JPH10325337A - Compressor surging preventing device for pressure fluidized bed combined power generational system - Google Patents

Compressor surging preventing device for pressure fluidized bed combined power generational system

Info

Publication number
JPH10325337A
JPH10325337A JP13845797A JP13845797A JPH10325337A JP H10325337 A JPH10325337 A JP H10325337A JP 13845797 A JP13845797 A JP 13845797A JP 13845797 A JP13845797 A JP 13845797A JP H10325337 A JPH10325337 A JP H10325337A
Authority
JP
Japan
Prior art keywords
compressor
pressure
surging
valve
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13845797A
Other languages
Japanese (ja)
Other versions
JP3530344B2 (en
Inventor
Satoshi Uchida
聡 内田
Katsuhiko Abe
克彦 安部
Yoshifumi Masuda
佳文 増田
Fumitomo Fujii
文倫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13845797A priority Critical patent/JP3530344B2/en
Publication of JPH10325337A publication Critical patent/JPH10325337A/en
Application granted granted Critical
Publication of JP3530344B2 publication Critical patent/JP3530344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent surging of a compressor generated when an air capacity is reduced in the case where a load is reduced, in a compressor surging preventing device for pressure fluidized bed combined power generational system. SOLUTION: Combustion gas is supplied from a pressure fluidized bed boiler 13 into a gas turbine 11 through ducts 16, 17, the gas turbine 11 is driven, exhaust heat is recovered by an exhaust heat recovering boiler 20, and is delivered from a chimney 21. Air is supplied from a compressor 12 driven by the gas turbine 11 into the boiler 13 through a compressor outlet valve 15 and a duct 18. When an opening degree of an inlet variable stationary blade is reduced since a load of the boiler 13 is reduced and a capacity of air from the compressor 11 is reduced, pressure in the outlet of the compressor 11 is not reduced, surging is generated. When a value detected by a pressure detector 4 exceeds a limit pressure value which is set beforehand, a surging preventing valve 3 is opened, a compressor outlet bypass valve 2 is also opened when it approaches to a surging line, and an air flow rate is bypassed so as to prevent surging.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は加圧流動層複合発電
システムにおいて負荷変動がある場合の圧縮機サージン
グ防止装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressor surging prevention apparatus in a pressurized fluidized-bed combined power generation system when there is a load change.

【0002】[0002]

【従来の技術】加圧流動層複合発電システムでは流動層
ボイラで石炭等を燃焼させ、発生した蒸気で蒸気タービ
ンを駆動し、更に流動層ボイラの燃焼で得られた高温、
高圧の燃焼ガスでガスタービンを駆動し、高効率で電力
を得るものである。
2. Description of the Related Art In a pressurized fluidized-bed combined power generation system, coal and the like are burned in a fluidized-bed boiler, a steam turbine is driven by generated steam, and the high temperature obtained by combustion of the fluidized-bed boiler is further increased.
A gas turbine is driven by high-pressure combustion gas to obtain electric power with high efficiency.

【0003】図4は上記に説明の加圧流動層複合発電シ
ステムの燃焼装置の代表的な系統図である。図におい
て、11はガスタービン、12はガスタービンに結合さ
れた圧縮機、13は加圧流動層ボイラであり、圧力容器
13−1内に火炉13−2、容器13−3を有し、発生
した蒸気で図示していない蒸気タービンを駆動し、燃焼
したガスはダクト16,17を通ってガスタービン11
に供給され、ガスタービン11を駆動し、その排気ガス
からは排熱回収ボイラ20を通して排熱を回収し、煙突
21から外気へ排出する。
FIG. 4 is a typical system diagram of a combustion device of the pressurized fluidized bed combined cycle system described above. In the figure, 11 is a gas turbine, 12 is a compressor coupled to the gas turbine, 13 is a pressurized fluidized bed boiler, which has a furnace 13-2 and a container 13-3 in a pressure vessel 13-1, and generates The steam thus generated drives a steam turbine (not shown), and the combusted gas passes through ducts 16 and 17 to the gas turbine 11.
And drives the gas turbine 11, recovers exhaust heat from the exhaust gas through an exhaust heat recovery boiler 20, and discharges the exhaust heat from a chimney 21 to the outside air.

【0004】ガスタービン11で駆動される圧縮機12
により空気が加圧され、圧縮機出口弁15を介し、ダク
ト18により加圧流動層ボイラ13内の火炉13−2に
燃焼用空気として供給される。又、起動時には、加圧流
動層ボイラ13からの燃焼ガスが充分にダクト16から
供給されないので、起動用燃焼器14を駆動し、圧縮機
出口弁15を切換えてダクト19側に圧縮機12から空
気を供給し、ガスタービン11を駆動して立上げを行
う。加圧流動層ボイラ13が充分に加熱した後は、圧縮
機出口弁15を切換えてダクト19の空気を絶ってガス
タービン11は加圧流動層ボイラ13からの燃焼ガスで
駆動される。
A compressor 12 driven by a gas turbine 11
The air is pressurized and supplied to the furnace 13-2 in the pressurized fluidized bed boiler 13 by the duct 18 through the compressor outlet valve 15 as combustion air. Also, at the time of startup, since the combustion gas from the pressurized fluidized bed boiler 13 is not sufficiently supplied from the duct 16, the startup combustor 14 is driven, the compressor outlet valve 15 is switched, and the compressor 19 is moved to the duct 19 side. Air is supplied and the gas turbine 11 is driven to start up. After the pressurized fluidized bed boiler 13 is sufficiently heated, the compressor outlet valve 15 is switched to cut off the air in the duct 19 and the gas turbine 11 is driven by the combustion gas from the pressurized fluidized bed boiler 13.

