JPH10325211A - Infilled type steel-pipe reinforced concrete column and improving method of strength and ductility of reinforced concrete column - Google Patents

Infilled type steel-pipe reinforced concrete column and improving method of strength and ductility of reinforced concrete column

Info

Publication number
JPH10325211A
JPH10325211A JP13661197A JP13661197A JPH10325211A JP H10325211 A JPH10325211 A JP H10325211A JP 13661197 A JP13661197 A JP 13661197A JP 13661197 A JP13661197 A JP 13661197A JP H10325211 A JPH10325211 A JP H10325211A
Authority
JP
Japan
Prior art keywords
concrete
column
strength
reinforced concrete
concrete column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13661197A
Other languages
Japanese (ja)
Inventor
Akihiko Sanpei
昭彦 三瓶
Yukihiro Sato
幸博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP13661197A priority Critical patent/JPH10325211A/en
Publication of JPH10325211A publication Critical patent/JPH10325211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To excite a mode, in which a yield line is formed in an X shape or expanded to the outside, to display the constraint effect of column concrete in a steel pipe or a hoop effectively, to increase the mean strength of column concrete and to improve ductility capacity in not only normal-strength concrete but also extra-high strength concrete and lightweight concrete, and to elevate the mean compressive strength of column concrete further while enhancing ductility capacity even when normal-strength high-strength concrete having normal specific gravity is used. SOLUTION: In the infilled type steel-pipe column (a CFT column) and a reinforced concrete RC column, X-shaped shear compressive fracture inducing solids 1 consisting of concrete having strength higher than column concrete 3 are disposed into column concrete at one or several places in the central height direction of the column or at the intervals of cross-sectional size. Accordingly, a mode, in which the yield line of column concrete is formed in an X shape or expanded to the outside, is excited.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建設分野の構造物
の柱部材のうち、鉄骨鉄筋コンクリート構造に分類され
ている充填形鋼管コンクリート柱、及び鉄筋コンクリー
ト柱の強度、靱性の改善方法に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving the strength and toughness of a filled steel pipe concrete column and a reinforced concrete column which are classified as a steel reinforced concrete structure among column members of a structure in the construction field. is there.

【0002】[0002]

【従来の技術】従来の充填形鋼管コンクリート柱(CF
T柱)においては、鋼管内ではコンクリートが充填され
るだけで、他の構成要素はない。また公知の鉄筋コンク
リート柱(RC柱)においても、主筋及び帯筋よりな
り、配筋方法としては口形、田形、囲形、更にX形を付
加した配筋を有し、前記鉄筋とコンクリートによって構
成され、その他の構成要素はない。
2. Description of the Related Art Conventional filled steel pipe concrete columns (CF)
In (T column), only the concrete is filled in the steel pipe, and there are no other components. Also, a known reinforced concrete column (RC column) is composed of a main bar and a band bar, and has a bar-shaped, a rice-shaped, a box-shaped, and an X-shaped reinforcing bar as a reinforcing method. There are no other components.

【0003】[0003]

