JPH10324764A - Production of polyolefin-based resin preexpanded particle - Google Patents

Production of polyolefin-based resin preexpanded particle

Info

Publication number
JPH10324764A
JPH10324764A JP6674698A JP6674698A JPH10324764A JP H10324764 A JPH10324764 A JP H10324764A JP 6674698 A JP6674698 A JP 6674698A JP 6674698 A JP6674698 A JP 6674698A JP H10324764 A JPH10324764 A JP H10324764A
Authority
JP
Japan
Prior art keywords
particles
temperature
expanded
foaming
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6674698A
Other languages
Japanese (ja)
Other versions
JP3628169B2 (en
Inventor
Takeshi Obayashi
毅 御林
Hideo Ito
秀士 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP6674698A priority Critical patent/JP3628169B2/en
Publication of JPH10324764A publication Critical patent/JPH10324764A/en
Application granted granted Critical
Publication of JP3628169B2 publication Critical patent/JP3628169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for production by which mutual fusion of expanded particles and a rise in open-cell ratio of preexpanded particles are simultaneously prevented to increase the expansion efficiency and polyolefin-based resin preexpanded particles having a high expansion ratio can be produced. SOLUTION: The relationship between a temperature for thermally expanding expanded particles and the amount of a fusion preventing agent sticking to the surfaces of the polyolefin-based resin expanded particles is represented by the formula (t)-TV<=49.1C-27.0 [(t) is the temperature for the thermally expanding the expanded particles; C is the amount of the fusion preventing agent sticking to the surfaces of the polyolefin-based resin expanded particles; TV is the saddle part temperature between the peaks indicating two melting points in a differential scanning calorimetry(DSC) curve obtained by the DSC] and (t) is further a temperature range represented by the formula TL-30<=(t)<=TV (TV is the same as that described above; TL is the melting point on the low-temperature side in the two melting points) in a method for imparting expandability to the polyolefin-based resin expanded particles having a crystal structure manifesting the two melting point in the DSC curve and thermally expanding the expanded particles having the expandability imparted thereto.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリオレフィン系
樹脂予備発泡粒子の製造方法に関する。さらに詳しく
は、たとえば型内発泡成形品の原料として好適に使用し
うるポリオレフィン系樹脂予備発泡粒子の製造方法に関
する。
[0001] The present invention relates to a method for producing pre-expanded polyolefin resin particles. More particularly, the present invention relates to a method for producing pre-expanded polyolefin resin particles which can be suitably used as a raw material of an in-mold foam molded article.

【0002】[0002]

【従来の技術】従来より、ポリオレフィン系樹脂予備発
泡粒子を製造するばあい、樹脂粒子を密閉容器内で分散
剤とともに水系分散媒に分散させ、さらに揮発性発泡剤
を導入し、ついで前記樹脂粒子をポリオレフィン系樹脂
の軟化点温度以上の温度に加熱し、前記密閉容器の内圧
よりも低圧の雰囲気中に放出させてポリオレフィン系樹
脂発泡粒子を製造する方法がよく知られている。
2. Description of the Related Art Conventionally, in the case of producing pre-expanded polyolefin resin particles, the resin particles are dispersed in an aqueous dispersion medium together with a dispersant in a closed vessel, and a volatile foaming agent is introduced. Is heated to a temperature equal to or higher than the softening point temperature of the polyolefin resin, and discharged into an atmosphere at a pressure lower than the internal pressure of the closed container, to produce expanded polyolefin resin particles.

