寒冷流量xの変化量である寒冷変化量Δxと、むだ時
間Tとの関係を示すグラフである。FIG. 10 is a graph showing a relationship between a cooling change amount Δx which is a change amount of a cold flow rate x of liquefied nitrogen in a pipe line 18 in the compression refrigerator 7 and a dead time T.
【図11】本発明の動作の根拠を説明するためのフロー
チャートである。FIG. 11 is a flowchart for explaining the basis of the operation of the present invention.
【図12】図1〜図10に示される本発明の実施の一形
態の全体の動作を説明するためのフローチャートであ
る。FIG. 12 is a flowchart for explaining the overall operation of the embodiment of the present invention shown in FIGS. 1 to 10;
【図13】本発明の実施の一形態の動作を説明するため
のグラフである。FIG. 13 is a graph for explaining the operation of the embodiment of the present invention.
【図14】前述の図1に示される空気液化分離装置1の
稼動率を増量または減量して自動的な運転を行うための
図4に示される処理回路73の動作を説明するためのフ
ローチャートである。14 is a flowchart for explaining the operation of the processing circuit 73 shown in FIG. 4 for increasing or decreasing the operation rate of the air liquefaction / separation apparatus 1 shown in FIG. 1 and performing automatic operation. is there.
1 空気液化分離装置 3,4,5 タンク 6 精留塔 7 圧縮式冷凍機 8 流量制御弁 9 圧縮機 12 原料空気冷却用熱交換器 14 筒状ハウジング 15 高圧精留塔 16 低圧精留塔 19 ノズル 20 酸素を主に含む液体の貯留部 21 液化窒素貯留部 23 液化窒素流量制御弁 27 液化酸素貯留部 28 液位センサ 33,35,39,61,67,69 流量制御弁 41 伝熱部材 51 低圧圧縮機 53 高圧圧縮機 55 液化天然ガス熱交換器 59 フロンポンプ 66,68 バイパス管路 72 入力手段 73 処理回路 74 圧力計 75,76 温度計 77 流量計 DESCRIPTION OF SYMBOLS 1 Air liquefaction separation apparatus 3, 4, 5 Tank 6 Rectification tower 7 Compression refrigerator 8 Flow control valve 9 Compressor 12 Heat exchanger for raw material air cooling 14 Cylindrical housing 15 High pressure rectification tower 16 Low pressure rectification tower 19 Nozzle 20 Storage part of liquid mainly containing oxygen 21 Liquid nitrogen storage part 23 Liquid nitrogen flow control valve 27 Liquid oxygen storage part 28 Level sensor 33, 35, 39, 61, 67, 69 Flow control valve 41 Heat transfer member 51 Low pressure compressor 53 High pressure compressor 55 Liquefied natural gas heat exchanger 59 Freon pump 66, 68 Bypass line 72 Input means 73 Processing circuit 74 Pressure gauge 75, 76 Thermometer 77 Flow meter
Claims (10)
材を介して、下方の高圧精留塔と、上方の低圧精留塔と
が形成された精留塔を準備し、 冷媒として窒素を用いる圧縮式冷凍機によって、 高圧精留塔から窒素ガスを抜き出して原料空気冷却用熱
交換器に導いて原料空気を冷却した後の窒素ガスを圧縮
機で圧縮し、冷熱源によって凝縮し、凝縮した液化窒素
を高圧精留塔に噴射して膨張し、高圧精留塔からの窒素
ガスを原料空気冷却用熱交換器に抜き出して循環する閉
ループを形成し、 原料空気冷却用熱交換器で冷却された原料空気を高圧精
留塔の下部に供給し、高圧精留塔の上部で液化した液化
窒素を取り出し、 高圧精留塔の下部から、酸素を主として含む液体を、低
圧精留塔に供給し、 低圧精留塔の下部から液化酸素を取り出し、 低圧精留塔の上部から窒素ガスを排出し、 圧縮式冷凍機によって高圧精留塔に供給される液化窒素
の寒冷流量xに対応するむだ時間後の液化窒素と液化酸
素との合計製造量yを、寒冷流量xを変数とする予め定
める1次関数によって予測することを特徴とする空気液
化分離装置の運転状況の予測方法。1. A rectification tower having a lower high-pressure rectification tower and an upper low-pressure rectification tower formed in a vertically extending cylindrical housing via a heat transfer member is provided, and nitrogen is used as a refrigerant. Nitrogen gas is extracted from the high-pressure rectification tower by the compression refrigerator used and guided to a heat exchanger for cooling the raw material air.Then, after cooling the raw material air, the nitrogen gas is compressed by a compressor, condensed by a cold heat source, and condensed. The liquefied nitrogen is injected into the high-pressure rectification tower and expanded, forming a closed loop that circulates the nitrogen gas from the high-pressure rectification tower by extracting it to the heat exchanger for cooling the raw material air, and cooling it with the heat exchanger for cooling the raw material air The supplied raw material air is supplied to the lower part of the