【発明が解決しようとする課題】前記充填形鋼管コンク
リート柱の場合、コンクリートの圧縮強度は鋼管のコン
クリートに対する拘束効果によって、鋼管のないコンク
リートよりも柱の平均的な圧縮強度が上昇することが知
られている。また鉄筋コンクリート柱においてもせん断
補強筋として配筋される帯筋(フープ筋)によって柱の
圧縮強度の上昇、柱部材として靱性能が増大することが
知られている。しかし、コンクリートのシリンダーの圧
縮強度及びコンクリートの比重に着目すると、一般に次
のことが知られている。 (1)コンクリートの圧縮強度が600kgf/cm2
までの普通強度から高強度までのコンクリートにおいて
は、鋼管あるいは帯筋の強度や断面の増加に伴って、柱
のコンクリートの平均的な圧縮強度は線形的に上昇する
が、コンクリートの圧縮強度が600kgf/cm2
超える超高強度コンクリートにおいては、普通強度から
高強度のコンクリートに比べて柱の平均圧縮強度の上昇
は期待できない。 (2)軽量コンクリートにおいては、普通比重のコンク
リートに比べて、鋼管や帯筋のコンクリートに対する拘
束効果による柱の平均圧縮強度の上昇は小さい。
In the case of the above-mentioned concrete column filled with steel pipe, it is known that the compressive strength of concrete is higher than that of concrete without steel pipe due to the restraining effect of steel pipe on concrete. Have been. It is also known that, in a reinforced concrete column, an increase in the compressive strength of the column and an increase in toughness as a column member are caused by a reinforcing bar (hoop bar) arranged as a shear reinforcing bar. However, focusing on the compressive strength of concrete cylinders and the specific gravity of concrete, the following is generally known. (1) Compressive strength of concrete is 600 kgf / cm 2
The average compressive strength of column concrete increases linearly with the strength and cross section of steel pipes or stirrups, but the compressive strength of concrete is 600 kgf. In ultra-high-strength concrete exceeding / cm 2 , an increase in the average compressive strength of columns cannot be expected as compared with ordinary to high-strength concrete. (2) In the case of lightweight concrete, the increase in the average compressive strength of the column due to the restraining effect of the steel pipe or the tie bar on the concrete is smaller than that of the concrete having the normal specific gravity.

【0004】これらの要因は次のように考えられる。 (1′)普通比重の普通強度のコンクリートにおいて
は、柱の中心圧縮実験結果によれば、破壊線がコーン
状、即ち平均的にみると、柱軸と交叉する斜めひび割れ
がX状に形成され、圧縮軸力あるいは鉛直変形の増加に
伴って、X状ひび割れの左右のコンクリートが外側に押
し出されて膨脹しようとするのを鋼管あるいは帯筋が拘
束し、その結果として強度の上昇と靱性の増大が図られ
るものと考えられる。(図5(イ)(ハ)参照) (2′)一方、超高強度コンクリートや軽量コンクリー
トにおいては、必ずしもX状に破壊線が形成されず、図
5(ロ)(ニ)に示す如く/状や割裂による|状の破壊
線が形成され、コンクリートが外側に押し出されて膨脹
するようにはならず、鋼管あるいは帯筋のコンクリート
に対する有効な拘束効果が発揮されない。その結果とし
て強度の上昇と靱性の増大が期待できないものと考えら
れる。 (3′)特に、超高強度コンクリートや軽量コンクリー
トにおいては、必ずしもX状に破壊線が形成されず、/
状破壊線や、割裂による|状に形成されるのは、普通強
度や普通比重のコンクリートに比べて、引張強度の圧縮
強度に対する比が小さく、破壊面(ひび割れ面)におい
てコンクリートの骨材が割れてしまい、同破壊面のせん
断抵抗が殆どなく、ひび割れがX状に形成される前に破
壊面に滑りを生じてしまい、膨脹モードが発生しにくい
ためと推量される。
[0004] These factors are considered as follows. (1 ') According to the results of the center compression test of the column, the fracture line is a cone shape, that is, an oblique crack crossing the column axis is formed in an X shape on average, according to the results of the center compression test of the column. As the compressive axial force or the vertical deformation increases, the steel pipe or the stirrup restrains the concrete on the left and right of the X-shaped crack from being pushed outward and trying to expand, resulting in an increase in strength and an increase in toughness. Is considered to be achieved. (See FIGS. 5 (a) and (c).) (2 ') On the other hand, in ultra-high-strength concrete or lightweight concrete, a fracture line is not always formed in an X-shape, and as shown in FIGS. A | -shaped fracture line is formed due to the shape or split, and the concrete is not extruded outward and does not expand, and an effective restraining effect of the steel pipe or the strip bar on the concrete is not exhibited. As a result, it is considered that an increase in strength and an increase in toughness cannot be expected. (3 ′) Particularly, in ultra-high-strength concrete or lightweight concrete, an X-shaped breaking line is not necessarily formed.
The ratio of tensile strength to compressive strength is lower than that of concrete of normal strength or normal specific gravity, and concrete aggregate is cracked at the fracture surface (cracked surface) when it is formed in a | It is presumed that the fracture surface has almost no shear resistance, and the fracture surface slips before the crack is formed in an X-shape, and the expansion mode is hardly generated.