【0005】加圧流動層ボイラ13の火炉13−2で
は、負荷変化に対して流動層の高さを変化させる。即
ち、負荷減少時には火炉13−2内の媒体を容器13−
3に取り出して移動し、火炉13−2内の流動層高さを
低くし、逆に負荷が増加する時には容器13−3から媒
体を火炉13−2内に戻して流動層高を増加させる。こ
のように加圧流動層ボイラ13の火炉13−2では流動
層高の操作によって流動層内の伝熱管の伝熱面積を増減
させ、蒸気の発生量を調節している。
[0005] In the furnace 13-2 of the pressurized fluidized bed boiler 13, the height of the fluidized bed is changed in response to a change in load. That is, when the load decreases, the medium in the furnace 13-2 is transferred to the container 13-.
3 and move to lower the height of the fluidized bed in the furnace 13-2. Conversely, when the load increases, the medium is returned from the vessel 13-3 into the furnace 13-2 to increase the height of the fluidized bed. As described above, in the furnace 13-2 of the pressurized fluidized-bed boiler 13, the heat transfer area of the heat transfer tube in the fluidized bed is increased or decreased by operating the fluidized bed height to adjust the amount of generated steam.

【0006】[0006]

【発明が解決しようとする課題】前述の加圧流動層複合
発電システムにおいては、ガスタービン11に直結した
圧縮機12は通常のものと異り、出口側に大容量の圧力
容器13−1を有しており、吸込風量の変化に対して圧
力比の変化が遅い。負荷が減少した場合には、火炉13
−2の燃焼用空気流量を給炭量に応じて少くする必要が
ある。そのために圧縮機12から火炉13−2に供給さ
れる空気流量を減少させなければならない。この時の風
量減少時には、ある限界圧力値においてサージングを起
すが、この圧縮機のサージング限界圧力比も風量の減少
に伴って同時に低下する。しかし、前述のように空気流
量を減少しても、圧縮機出口側は大容量の圧力容器13
−1があるため、運転圧力比は低下せず、以前の高い圧
力状態を保持している。その結果、風量を減少していく
と、運転中の圧力はサージング限界圧力ラインに達し、
サージングに至ることになる。
In the pressurized fluidized-bed combined power generation system described above, the compressor 12 directly connected to the gas turbine 11 is different from a normal compressor, and a large-capacity pressure vessel 13-1 is provided at the outlet side. And the change in pressure ratio is slow with respect to the change in suction air volume. If the load decreases, the furnace 13
It is necessary to reduce the combustion air flow rate of -2 according to the amount of coal supplied. Therefore, the flow rate of air supplied from the compressor 12 to the furnace 13-2 must be reduced. At this time, when the air volume decreases, surging occurs at a certain limit pressure value, but the surging limit pressure ratio of the compressor also decreases at the same time as the air volume decreases. However, even if the air flow rate is reduced as described above, the compressor outlet side has a large capacity pressure vessel 13.
Since there is -1, the operating pressure ratio does not decrease and maintains the previous high pressure state. As a result, as the air flow decreases, the pressure during operation reaches the surging limit pressure line,
It will lead to surging.

【0007】そこで、本発明は、前述のように風量減少
時に圧縮機がサージングに至る前に圧縮機出口側圧力が
サージング限界圧力に達しないように圧縮機からの風量
をバイパスさせ、サージングを回避できる加圧流動層複
合発電プラントの圧縮機サージング防止装置を提供する
ことを課題としてなされたものである。
Accordingly, the present invention avoids surging by bypassing the air flow from the compressor so that the compressor outlet side pressure does not reach the surging limit pressure before the compressor reaches surging when the air flow is reduced as described above. An object of the present invention is to provide a compressor surging prevention device for a pressurized fluidized bed combined cycle power plant that can be used.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の課題を
解決するために次の(1)及び(2)の手段を提供す
る。
The present invention provides the following means (1) and (2) for solving the above-mentioned problems.

【0009】(1)加圧流動層ボイラで蒸気系を加熱す
ると共に、その燃焼ガスでガスタービンを駆動し、同ガ
スタービンに直結の圧縮機からの空気を前記加圧流動層
ボイラの燃焼用空気として供給する加圧流動層複合発電
システムにおける圧縮機サージング防止装置であって;
前記圧縮機出口側と前記ガスタービン排気側との間に連
通し、開閉弁を有する第1のバイパス流路と;前記圧縮
機出口側と前記ガスタービン入口側との間を連通し、開
閉弁を有する第2のバイパス流路と;前記圧縮機出口圧
力を検出する圧力検出器と;同圧力検出器の検出圧力値
を入力し、あらかじめ定められた圧縮機入口可変静翼開
度とサージング限界圧力との関係に基づいて前記第1及
び第2のバイパス流路開閉弁を制御する制御装置とを具
備してなることを特徴とする加圧流動層複合発電システ
ムの圧縮機サージング防止装置。
(1) A steam system is heated by a pressurized fluidized bed boiler, and a gas turbine is driven by the combustion gas, and air from a compressor directly connected to the gas turbine is used for combustion of the pressurized fluidized bed boiler. A compressor anti-surging device in a pressurized fluidized-bed combined power generation system supplying as air;
A first bypass passage communicating between the compressor outlet side and the gas turbine exhaust side and having an on-off valve; communicating between the compressor outlet side and the gas turbine inlet side; A pressure detector for detecting the compressor outlet pressure, and a predetermined compressor inlet variable stator vane opening and a surging limit by inputting the pressure detected by the pressure detector. A controller for controlling the first and second bypass passage opening / closing valves on the basis of a relationship with pressure; and a compressor surging prevention apparatus for a pressurized fluidized bed combined power generation system.