high-pressure rectification tower, the liquefied nitrogen liquefied at the upper part of the high-pressure rectification tower is taken out, and the liquid containing mainly oxygen is supplied to the low-pressure rectification tower from the lower part of the high-pressure rectification tower And removes liquefied oxygen from the lower part of the low pressure rectification column. The nitrogen gas is discharged from the upper part of the pressure rectification column, and the total production amount y of liquefied nitrogen and liquefied oxygen after a dead time corresponding to the cooling flow rate x of the liquefied nitrogen supplied to the high pressure rectification column by the compression refrigerator Is predicted by a predetermined linear function using the cooling flow rate x as a variable.
の積を演算して液化窒素の製造量zNを予測することを
特徴とする請求項1記載の空気液化分離装置の運転状況
の予測方法。2. The operation of the air liquefaction / separation apparatus according to claim 1, wherein a product of the total production amount y and a predetermined constant C is calculated to predict the production amount zN of liquefied nitrogen. Method.
造量zNを減算して液化酸素の製造量zOを予測するこ
とを特徴とする請求項2記載の空気液化分離装置の運転
状況の予測方法。3. The operation prediction of the air liquefaction / separation apparatus according to claim 2, wherein the production amount zO of liquefied oxygen is predicted by subtracting the production amount zN of liquefied nitrogen from the total production amount y. Method.
して、下方の高圧精留塔と、上方の低圧精留塔とが形成
された精留塔と、 (a2)圧縮式冷凍機であって、この圧縮式冷凍機は、
冷媒として窒素を用い、 高圧精留塔から窒素ガスを抜き出して原料空気冷却用熱
交換器に導いて原料空気を冷却した後の窒素ガスを圧縮
機で圧縮し、冷熱源によって凝縮し、凝縮した液化窒素
を高圧精留塔に噴射して膨張し、高圧精留塔からの窒素
ガスを原料空気冷却用熱交換器に抜き出して循環する閉
ループを形成する圧縮式冷凍機と、 (a3)原料空気冷却用熱交換器で冷却された原料空気
を高圧精留塔の下部に供給する管路と、 (a4)高圧精留塔の下部から、酸素を主として含む液
体を取り出して、低圧精留塔に供給する管路と、 (a5)低圧精留塔の上部から窒素ガスを排出する管路
とを有する空気液化分離装置と、 (b)圧縮式冷凍機の凝縮した液化窒素が高圧精留塔に
供給される寒冷流量xを制御する寒冷流量制御手段と、 (c)圧縮式冷凍機によって高圧精留塔に供給される液
化窒素の寒冷流量xに対応するむだ時間後の液化窒素と
液化酸素との合計製造量yを、寒冷流量xを変数とする
予め定める1次関数によって予測する予測手段を含むこ
とを特徴とする空気液化分離装置の運転状況の予測装
置。4. An air liquefaction / separation apparatus comprising: (a1) a lower high-pressure rectification tower and an upper low-pressure rectification tower in a vertically extending cylindrical housing via a heat transfer member. (A2) a compression-type refrigerator, wherein the compression-type refrigerator comprises:
Using nitrogen as a refrigerant, nitrogen gas was extracted from the high-pressure rectification column and led to a heat exchanger for cooling the raw material air, and after cooling the raw material air, the nitrogen gas was compressed by a compressor, condensed by a cold heat source, and condensed. A compression refrigerator that forms a closed loop in which liquefied nitrogen is injected into a high-pressure rectification column to expand and extract nitrogen gas from the high-pressure rectification column to a heat exchanger for cooling the raw material air and circulate; A pipe for supplying the raw material air cooled by the cooling heat exchanger to the lower part of the high-pressure rectification tower; and (a4) extracting a liquid mainly containing oxygen from the lower part of the high-pressure rectification tower, (A5) an air liquefaction / separation device having a line for discharging nitrogen gas from the upper part of the low-pressure rectification column; and (b) a liquefied nitrogen condensed from the compression refrigerator to the high-pressure rectification column. A cold flow rate control means for controlling a supplied cold flow rate x; (C) The total production amount y of liquefied nitrogen and liquefied oxygen after a dead time corresponding to the chilled flow rate x of liquefied nitrogen supplied to the high-pressure rectification column by the compression refrigerator is determined in advance by using the chilled flow rate x as a variable. An apparatus for estimating an operation state of an air liquefaction / separation apparatus, comprising: an estimating unit for estimating the operating state using a linear function.