【0005】本発明は前記の事柄に鑑みて提案されたも
ので、その目的とするところは、普通強度コンクリート
のみならず、超高強度コンクリート及び軽量コンクリー
トにおいても、破壊線をX形あるいは外側に膨脹させる
ようなモードを励起させ、鋼管あるいは帯筋の拘束効果
を有効に発揮せしめ、柱コンクリートの平均強度を上昇
させるとともに、靱性能の向上をも図り、更に、普通比
重の普通強度、高強度コンクリートを使用した場合で
も、柱コンクリートの更なる平均圧縮強度を上昇させる
とともに靱性能の向上をも図る点にある。
[0005] The present invention has been proposed in view of the above-mentioned problems, and the object thereof is to make the fracture line X-shaped or outward not only in ordinary-strength concrete but also in ultra-high-strength concrete and lightweight concrete. Exciting the expansion mode, effectively exerting the restraining effect of the steel pipe or stirrup, increasing the average strength of the column concrete, improving the toughness, and further increasing the ordinary strength and ordinary strength of ordinary specific gravity. Even when concrete is used, the point is to further increase the average compressive strength of the column concrete and to improve the toughness.

【0006】[0006]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る充填形鋼管コンクリート柱及び鉄筋コ
ンクリート柱の強度及び靱性の改善方法によれば充填形
鋼管コンクリート柱及び鉄筋コンクリート柱において、
柱の中央高さ方向の1乃至数個所、あるいは横断面寸法
の間隔に、柱コンクリートのシリンダー圧縮強度よりも
高強度を有する、コンクリートのX形剪断圧縮破壊誘発
固体を柱コンクリート内に配設してなり、柱コンクリー
トの破壊線をX形あるいは外側に膨脹させるようなモー
ドを励起せしめるものである。
According to the present invention, there is provided a method for improving the strength and toughness of a concrete-filled steel tube column and a reinforced concrete column according to the present invention.
An X-shaped shear compression failure-inducing solid of concrete having a strength higher than the cylinder compressive strength of the column concrete is disposed in the column concrete at one or several places in the center height direction of the column or at intervals of the cross-sectional dimension. This excites a mode in which the breaking line of the column concrete is expanded in an X shape or outward.

【0007】[0007]

【発明の実施の形態】以下、本発明を本発明の好ましい
実施の形態を示す図面について説明する。図1(イ)
(ロ)及び(ハ)は従来のRC柱を示し、(イ)(ロ)
は平断面図、(ハ)は縦断面図を示し、柱コンクリート
a内に柱の高さ方向に延びる柱主筋bと同柱主筋bを囲
繞する帯筋cが配筋されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to the drawings showing preferred embodiments of the present invention. Fig. 1 (a)
(B) and (c) show conventional RC columns, (a) and (b)
Shows a plan sectional view, and (c) shows a longitudinal sectional view. In a column concrete a, a column main bar b extending in the height direction of the column and a band bar c surrounding the column main bar b are arranged.

【0008】図2(イ)(ロ)及び(ハ)は従来のCF
T柱を示し、円形鋼管d又は角形鋼管d′内に柱コンク
リートaが充填されている。この際、コンクリートとし
て超高強度コンクリートや軽量コンクリートを使用した
場合、引張強度の圧縮強度に対する比が小さく、破壊面
(ひび割れ面)において骨材が割れ、破壊面のせん断抵
抗が殆どなくなり、X状に破壊面が形成されるよりも前
に滑ってしまい、膨脹モードが出にくい。
FIGS. 2A, 2B and 2C show a conventional CF.
5 shows a T column, in which a round concrete pipe d or a square steel pipe d ′ is filled with column concrete a. At this time, when ultra-high strength concrete or lightweight concrete is used as the concrete, the ratio of the tensile strength to the compressive strength is small, the aggregate is cracked at the fracture surface (cracked surface), the shear resistance of the fracture surface is almost eliminated, and the X-shaped The slippage occurs before the fracture surface is formed, and the expansion mode is difficult to come out.