【0010】(2)上記の(1)の発明において、前記
制御装置にはあらかじめ2つのサージング限界圧力特性
を定めておき、同制御装置は前記圧力検出器で検出する
運転中の圧力が前記サージング限界圧力の一方の圧力に
達すると入口可変静翼の開度を保持すると共に、第1バ
イパス流路の開閉弁を開放し、更に、他方の限界圧力に
達すると第2のバイパス流路の開閉弁を開放するように
制御することを特徴とする加圧流動層複合発電システム
の圧縮機サージング防止装置。
(2) In the invention of the above (1), two surging limit pressure characteristics are determined in advance in the control device, and the control device determines that the operating pressure detected by the pressure detector is the surging. When the pressure reaches one of the limit pressures, the opening degree of the inlet variable stationary blade is maintained, and the on-off valve of the first bypass flow path is opened. When the other limit pressure is reached, the opening and closing of the second bypass flow path is opened and closed. A compressor surging prevention apparatus for a pressurized fluidized-bed combined power generation system, characterized in that control is performed to open a valve.

【0011】(3)上記の(2)の発明において、あら
かじめ定められた前記2つのサージング限界圧力特性は
前記圧縮機の吸気温度により補正可能としたことを特徴
とする加圧流動層複合発電システムの圧縮機サージング
防止装置。
(3) In the invention of the above (2), the two predetermined surging limit pressure characteristics can be corrected by an intake air temperature of the compressor. Compressor surging prevention device.

【0012】本発明の(1)においては、第1のバイパ
ス流路と第2のバイパス流路とを備えており、これら流
路はそれぞれ開閉弁を有し、圧縮機がサージングを起す
直前にはこれら開閉弁を開放し、圧縮機出口側からの空
気をバイパスさせて流出させ、出口側圧力が上昇しない
ようにしてサージングを防ぐ。
In (1) of the present invention, a first bypass flow path and a second bypass flow path are provided, each of which has an on-off valve, and which is provided immediately before the compressor starts surging. Opens these on-off valves to allow air from the compressor outlet side to bypass and flow out, and to prevent surging by preventing the outlet side pressure from rising.

【0013】即ち、運転中に負荷が減少すると、これに
伴って加圧流動層ボイラに流入する圧縮機からの空気量
も負荷減少に伴って減少させるが、圧縮機出口側には大
きな圧力容器があるので圧縮機入口可変翼開度を小さく
して空気流量を減少させても出口側圧力は低下せず、サ
ージングに至ってしまう。
That is, when the load decreases during operation, the amount of air from the compressor flowing into the pressurized fluidized-bed boiler also decreases with the decrease in load. Therefore, even if the opening degree of the variable blades at the compressor inlet is reduced to reduce the air flow rate, the pressure at the outlet side does not decrease, resulting in surging.

【0014】そこで、本発明の(1)では、制御装置に
はあらかじめサージングに至る直前のサージング限界圧
力を設定し、記憶させておき、圧縮機入口可変静翼開度
を減少させて空気流量を減少させる過程において、圧縮
機出口圧力がこの限界圧力に達すると圧縮機入口可変静
翼開度の減少を制限すると共に第1又は第2、あるいは
両方の開閉弁を開き、圧縮機からの空気をバイパスさせ
て圧縮機出口圧力が上昇しないようにしてサージングに
至らないようにする。この場合の運転中の圧縮機出口圧
力は圧力検出器で検出し、制御装置に入力され、制御装
置では前述のようにあらかじめ設定した圧力限界と比較
し、上記のように第1、第2バイパス流路の開閉弁を制
御する。
Therefore, in (1) of the present invention, the surging limit pressure immediately before surging is set in the control device and stored in advance, and the air flow rate is reduced by reducing the opening degree of the variable vanes at the compressor inlet. In the process of reducing, when the compressor outlet pressure reaches this limit pressure, the reduction of the compressor inlet variable vane opening is limited and the first or second or both on-off valves are opened, and air from the compressor is released. By bypassing, the compressor outlet pressure is prevented from rising, so that surging does not occur. In this case, the compressor outlet pressure during operation is detected by the pressure detector and input to the control device. The control device compares the pressure with the preset pressure limit as described above, and performs the first and second bypasses as described above. Controls the open / close valve of the flow path.

【0015】上記の圧縮機からの空気量をバイパスさせ
る方法としては、(2)の発明のように、制御装置には
限界圧力を2つ定めておき、まず最初に1つの限界圧力
に基づいて第1バイパス流路の開閉弁を開放する。この
場合には圧縮機出口側から空気がバイパスしてガスター
ビン排気側に流出し、圧縮機出口圧力の上昇を抑え、サ
ージングに至らないようにするが、圧縮機の空気に高
温、高圧の蒸気が混入する場合があり、この場合には圧
縮機出口圧力が急激に上昇することがある。このような
場合においては2つ目の限界圧力に基づいて第2のバイ
パス流路の開閉弁を開き、圧縮機出口側から空気をバイ
パス流路を介してガスタービンの入口側へ流出させ、流
動層からの燃焼ガスに混入する。このようにして、圧縮
機出口圧力の上昇を抑え、サージングに至らないように
制御することができる。
As a method for bypassing the amount of air from the compressor, as in the invention of (2), two critical pressures are determined in the control device, and first, based on one critical pressure, The on-off valve of the first bypass flow path is opened. In this case, air is bypassed from the compressor outlet side and flows out to the gas turbine exhaust side to suppress the rise in compressor outlet pressure and prevent surging, but high-temperature, high-pressure steam is added to the compressor air. May be mixed, and in this case, the compressor outlet pressure may increase sharply. In such a case, the on-off valve of the second bypass flow path is opened based on the second limit pressure, and air is discharged from the compressor outlet side to the gas turbine inlet side via the bypass flow path, and Mixes into combustion gases from beds. In this way, it is possible to suppress an increase in the compressor outlet pressure and control so as not to cause surging.