材を介して、下方の高圧精留塔と、上方の低圧精留塔と
が形成された精留塔を準備し、 冷媒として窒素を用いる圧縮式冷凍機によって、 高圧精留塔から窒素ガスを抜き出して原料空気冷却用熱
交換器に導いて原料空気を冷却した後の窒素ガスを圧縮
機で圧縮し、冷熱源によって凝縮し、凝縮した液化窒素
を高圧精留塔に噴射して膨張し、高圧精留塔からの窒素
ガスを原料空気冷却用熱交換器に抜き出して循環する閉
ループを形成し、 原料空気冷却用熱交換器で冷却された原料空気を高圧精
留塔の下部に供給し、高圧精留塔の上部で液化した液化
窒素を取り出し、 高圧精留塔の下部から、酸素を主として含む液体を、低
圧精留塔に供給し、 低圧精留塔の下部から液化酸素を取り出し、 低圧精留塔の上部から窒素ガスを排出し、 液化窒素と液化酸素との合計の定格製造量yRに対する
実際の合計製造量yの比y/yRである稼動率ηの目標
値ηtを設定し、 稼動率ηの変更開始時点における合計製造量y1と、目
標稼動率ηtに対応する目標合計製造量ytとの間にお
ける予め定める制御周期W毎の合計製造量yを、求め、 制御周期W毎の合計製造量yに対応する圧縮式冷凍機に
よって高圧精留塔に供給される液化窒素の寒冷流量x
を、前記合計製造量yとの予め定める1次関数によって
設定するとともに、原料空気流量Qaを設定し、 各制御周期Wからむだ時間T経過後に、各制御周期W毎
に求めた前記合計製造量yを、抜き出すことを特徴とす
る空気液化分離装置の運転方法。5. A rectification tower in which a lower high-pressure rectification tower and an upper low-pressure rectification tower are formed in a vertically extending cylindrical housing via a heat transfer member, and nitrogen as a refrigerant is prepared. Nitrogen gas is extracted from the high-pressure rectification tower by the compression refrigerator used and guided to a heat exchanger for cooling the raw material air.Then, after cooling the raw material air, the nitrogen gas is compressed by a compressor, condensed by a cold heat source, and condensed. The liquefied nitrogen is injected into the high-pressure rectification tower and expanded, forming a closed loop that circulates the nitrogen gas from the high-pressure rectification tower by extracting it to the heat exchanger for cooling the raw material air, and cooling it with the heat exchanger for cooling the raw material air The supplied raw material air is supplied to the lower part of the high-pressure rectification tower, the liquefied nitrogen liquefied at the upper part of the high-pressure rectification tower is taken out, and the liquid containing mainly oxygen is supplied to the low-pressure rectification tower from the lower part of the high-pressure rectification tower And removes liquefied oxygen from the lower part of the low pressure rectification column. Nitrogen gas is discharged from the upper part of the pressure rectification column, and a target value ηt of an operation rate η which is a ratio y / yR of an actual total production amount y to a total production amount yR of liquefied nitrogen and liquefied oxygen is set. A total production amount y for each predetermined control cycle W between the total production amount y1 at the start of the change in the operation rate η and the target total production amount yt corresponding to the target operation rate ηt is obtained. The cooling flow rate of liquefied nitrogen supplied to the high-pressure rectification column by the compression refrigerator corresponding to the total production amount y of x
Is set by a predetermined linear function with the total production amount y, the raw material air flow rate Qa is set, and after the lapse of the dead time T from each control period W, the total production amount determined for each control period W a method for operating an air liquefaction / separation apparatus, wherein y is extracted.