【0009】本方法においては柱の中央高さ方向に1乃
至数個、あるいは横断面寸法程度の間隔Dに、コンクリ
ートのシリンダーの圧縮強度よりも強い材料で、球状あ
るいは上下面の断面寸法が中央面の断面寸法よりも小さ
い、X形の剪断圧縮破壊誘発固体を構成する補強材1
を、同補強材固定用鉄線2を介して柱コンクリートa内
に配置する。なお前記補強材1はコンクリート、モルタ
ル材料に限定されるものではない。
In this method, one or several pieces or a cross section having a cross-sectional dimension in the height direction of the column having a compressive strength higher than the compressive strength of the concrete cylinder and having a spherical or upper and lower cross-sectional dimension at the center are provided. 1 comprising an X-shaped shear compression fracture-inducing solid smaller than the cross-sectional dimension of the surface
Is disposed in the column concrete a via the reinforcing material fixing iron wire 2. The reinforcing material 1 is not limited to concrete and mortar materials.

【0010】従って高強度コンクリートまたは軽量コン
クリートを使用したRC柱、CFT柱のコンクリート3
には前記補強材1によって破壊線をX形あるいは外側に
膨脹させるような破壊モードを励起させ、かくして円形
鋼管d、角形鋼管d′または帯筋cによる柱コンクリー
トaの拘束作用を有効に作用せしめるものである。なお
前記の方法は鉄骨鉄筋コンクリート柱構造に分類される
充填形鋼管コンクリート柱、充填被覆形鋼管柱の鋼管
内、及び鉄筋コンクリート柱への利用が中心であるが、
靱性向上のために梁部材への利用も考えられる。また建
物重量を支持する長期荷重の保持、及び地震時や暴風時
における建物の安全性の確保に適用される。
Accordingly, concrete of RC column and CFT column using high-strength concrete or lightweight concrete 3
In this case, the reinforcing material 1 excites a fracture mode in which the fracture line is expanded in an X-shape or outwards, and thus the restraining action of the column concrete a by the circular steel pipe d, the square steel pipe d 'or the strip c is effectively applied. Things. In addition, the above-mentioned method is mainly used for filled steel pipe concrete columns classified as steel reinforced concrete column structures, in steel pipes of filled coated steel pipe columns, and for reinforced concrete columns,
Application to beam members to improve toughness is also conceivable. It is also used to maintain long-term loads that support the weight of buildings and to ensure the safety of buildings during earthquakes and storms.

【0011】[0011]

【発明の効果】本発明の方法によれば、鉄骨鉄筋コンク
リート構造に分類される充填形鋼管コンクリート柱及び
鉄筋コンクリート柱において、柱コンクリートのシリン
ダー圧縮強度よりも高強度を有するコンクリートのX形
剪断圧縮破壊誘発固体を、前記柱コンクリート内に柱の
中央高さ方向の1乃至数個所、あるいは横断面寸法の間
隔に柱コンクリート内に配設することによって、柱コン
クリートの破壊線をX形、あるいは外側に膨脹させるよ
うなモードを励起せしめることによって、鋼管あるいは
帯鉄筋の柱コンクリートに対する拘束強度を上昇させ、
靱性能を向上せしめる。
According to the method of the present invention, X-type shear compression fracture of concrete having higher strength than the cylinder compressive strength of column concrete in filled steel tubular concrete columns and reinforced concrete columns classified as steel reinforced concrete structures. By disposing solids in the column concrete at one or several places in the column height direction or at intervals of the cross-sectional dimension in the column concrete, the breaking line of the column concrete is expanded in an X shape or outward. Exciting the mode that causes the steel pipe or band reinforcing steel to increase the binding strength to the column concrete,
Improve toughness.