【0016】更に、(3)の発明においては、圧縮機の
吸気温度によりサージラインが変化するが、制御装置に
は吸気温度変化により補正をかける制御が出来るように
しているので、圧縮機の吸気温度変化に対しても補正
し、制御することができる。
Further, in the invention of (3), the surge line changes depending on the intake air temperature of the compressor. However, since the control device can perform control to make a correction based on the change in intake air temperature, the intake line of the compressor can be controlled. The temperature can be corrected and controlled.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の一形態に係る加圧流動層複合発電システムの圧縮機
サージング防止装置の系統図である。図において、符号
11乃至21は図4に示す従来のものと同一機能を有す
るので説明は省略するが、本発明の特徴部分は符号2乃
至7で示す部分であり、以下に詳しく説明する。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a system diagram of a compressor surging prevention device of a combined pressurized fluidized bed power generation system according to an embodiment of the present invention. In the figure, reference numerals 11 to 21 have the same functions as those of the conventional device shown in FIG. 4, and therefore description thereof will be omitted.

【0018】図1において、2は圧縮機出口バイパス弁
で、圧縮機12の出口側とガスタービン11の入口側ガ
ス通路に連通するダクト19との間に配設されたバイパ
ス管6の途中に設けられている。3はサージング防止弁
であり、圧縮機12の出口側とガスタービン11の排気
系路とに連通するバイパス管7の途中に設けられてい
る。
In FIG. 1, reference numeral 2 denotes a compressor outlet bypass valve, which is provided in the middle of a bypass pipe 6 provided between an outlet side of the compressor 12 and a duct 19 communicating with a gas passage on the inlet side of the gas turbine 11. Is provided. Reference numeral 3 denotes a surging prevention valve, which is provided in the middle of a bypass pipe 7 that communicates with the outlet side of the compressor 12 and the exhaust system of the gas turbine 11.

【0019】4は圧力検出器であり、圧縮機12の出口
側の配管に設けられ、圧縮機出口側の圧力を検出する。
5は制御装置であり、圧力検出器4からの圧縮機12出
口側圧力信号を入力し、後述するように、圧縮機12の
サージングが起る直前の運転限界圧力比としての制御ラ
インと比較し、圧縮機出口側圧力がサージング直前の値
となるとサージング防止弁3、あるいは圧縮機出口バイ
パス弁2を開放し、サージングを防止するように制御す
るものである。
Reference numeral 4 denotes a pressure detector which is provided on a pipe on the outlet side of the compressor 12 and detects a pressure on the compressor outlet side.
Reference numeral 5 denotes a control device which receives a compressor 12 outlet side pressure signal from the pressure detector 4 and compares it with a control line as an operation limit pressure ratio immediately before surging of the compressor 12 as described later. When the pressure on the compressor outlet side becomes a value immediately before surging, the anti-surging valve 3 or the compressor outlet bypass valve 2 is opened to control so as to prevent surging.

【0020】図2は上記の実施の形態における圧縮機の
入口可変静翼の開度と圧縮機出口圧力との関係を示す図
である。図2において、サージライン(S)の特性は、
圧縮機においてあらかじめわかっており、このサージラ
イン(S)の曲線より25%圧力の減少した特性を運転
限界圧力として制御ライン(A)とする。更に、サージ
ライン(S)の特性より20%圧力の減少した特性を制
御ライン(B)として設定する。これらの制御ライン
(A)、(B)の特性データは制御装置5にあらかじめ
設定しておくと共に、圧縮機の吸気温度に対しても補正
がかかるように制御可能としておく。即ち図2におい
て、吸気温度が上昇するとサージラインあるいは制御ラ
インが下方に、又吸気温度が下降すると上方に変化する
ので、制御装置でこのような補正ができるようにしてい
る。
FIG. 2 is a diagram showing the relationship between the opening degree of the variable inlet vanes of the compressor and the compressor outlet pressure in the above embodiment. In FIG. 2, the characteristics of the surge line (S) are as follows.
The characteristic which is known in advance in the compressor and whose pressure is reduced by 25% from the curve of the surge line (S) is defined as the operation limit pressure as the control line (A). Further, a characteristic in which the pressure is reduced by 20% from the characteristic of the surge line (S) is set as the control line (B). The characteristic data of these control lines (A) and (B) are set in the control device 5 in advance, and can be controlled so that the intake air temperature of the compressor is also corrected. That is, in FIG. 2, the surge line or the control line changes downward when the intake air temperature rises, and changes upward when the intake air temperature falls. Therefore, such a correction can be made by the control device.