の積を演算して液化窒素の製造量zNを抜き出すことを
特徴とする請求項5記載の空気液化分離装置の運転方
法。6. The method according to claim 5, wherein a product of the total production amount y and a predetermined constant C is calculated to extract a production amount zN of liquefied nitrogen.
造量zNを減算して液化酸素の製造量zOを抜き出すこ
とを特徴とする請求項6記載の空気液化分離装置の運転
方法。7. The method for operating an air liquefaction / separation apparatus according to claim 6, wherein the production amount zO of liquefied oxygen is extracted by subtracting the production amount zN of liquefied nitrogen from the total production amount y.
して、下方の高圧精留塔と、上方の低圧精留塔とが形成
された精留塔と、 (a2)圧縮式冷凍機であって、この圧縮式冷凍機は、
冷媒として窒素を用い、 高圧精留塔から窒素ガスを抜き出して原料空気冷却用熱
交換器に導いて原料空気を冷却した後の窒素ガスを圧縮
機で圧縮し、冷熱源によって凝縮し、凝縮した液化窒素
を高圧精留塔に噴射して膨張し、高圧精留塔からの窒素
ガスを原料空気冷却用熱交換器に抜き出して循環する閉
ループを形成する圧縮式冷凍機と、 (a3)原料空気冷却用熱交換器で冷却された原料空気
を高圧精留塔の下部に供給する管路と、 (a4)高圧精留塔の下部から、酸素を主として含む液
体を取り出して、低圧精留塔に供給する管路と、 (a5)低圧精留塔の上部から窒素ガスを排出する管路
とを有する空気液化分離装置と、 (b)高圧精留塔の上部で液化した液化窒素を製品とし
て取り出す流量制御弁と、 (c)低圧精留塔の下部で液化した液化酸素を製品とし
て取り出す流量制御弁と、 (d)圧縮式冷凍機の凝縮した液化窒素が高圧精留塔に
供給される寒冷流量xを制御する寒冷流量制御手段と、 (e)原料空気冷却用熱交換器に供給する原料空気流量
Qaを制御する原料空気流量制御手段と、 (f)制御手段であって、 液化窒素と液化酸素との合計の定格製造量yRに対する
実際の合計製造量yの比y/yRである稼動率ηの目標
値ηtを設定し、 稼動率ηの変更開始時点における合計製造量y1と、目
標稼動率ηに対応する目標合計製造量ytとの間におけ
る予め定める制御周期W毎の合計製造量yを、求め、 制御周期W毎の合計製造量yに対応する圧縮式冷凍機に
よって高圧精留塔に供給される液化窒素の寒冷流量x
を、前記合計製造量yとの予め定める1次関数によって
設定するとともに、原料空気流量Qaを設定し、 各制御周期Wからむだ時間T経過後に、前記液化窒素流
量制御弁と前記液化酸素流量制御弁との開度を制御し
て、各制御周期W毎に求めた前記合計製造量yを、抜き
出す制御手段とを含むことを特徴とする空気液化分離装
置の運転装置。8. An air liquefaction / separation apparatus comprising: (a1) a lower high-pressure rectification tower and an upper low-pressure rectification tower in a vertically extending tubular housing via a heat transfer member. (A2) a compression-type refrigerator, wherein the compression-type refrigerator comprises:
Using nitrogen as a refrigerant, nitrogen gas was extracted from the high-pressure rectification column and led to a heat exchanger for cooling the raw material air, and after cooling the raw material air, the nitrogen gas was compressed by a compressor, condensed by a cold heat source, and condensed. A compression refrigerator that forms a closed loop in which liquefied nitrogen is injected into a high-pressure rectification tower to expand and extract nitrogen gas from the high-pressure rectification tower into a heat exchanger for cooling the raw material air and circulate; A pipe for supplying the raw material air cooled by the cooling heat exchanger to the lower part of the high-pressure rectification tower; and (a4) extracting a liquid mainly containing oxygen from the lower part of the high-pressure rectification tower, (A5) an air liquefaction / separation device having a line for discharging nitrogen gas from the upper part of the low-pressure