【0012】この結果、建物の重量、即ち長期軸力、及
び大地震時における高軸力下の柱を安定的に保持し、地
震時や暴風時の建物の安定性を確保しうるものである。
As a result, it is possible to stably hold the weight of the building, that is, the column under a long axial force and a high axial force during a large earthquake, and to secure the stability of the building during an earthquake or a storm. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】(イ)(ロ)及び(ハ)は夫々従来のRC柱を
示し、(イ)(ロ)は夫々円形RC柱及び角形RC柱の
平断面図、(ハ)は縦断面図である。
1 (a), (b) and (c) show conventional RC columns, respectively. (A) and (b) are plan sectional views of a circular RC column and a rectangular RC column, respectively, and (c) is a longitudinal sectional view. It is.

【図2】(イ)(ロ)及び(ハ)は夫々従来のCFT柱
を示し、(イ)(ロ)及び(ハ)は夫々円形鋼管柱及び
角形柱の横断平面図、及び縦断面図である。
FIGS. 2 (a), (b) and (c) show conventional CFT columns, respectively, and FIGS. (A), (b) and (c) are a cross-sectional plan view and a longitudinal sectional view of a circular steel pipe column and a square column, respectively. It is.

【図3】(イ)(ロ)及び(ハ)は夫々本発明の方法に
よって施工されたRC柱を示し、(イ)(ロ)は夫々円
形柱及び角形柱の平断面図、(ハ)は縦断面図である。
FIGS. 3A and 3B show RC columns constructed by the method of the present invention, respectively. FIGS. 3A and 3B are plan sectional views of a circular column and a rectangular column, respectively. Is a longitudinal sectional view.

【図4】(イ)(ロ)及び(ハ)は夫々本発明の方法に
よって施工されたCFT柱を示し、(イ)(ロ)は夫々
円形柱及び角形柱の平断面図、(ハ)は縦断面図であ
る。
FIGS. 4A and 4B show CFT columns constructed by the method of the present invention, respectively. FIGS. 4A and 4B are plan sectional views of a circular column and a rectangular column, respectively. Is a longitudinal sectional view.

【図5】(イ)(ロ)は従来のRC柱の破壊モードを示
す模式図、(ハ)(ニ)は従来のCFT柱の破壊モード
を示す模式図で、(イ)は普通コンクリート柱、(ロ)
は高強度コンクリート、軽量コンクリート柱の場合を示
し、(ハ)は普通コンクリート柱、(ニ)は高強度コン
クリート、軽量コンクリート柱の場合を示す。
5 (a) and (b) are schematic diagrams showing a failure mode of a conventional RC column, (c) and (d) are schematic diagrams showing a failure mode of a conventional CFT column, and (a) is a normal concrete column. , (B)
Shows the case of high-strength concrete and lightweight concrete columns, (c) shows the case of ordinary concrete columns, and (d) shows the case of high-strength concrete and lightweight concrete columns.

【図6】(イ)及び(ロ)は本発明の方法によって施工
されたRC柱及びCFT柱の補強効果を示す説明図であ
る。
6 (a) and 6 (b) are explanatory views showing the reinforcing effect of RC columns and CFT columns constructed by the method of the present invention.

【図7】(イ)及び(ロ)は夫々コンクリートのX形剪
断圧縮破壊誘発固体の施工時における固定手段を示す説
明図である。
FIGS. 7 (a) and 7 (b) are explanatory views showing fixing means at the time of construction of an X-shaped shear compression failure inducing solid of concrete, respectively.

【符号の説明】[Explanation of symbols]