【0021】図2においてCは運転点であり、その入口
可変静翼開度をα2 として、今負荷が減少して圧縮機の
空気流量を減少する場合に、入口可変静翼開度を減少す
ると、前述のように圧縮機出口側は大きな圧力容器13
−1に連通しているので圧力は直ちに下降せず、そのま
まの状態を保持して開度α1 でC′点の圧力β1 で制御
ライン(A)に達する。
[0021] a C is the operating point in FIG. 2, as a inlet variable stator vanes opening the alpha 2, if the current load decreases the air flow rate of the compressor decreases, reducing the inlet variable stator vanes opening Then, as described above, the compressor outlet side is a large pressure vessel 13.
Since communicates -1 pressure does not immediately lowered, reach the control line (A) at a pressure beta 1 of point C 'in opening alpha 1 holds intact.

【0022】本発明の実施の形態においては、まずこの
C′点の圧縮機出口圧力β1 を圧力検出器4で検出する
と共に、入口可変静翼8の開度をα1 に保持させて図1
に示すサージング防止弁3を開放し、圧縮機出口側の空
気をバイパス管7から逃して圧縮機出口圧力がこれ以
上、上昇しないようにする。
In the embodiment of the present invention, first, the compressor outlet pressure β 1 at the point C ′ is detected by the pressure detector 4, and the opening degree of the inlet variable vane 8 is held at α 1 . 1
The anti-surge valve 3 is opened to release the air on the compressor outlet side from the bypass pipe 7 so that the compressor outlet pressure does not rise any more.

【0023】上記のC′点において圧力はβ1 の点で保
持され、上昇しないが、空気中に高温の蒸気が混入する
場合があり、このような場合には更に、圧縮機出口圧力
は急激に上昇することがある。このような場合には圧力
がd点のβ2 まで上昇すると制御ライン(B)に達し、
本発明の実施の形態においてはこのd点の圧力β2 を圧
力検出器4で検出し、図1に示す圧縮機出口バイパス弁
2を開き、圧縮機12の出口側の空気をバイパス管6か
らガスタービン11の入口側に逃がし、圧縮機出口圧力
がサージライン(S)まで上昇しないようにする。
At the above-mentioned point C ', the pressure is maintained at the point of β 1 and does not rise, but high-temperature steam may be mixed into the air. In such a case, the compressor outlet pressure further increases rapidly. May rise. In such a case, when the pressure rises to β 2 at the point d, the pressure reaches the control line (B),
In the embodiment of the present invention, the pressure β 2 at the point d is detected by the pressure detector 4, the compressor outlet bypass valve 2 shown in FIG. 1 is opened, and the air on the outlet side of the compressor 12 is discharged from the bypass pipe 6. The gas is released to the inlet side of the gas turbine 11 so that the compressor outlet pressure does not rise to the surge line (S).

【0024】図3は上記に説明の制御を行う制御装置5
内の制御フローを示す図である。制御装置5内にはあら
かじめ記憶装置5−1内に図2に示すような制御ライン
(A)、(B)のデータが記憶されている。運転中に負
荷が減少し、圧縮機の空気量を減少させるために入口可
変静翼の開度を減少させる場合に、運転中の圧縮機出口
圧力を圧力検出器4で検出し、この圧力があらかじめ設
定した制御ライン(A)、(B)の規定値を越えると、
制御装置5は直ちに入口可変静翼8の開度を保持した上
でサージ防止弁3、あるいは圧縮機出口バイパス弁2を
開き、加圧流動層ボイラ13へ流入する空気量をバイパ
スして圧力上昇を防ぎ、サージングを防止するものであ
る。次にその制御フローについて詳しく説明する。
FIG. 3 shows a control unit 5 for performing the control described above.
It is a figure which shows the control flow in FIG. In the control device 5, data of control lines (A) and (B) as shown in FIG. When the load decreases during operation and the opening degree of the inlet variable vane is reduced to reduce the air amount of the compressor, the compressor outlet pressure during operation is detected by the pressure detector 4, and this pressure is detected. Exceeding the prescribed values of the control lines (A) and (B) set in advance
The controller 5 immediately maintains the opening of the inlet variable stator vane 8 and opens the surge prevention valve 3 or the compressor outlet bypass valve 2 to bypass the amount of air flowing into the pressurized fluidized bed boiler 13 and increase the pressure. To prevent surging. Next, the control flow will be described in detail.

【0025】図3において、まずS1で加圧流動層ボイ
ラ13の負荷が減少すると、圧縮機12からの空気量も
減少させる必要があるので、S2において圧縮機の入口
可変静翼の開度を減少させる。その時S3において圧力
検出器4により圧縮機出口圧力を検出し、記憶装置5−
1から制御ライン(A)のデータを取込み、その検出圧
力値が所定の圧力値以内であるか否かを調べ、検出圧力
値が制御ライン(A)で定める値に等しいか、あるいは
これを越えていると、S4においてサージング防止弁3
を開き、空気流量をバイパスさせてサージングを防止す
る。検出した出口圧力が制御ライン(A)で定める圧力
値に達していなければ、S7でそのまま運転を継続す
る。
In FIG. 3, when the load of the pressurized fluidized-bed boiler 13 is reduced in S1, the amount of air from the compressor 12 also needs to be reduced. Decrease. At that time, in S3, the compressor outlet pressure is detected by the pressure detector 4, and the storage device 5-
The data of the control line (A) is fetched from 1 and it is checked whether the detected pressure value is within a predetermined pressure value, and the detected pressure value is equal to or exceeds the value determined by the control line (A). The surging prevention valve 3 in S4.
To bypass the air flow to prevent surging. If the detected outlet pressure has not reached the pressure value determined by the control line (A), the operation is continued at S7.