rectification column; and (b) liquefied nitrogen liquefied at the upper part of the high-pressure rectification column as a product. (C) at the bottom of the low pressure rectification column A flow control valve for taking out the liquefied oxygen as a product; (d) a cold flow control means for controlling a cold flow x at which the condensed liquefied nitrogen of the compression refrigerator is supplied to the high-pressure rectification column; (F) raw air flow control means for controlling the raw air flow rate Qa supplied to the air-cooling heat exchanger, and (f) control means, wherein the actual total production relative to the total rated production amount yR of liquefied nitrogen and liquefied oxygen A target value ηt of the operation rate η, which is a ratio y / yR of the quantity y, is set, and the target production rate yt corresponding to the target operation rate η between the total production amount y1 at the start of the change in the operation rate η is set. A total production amount y for each predetermined control cycle W is obtained, and a cooling flow rate x of the liquefied nitrogen supplied to the high-pressure rectification column by the compression refrigerator corresponding to the total production amount y for each control cycle W
Is set by a predetermined linear function with the total production amount y, the raw material air flow rate Qa is set, and after the dead time T from each control cycle W, the liquefied nitrogen flow control valve and the liquefied oxygen flow control are set. An operating device for an air liquefaction / separation device, comprising: a control unit that controls an opening degree of a valve and extracts the total production amount y obtained for each control cycle W.
縮空気で圧縮された窒素ガスを凝縮する液化天然ガス熱
交換器を有し、 前記制御手段は、 液化天然ガス熱交換器に供給する液化天然ガスの流量を
制御する温度制御用流量制御弁と、 圧縮機の入口と出口との間に介在され、窒素ガスの吐出
圧を制御する吐出圧制御用流量制御弁と、 寒冷流量xに対応して温度制御用流量制御弁と吐出圧制
御用流量制御弁との開度を制御する弁開度制御手段とを
含むことを特徴とする請求項8記載の空気液化分離装
置。9. The liquefied natural gas heat exchanger includes a liquefied natural gas heat exchanger that condenses nitrogen gas compressed with compressed air by the liquefied natural gas, and the control unit includes a liquefied natural gas heat exchanger. A flow control valve for temperature control that controls the flow rate of natural gas, a flow control valve for discharge pressure control that is interposed between the inlet and outlet of the compressor, and controls the discharge pressure of nitrogen gas. 9. The air liquefaction / separation apparatus according to claim 8, further comprising valve opening control means for controlling the opening of the temperature control flow control valve and the discharge pressure control flow control valve.