1 X形剪断圧縮破壊誘発固体 2 固定用鉄線 3 柱コンクリート a 柱コンクリート b 柱主筋 c 帯筋 d 円形鋼管 d′ 角形鋼管 DESCRIPTION OF SYMBOLS 1 X-type shear compression fracture induction solid 2 Iron wire for fixation 3 Column concrete a Column concrete b Column main bar c Band bar d Round steel pipe d 'Square steel pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 充填形鋼管コンクリート柱及び鉄筋コン
クリート柱において、柱の中央高さ方向の1乃至数個
所、あるいは横断面寸法の間隔に、柱コンクリートのシ
リンダー圧縮強度よりも高強度を有する、コンクリート
のX形剪断圧縮破壊誘発固体を柱コンクリート内に配設
してなり、柱コンクリートの破壊線をX形あるいは外側
に膨脹させるようなモードを励起せしめることを特徴と
する充填形鋼管コンクリート柱及び鉄筋コンクリート柱
の強度及び靱性の改善方法。
1. A concrete-filled steel tubular concrete column and a reinforced concrete column having a strength higher than a cylinder compressive strength of a column concrete at one to several places in a center height direction of the column or at intervals of a cross-sectional dimension. Filled steel tubular concrete columns and reinforced concrete columns, characterized in that an X-shaped shear compression failure-inducing solid is arranged in column concrete to excite a mode in which the fracture line of the column concrete is expanded in the X-shape or outward. For improving the strength and toughness of steel.
JP13661197A 1997-05-27 1997-05-27 Infilled type steel-pipe reinforced concrete column and improving method of strength and ductility of reinforced concrete column Pending JPH10325211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13661197A JPH10325211A (en) 1997-05-27 1997-05-27 Infilled type steel-pipe reinforced concrete column and improving method of strength and ductility of reinforced concrete column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13661197A JPH10325211A (en) 1997-05-27 1997-05-27 Infilled type steel-pipe reinforced concrete column and improving method of strength and ductility of reinforced concrete column

Publications (1)

Publication Number Publication Date
JPH10325211A true JPH10325211A (en) 1998-12-08

Family

ID=15179356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13661197A Pending JPH10325211A (en) 1997-05-27 1997-05-27 Infilled type steel-pipe reinforced concrete column and improving method of strength and ductility of reinforced concrete column

Country Status (1)

Country Link
JP (1) JPH10325211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236187A (en) * 2009-03-30 2010-10-21 Ohbayashi Corp Structure and method for joining pile and building frame together, pc member, and steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236187A (en) * 2009-03-30 2010-10-21 Ohbayashi Corp Structure and method for joining pile and building frame together, pc member, and steel pipe

Similar Documents

Publication Publication Date Title
US10378208B2 (en) Steel-fiber composite material concrete combined column, and post-earthquake repair method thereof
Kim et al. Monotonic loading tests of RC beam-column subassemblage strengthened to prevent progressive collapse
Aboutaha et al. Seismic resistance of steel confined reinforced concrete (SCRC) columns
JP2003041708A (en) Member for structure
Tsonos Ultra-high-performance fiber reinforced concrete: An innovative solution for strengthening old R/C structures and for improving the FRP strengthening method
JP2008025236A (en) Precast prestressed concrete beam using tension material different in strength between end part and central part
JP3834637B2 (en) Permanent and emergency seismic reinforcement method for wall columns
JPH10325211A (en) Infilled type steel-pipe reinforced concrete column and improving method of strength and ductility of reinforced concrete column
JP6204027B2 (en) Reinforced structure
Tasligedik et al. In-Plane cyclic testing of nonstructural drywalls infilled within RC frames
JP2729129B2 (en) Core pillar
JP3759995B2 (en) Concrete structure
JP2004052494A (en) Rc beam damper
JP3002740B2 (en) Seismic reinforcement structure of columnar structure
JPH06167074A (en) Steel framed reinforced concrete column base and steel column base
JP7397752B2 (en) concrete member structure
JP2017203378A (en) Reinforcement structure for reinforced-concrete wall pillar and reinforcement structure for reinforced-concrete beam member
Fateh et al. Behavior of external column-wide beam joint with different bar arrangement and existence of joint shear link under gravity.
JP2979642B2 (en) Reinforced concrete wall columns with high restoring force characteristics
JP2536361B2 (en) Column-beam joint structure of RC structure
JP2003155778A (en) Material end fixing structure of component in building of reinforced concrete construction
ABOUTAHA CYCLIC RESPONSE OF A NEW STEEL-CONCRETE COMPOSITE FRAME SYSTEM
JP3229249B2 (en) Construction method of reinforced concrete shear walls
JP2500389B2 (en) Prestressed concrete beams for roofs of falling structures such as avalanches
JP2003041599A (en) Exposed type column base structure