【0026】S4でサージング防止弁3を開いた後、S
5において、記憶装置5−1より制御ライン(B)のデ
ータを取込み、圧力検出器4で検出した運転中の圧縮機
出口圧力が、この制御ライン(B)で定める圧力値に達
しているか否かを調べ、達していればS6において圧縮
機出口バイパス弁2を開き、空気流量を更にバイパスさ
せてサージングを防止する。制御ライン(B)で定まる
圧力値に達していなければ、S7でそのまま運転を継続
する。
After opening the anti-surging valve 3 in S4,
At 5, the data of the control line (B) is fetched from the storage device 5-1, and whether or not the operating compressor outlet pressure detected by the pressure detector 4 has reached the pressure value determined by the control line (B) The compressor outlet bypass valve 2 is opened in S6 if it has reached, and the air flow is further bypassed to prevent surging. If the pressure value determined by the control line (B) has not been reached, the operation is continued in S7.

【0027】S7ではそれぞれS1,S3,S5,S6
での処理後に運転を継続し、S8で入口可変静翼の開度
調整が必要であればS2に戻り、必要なければ終了す
る。制御装置5は、このように入口可変静翼の開度を減
少させる際に、圧縮機出口圧力が減少せずにサージング
ラインに近づき、制御ライン(A)に達した時点で入口
可変静翼8の開度を保持し、サージング防止弁3、ある
いは圧縮機出口バイパス弁2を開放して圧縮機12出口
側から流出する空気量をバイパスさせ、圧縮機12のサ
ージングを防止する。
In S7, S1, S3, S5, S6
The operation is continued after the processing in step. If it is necessary to adjust the opening degree of the inlet variable stationary blade in step S8, the process returns to step S2, and otherwise ends. When the opening degree of the inlet variable stationary blade is reduced in this way, the control device 5 approaches the surging line without decreasing the compressor outlet pressure and reaches the control line (A) at the time of reaching the control line (A). , The surging prevention valve 3 or the compressor outlet bypass valve 2 is opened to bypass the amount of air flowing out from the compressor 12 outlet side, thereby preventing the compressor 12 from surging.

【0028】[0028]

【発明の効果】本発明は、(1)は、加圧流動層ボイラ
で蒸気系を加熱すると共に、その燃焼ガスでガスタービ
ンを駆動し、同ガスタービンに直結の圧縮機からの空気
を前記加圧流動層ボイラの燃焼用空気として供給する加
圧流動層複合発電システムにおける圧縮機サージング防
止装置であって;前記圧縮機出口側と前記ガスタービン
排気側との間に連通し、開閉弁を有する第1のバイパス
流路と;前記圧縮機出口側と前記ガスタービン入口側と
の間を連通し、開閉弁を有する第2のバイパス流路と;
前記圧縮機出口圧力を検出する圧力検出器と;同圧力検
出器の検出圧力値を入力し、あらかじめ定められた圧縮
機入口可変静翼開度とサージング限界圧力との関係に基
づいて前記第1及び第2のバイパス流路開閉弁を制御す
る制御装置とを具備してなることを特徴としている。
又、(2)の発明では(1)の発明において、前記制御
装置にはあらかじめ2つのサージング限界圧力特性を定
めておき、同制御装置は前記圧力検出器で検出する運転
中の圧力が前記サージング限界圧力の一方の圧力に達す
ると入口可変静翼の開度を保持すると共に、第1バイパ
ス流路の開閉弁を開放し、更に、他方の限界圧力に達す
ると第2のバイパス流路の開閉弁を開放するように制御
することを特徴としている。更に、(3)の発明では、
上記(2)の発明において、前記2つのサージング限界
圧力特性は前記圧縮機の吸気温度により補正可能とする
ことを特徴としている。
According to the present invention, (1) heats a steam system with a pressurized fluidized bed boiler, drives a gas turbine with the combustion gas, and removes air from a compressor directly connected to the gas turbine. A compressor surging prevention device in a pressurized fluidized bed combined power generation system for supplying air for combustion in a pressurized fluidized bed boiler, wherein the device communicates between the compressor outlet side and the gas turbine exhaust side, and includes an on-off valve. A second bypass flow path communicating between the compressor outlet side and the gas turbine inlet side and having an on-off valve;
A pressure detector for detecting the compressor outlet pressure; inputting a detected pressure value of the pressure detector, and detecting the first pressure on the basis of a predetermined relationship between a compressor inlet variable stationary blade opening degree and a surging limit pressure. And a control device for controlling the second bypass passage opening / closing valve.
Further, in the invention of (2), in the invention of (1), two surging limit pressure characteristics are previously defined in the control device, and the control device determines that the operating pressure detected by the pressure detector is the surging. When the pressure reaches one of the limit pressures, the opening degree of the inlet variable stationary blade is maintained, and the on-off valve of the first bypass flow path is opened. When the other limit pressure is reached, the opening and closing of the second bypass flow path is opened and closed. The valve is controlled to be opened. Furthermore, in the invention of (3),
The invention of the above (2) is characterized in that the two surging limit pressure characteristics can be corrected by the intake air temperature of the compressor.

【0029】上記の構成により、加圧流動層複合発電シ
ステムにおいて、加圧流動層ボイラの負荷が減少し、圧
縮機から加圧流動層へ供給する空気量を減少させる場合
に、圧縮機入口可変静翼開度を減少させても圧縮機がサ
ージングに至る前に圧縮機出口圧力の上昇を抑え、サー
ジングを確実に防止することができる。
With the above configuration, in the pressurized fluidized bed combined power generation system, when the load on the pressurized fluidized bed boiler is reduced and the amount of air supplied from the compressor to the pressurized fluidized bed is reduced, the compressor inlet variable Even if the opening degree of the vane is reduced, the rise of the compressor outlet pressure is suppressed before the compressor reaches surging, so that surging can be reliably prevented.