る温度検出手段と、 温度検出手段の出力に応答し、温度検出手段によって検
出される温度が、寒冷流量xに対応する値になるよう
に、温度制御用流量制御弁の開度を制御する手段とを含
むことを特徴とする請求項9記載の空気液化分離装置の
運転装置。10. A valve opening control means, comprising: a temperature detecting means for detecting a temperature of liquefied nitrogen at an outlet side of the liquefied natural gas heat exchanger; and a temperature detecting means responsive to an output of the temperature detecting means. The operating device for an air liquefaction / separation device according to claim 9, further comprising means for controlling an opening degree of the temperature control flow control valve so that the temperature becomes a value corresponding to the cold flow rate x.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9137199A JPH10325672A (en) | 1997-05-27 | 1997-05-27 | Method and device for forecasting operation state of air liquefying and separating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9137199A JPH10325672A (en) | 1997-05-27 | 1997-05-27 | Method and device for forecasting operation state of air liquefying and separating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10325672A true JPH10325672A (en) | 1998-12-08 |
Family
ID=15193116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9137199A Pending JPH10325672A (en) | 1997-05-27 | 1997-05-27 | Method and device for forecasting operation state of air liquefying and separating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10325672A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109974394A (en) * | 2019-04-23 | 2019-07-05 | 山东京博众诚清洁能源有限公司 | A kind of method that air-seperation system and its stage that goes into operation carry out hydrops |
CN113984827A (en) * | 2021-10-25 | 2022-01-28 | 重庆科技学院 | Simulation experiment device and method for natural gas liquefaction performance by supersonic nozzle |
-
1997
- 1997-05-27 JP JP9137199A patent/JPH10325672A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109974394A (en) * | 2019-04-23 | 2019-07-05 | 山东京博众诚清洁能源有限公司 | A kind of method that air-seperation system and its stage that goes into operation carry out hydrops |
CN113984827A (en) * | 2021-10-25 | 2022-01-28 | 重庆科技学院 | Simulation experiment device and method for natural gas liquefaction performance by supersonic nozzle |
CN113984827B (en) * | 2021-10-25 | 2023-11-21 | 重庆科技学院 | Device and method for simulating natural gas liquefaction performance of supersonic jet pipe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4879730B2 (en) | Method to obtain liquefied natural gas by liquefying gaseous raw material rich in methane | |
EP2229567B1 (en) | Method for regulation of cooling capacity of a cooling system based on a gas expansion process. | |
AU732548B2 (en) | Process of liquefying a gaseous, methane-rich feed to obtain liquefied natural gas | |
US3407052A (en) | Natural gas liquefaction with controlled b.t.u. content | |
NO335736B1 (en) | Procedure for operating a transcritical freezing and cooling system | |
RU2686355C1 (en) | Method of determining the composition of the mixed refrigerant to natural gas liquefaction plant | |
KR102493917B1 (en) | gas production system | |
AU2018202638B1 (en) | A method of control of the natural gas liquefaction process | |
JPH10325672A (en) | Method and device for forecasting operation state of air liquefying and separating device | |
JPH11344265A (en) | Turbo freezer of multistage compression system | |
JP6654050B2 (en) | Multi-stage variable gas recovery machine and multi-stage variable refrigerant recovery machine | |
US20100101272A1 (en) | process of liquefying a gaseous methane-rich feed for obtaining liquid natural gas | |
JPWO2021240689A5 (en) | ||
CN209783040U (en) | Vacuum sublimation evaporation cold and heat energy separation heat supply or cold supply equipment | |
JP2003106763A (en) | Air separating device and method of separating air | |
RU2714088C1 (en) | Natural gas liquefaction complex (versions) | |
JP2001056177A (en) | Air separation unit | |
RU2254905C1 (en) | Method of separation of difficult-to-separate mixtures and device for realization of this method | |
RU145165U1 (en) | INSTALLING AN ETHAN-PROPANE FACTION SEPARATION | |
JP3217005B2 (en) | Air separation method and apparatus used therefor | |
JP3163024B2 (en) | Air separation equipment | |
JP4417142B2 (en) | Air separation method and apparatus used therefor | |
JP2005314446A (en) | Apparatus and method for liquefying gas | |
CN116983696A (en) | Purifying device and purifying method for carbon dioxide | |
JP2003166783A (en) | Low-temperature air processing equipment |