【0030】更に、第1、第2のバイパス流路を設けた
ことにより、第1のバイパス流路で圧縮機のサージング
を防止でき、この時の圧縮機出口圧力が万一急激に上昇
するようなことがあっても、更に第2のバイパス流路の
開閉弁を開くことによりサージングを確実に防止するこ
とができる。
Further, by providing the first and second bypass passages, surging of the compressor can be prevented in the first bypass passage so that the compressor outlet pressure at this time suddenly increases. Even if there is nothing, surging can be reliably prevented by further opening the on-off valve of the second bypass flow path.

【0031】更に、圧縮機の吸気温度によりサージング
ラインが変化しても、この変化分を補正することができ
るのでサージングの防止が一層確実になる。
Furthermore, even if the surging line changes due to the intake air temperature of the compressor, the change can be corrected, so that the surging can be more reliably prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係る加圧流動層複合発
電システムの圧縮機サージング防止装置の系統図であ
る。
FIG. 1 is a system diagram of a compressor surging prevention device of a pressurized fluidized bed combined cycle power generation system according to an embodiment of the present invention.

【図2】本発明の実施の一形態に係る加圧流動層複合発
電システムの圧縮機サージング防止装置の入口可変静翼
開度と圧縮機出口圧力との関係を示す図である。
FIG. 2 is a diagram illustrating a relationship between an inlet variable vane opening degree and a compressor outlet pressure of a compressor surging prevention device of the pressurized fluidized bed combined power generation system according to one embodiment of the present invention.

【図3】本発明の実施の一形態に係る加圧流動層複合発
電システムの圧縮機サージング防止装置の制御フローチ
ャートである。
FIG. 3 is a control flowchart of a compressor surging prevention device of the pressurized fluidized-bed combined power generation system according to one embodiment of the present invention.

【図4】従来の加圧流動層複合発電システムの系統図で
ある。
FIG. 4 is a system diagram of a conventional pressurized fluidized bed combined cycle system.

【符号の説明】[Explanation of symbols]

2 圧縮機出口バイパス弁 3 サージング防止弁 4 圧力検出器 5 制御装置 5−1 記憶装置 6,7 バイパス管 8 入口可変静翼 11 ガスタービン 12 圧縮機 13 加圧流動層ボイラ 13−1 圧力容器 14 起動用燃焼器 16,17,18,19 ダクト 20 排熱回収ボイラ 21 煙突 2 Compressor outlet bypass valve 3 Surging prevention valve 4 Pressure detector 5 Control device 5-1 Storage device 6, 7 Bypass pipe 8 Inlet variable stator vane 11 Gas turbine 12 Compressor 13 Pressurized fluidized bed boiler 13-1 Pressure vessel 14 Startup combustor 16, 17, 18, 19 Duct 20 Waste heat recovery boiler 21 Chimney

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 文倫 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Bunrin Fujii 2-1-1, Shinhama, Arai-machi, Takasago-shi, Hyogo Pref. Mitsubishi Heavy Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加圧流動層ボイラで蒸気系を加熱すると
共に、その燃焼ガスでガスタービンを駆動し、同ガスタ
ービンに直結の圧縮機からの空気を前記加圧流動層ボイ
ラの燃焼用空気として供給する加圧流動層複合発電シス
テムにおける圧縮機サージング防止装置であって;前記
圧縮機出口側と前記ガスタービン排気側との間に連通
し、開閉弁を有する第1のバイパス流路と;前記圧縮機
出口側と前記ガスタービン入口側との間を連通し、開閉
弁を有する第2のバイパス流路と;前記圧縮機出口圧力
を検出する圧力検出器と;同圧力検出器の検出圧力値を
入力し、あらかじめ定められた圧縮機入口可変静翼開度
とサージング限界圧力との関係に基づいて前記第1及び
第2のバイパス流路開閉弁を制御する制御装置とを具備
してなることを特徴とする加圧流動層複合発電システム
の圧縮機サージング防止装置。
1. A pressurized fluidized-bed boiler heats a steam system, drives a gas turbine with the combustion gas, and supplies air from a compressor directly connected to the gas turbine to combustion air of the pressurized fluidized-bed boiler. A compressor bypass anti-surging device in a pressurized fluidized bed combined power generation system that supplies as: a first bypass passage communicating between the compressor outlet side and the gas turbine exhaust side and having an on-off valve; A second bypass passage communicating between the compressor outlet side and the gas turbine inlet side and having an on-off valve; a pressure detector for detecting the compressor outlet pressure; and a pressure detected by the pressure detector A control device for inputting a value and controlling the first and second bypass flow passage opening / closing valves based on a predetermined relationship between a compressor inlet variable vane opening and a surging limit pressure. It is characterized by Compressor surging prevention device for pressurized fluidized bed combined power generation system.
【請求項2】 前記制御装置にはあらかじめ2つのサー
ジング限界圧力特性を定めておき、同制御装置は前記圧
力検出器で検出する運転中の圧力が前記サージング限界
圧力の一方の圧力に達すると入口可変静翼の開度を保持
すると共に、第1バイパス流路の開閉弁を開放し、更
に、他方の限界圧力に達すると第2のバイパス流路の開
閉弁を開放するように制御することを特徴とする請求項
1記載の加圧流動層複合発電システムの圧縮機サージン
グ防止装置。
2. The control device has two surging limit pressure characteristics determined in advance, and the control device has an inlet when the operating pressure detected by the pressure detector reaches one of the surging limit pressures. Controlling the opening degree of the variable stator vane, opening the on-off valve of the first bypass flow path, and further opening the on-off valve of the second bypass flow path when the other limit pressure is reached. The compressor surging prevention apparatus for a pressurized fluidized-bed combined power generation system according to claim 1, wherein:
【請求項3】 あらかじめ定められた前記2つのサージ
ング限界圧力特性は前記圧縮機の吸気温度により補正可
能としたことを特徴とする請求項2記載の加圧流動層複
合発電システムの圧縮機サージング防止装置。
3. The compressor according to claim 2, wherein the two predetermined surging limit pressure characteristics can be corrected by an intake air temperature of the compressor. apparatus.
JP13845797A 1997-05-28 1997-05-28 Compressor surging prevention device for pressurized fluidized bed combined cycle system Expired - Fee Related JP3530344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13845797A JP3530344B2 (en) 1997-05-28 1997-05-28 Compressor surging prevention device for pressurized fluidized bed combined cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13845797A JP3530344B2 (en) 1997-05-28 1997-05-28 Compressor surging prevention device for pressurized fluidized bed combined cycle system

Publications (2)

Publication Number Publication Date
JPH10325337A true JPH10325337A (en) 1998-12-08
JP3530344B2 JP3530344B2 (en) 2004-05-24

Family

ID=15222475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13845797A Expired - Fee Related JP3530344B2 (en) 1997-05-28 1997-05-28 Compressor surging prevention device for pressurized fluidized bed combined cycle system

Country Status (1)

Country Link
JP (1) JP3530344B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025965A (en) * 2006-07-25 2008-02-07 Public Works Research Institute Pressure incinerator equipment and its operation method
JP2008025966A (en) * 2006-07-25 2008-02-07 Public Works Research Institute Pressure incinerator equipment and its start-up method
WO2008149731A1 (en) * 2007-05-30 2008-12-11 Mitsubishi Heavy Industries, Ltd. Integrated gasification combined cycle plant
JP2011137576A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
CN107827251A (en) * 2017-10-31 2018-03-23 亿昇(天津)科技有限公司 A kind of centrifugal blower anti-surge control method
CN108332055A (en) * 2018-02-11 2018-07-27 曹京良 A kind of distribution point defeated station natural gas compression system
JP2020046082A (en) * 2018-09-14 2020-03-26 国立研究開発法人産業技術総合研究所 Method of operating pressurized fluidized circulation furnace system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025965A (en) * 2006-07-25 2008-02-07 Public Works Research Institute Pressure incinerator equipment and its operation method
JP2008025966A (en) * 2006-07-25 2008-02-07 Public Works Research Institute Pressure incinerator equipment and its start-up method
WO2008149731A1 (en) * 2007-05-30 2008-12-11 Mitsubishi Heavy Industries, Ltd. Integrated gasification combined cycle plant
US8028511B2 (en) 2007-05-30 2011-10-04 Mitsubishi Heavy Industries, Ltd. Integrated gasification combined cycle power generation plant
JP2011137576A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
CN107827251A (en) * 2017-10-31 2018-03-23 亿昇(天津)科技有限公司 A kind of centrifugal blower anti-surge control method
CN108332055A (en) * 2018-02-11 2018-07-27 曹京良 A kind of distribution point defeated station natural gas compression system
JP2020046082A (en) * 2018-09-14 2020-03-26 国立研究開発法人産業技術総合研究所 Method of operating pressurized fluidized circulation furnace system

Also Published As

Publication number Publication date
JP3530344B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
JPH10325337A (en) Compressor surging preventing device for pressure fluidized bed combined power generational system
JP2006118391A (en) Control device for extracted air boosting facility in integrated gasification combined cycle plant
JP3132834B2 (en) Gas turbine combustor steam cooling system
EP0933504B1 (en) Pressurized fluidized-bed combined cycle power generation system
JP4374798B2 (en) Mill primary air flow controller for pulverized coal fired boiler equipment
JP7168300B2 (en) Method and device for avoiding surge of supercharger attached to incinerator
JPS6232181A (en) Device for energy recovery from gas generated in regeneration tower of fluid catalytic cracking equipment
JP6623319B1 (en) Waste treatment facility and operation method thereof
JP4004499B2 (en) Overspeed avoidance device for regenerative gas turbine
JP4287940B2 (en) Pressurized fluidized bed boiler apparatus and control method thereof
JP5711795B2 (en) Pressurized fluidized incinerator equipment and control method of pressurized fluidized incinerator equipment
JP7246293B2 (en) Waste treatment equipment and its operation method
JP3700075B2 (en) Pressurized fluidized bed combined power plant
JP7063971B2 (en) Pressurized air supply system and how to start the pressurized air supply system
JPH08210601A (en) Controller for power plant having pressure fluidized bed boiler
JP7289777B2 (en) Waste treatment equipment and its operation method
JP2000161606A (en) Steaming prevention control method nd apparatus for coal saving apparatus
JP3845905B2 (en) Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant
JP4127911B2 (en) Steam turbine ground steam pressure controller
JP3199893B2 (en) Pressurized fluidized bed combustion plant
JP2000345811A (en) Exhaust heat recovery boiler plant and operating method thereof
JP3649680B2 (en) Extraction steam pressure control device and control method for main turbine
JP2554492Y2 (en) Control device for pressurized fluidized bed boiler
JPH09105503A (en) Method and apparatus for controlling steam temperature of combined cycle plant
JPH05296407A (en) After burning type combined cyclic power generating facility

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040210

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040227

LAPS Cancellation because of no payment of annual fees