【0003】また、たとえば前記方法を用い、示差走査
熱量測定によるDSC曲線において2つの融点を示す特
殊な結晶構造を有するポリオレフィン系樹脂予備発泡粒
子を製造する方法(たとえば特開昭59−176336
号公報、特開昭63−183832号公報など)や、さ
らには該特殊な結晶構造を有するポリオレフィン系樹脂
予備発泡粒子に発泡能を付与したのち加熱することによ
り、独立気泡構造を保持したまま、発泡倍率を向上させ
る方法がすでに公知である(特開昭60−23428号
公報、特開昭60−90228号公報)。
Further, for example, a method for producing pre-expanded polyolefin resin particles having a special crystal structure and exhibiting two melting points in a DSC curve obtained by differential scanning calorimetry using the above method (for example, JP-A-59-176336)
JP, JP-A-63-183832, etc.) and further, by imparting foaming ability to the polyolefin resin pre-expanded particles having the special crystal structure and then heating, while maintaining the closed cell structure, Methods for improving the expansion ratio are already known (JP-A-60-23428, JP-A-60-90228).

【0004】前記特開昭60−23428号公報には、
特定の発泡倍率および気泡数の範囲を有し、DSC曲線
に基材樹脂固有の固有ピークよりも高温側に高温ピーク
が現れる結晶構造を有する無架橋プロピレン系ランダム
共重合体予備発泡粒子に、発泡能を付与したのち、加熱
発泡により元の発泡倍率よりも高い発泡倍率を有する予
備発泡粒子をうる方法が開示されている。
Japanese Patent Application Laid-Open No. Sho 60-23428 discloses that
Expanded into non-crosslinked propylene-based random copolymer pre-expanded particles having a specific expansion ratio and a range of the number of cells, and having a crystal structure in which a DSC curve shows a high-temperature peak at a higher temperature side than a unique peak inherent to the base resin. A method for obtaining pre-expanded particles having a higher expansion ratio than the original expansion ratio by heating and foaming after imparting the function is disclosed.

【0005】また、前記特開昭60−90228号公報
には、たとえば前記特開昭59−176336号公報、
特開昭63−183832号公報などに記載のものと同
様の特殊な結晶構造を有するポリプロピレン系樹脂予備
発泡粒子であり、内圧減少速度係数kがk≦0.30で
ある予備発泡粒子に発泡能を付与する工程と、密閉容器
内で該予備発泡粒子を、式:Tm−65<T<Tm−3
0(式中、Tmは基材樹脂の融解終了温度を示す)で表
わされる温度T(℃)に加熱保持して容器の一端を解放
し、予備発泡粒子を容器内よりも低圧の雰囲気下に放出
する工程とからなる方法が開示されている。
[0005] Also, Japanese Patent Application Laid-Open No. Sho 60-90228 discloses, for example, Japanese Patent Application Laid-Open No. 59-176336,
Polypropylene-based resin pre-expanded particles having a special crystal structure similar to those described in JP-A-63-183832, etc., having an internal pressure reduction rate coefficient k of k ≦ 0.30. And the pre-expanded particles in a closed container are subjected to the following formula: Tm-65 <T <Tm-3
0 (where Tm represents the melting end temperature of the base resin), and one end of the container is released by heating and holding at a temperature T (° C.), and the pre-expanded particles are placed in an atmosphere at a lower pressure than in the container. And a step of releasing.

【0006】しかしながら、これらの方法における技術
は、いずれもポリプロピレン系樹脂、とくにエチレン−
プロプレンランダム共重合体に関するものであり、他の
ポリオレフィン系樹脂を用いたばあいの技術に関する開
示がない。
[0006] However, the techniques in these methods are all polypropylene-based resins, especially ethylene-based resins.
It relates to a propylene random copolymer and does not disclose any technique when another polyolefin resin is used.

【0007】また、加熱温度に関しても、通常、好まし
くは0.8〜1.5kg/cm2(G)の水蒸気(11
6〜127℃)または100℃以上の熱風を用いる旨の
記載(特開昭60−23428号公報)、あるいは式:
Tm−65<T<Tm−30(式中、Tmは基材樹脂の
融解終了温度を示す)で表わされる温度T(℃)で加熱
する旨の記載(特開昭60−90228号公報)はある
ものの、特殊な結晶構造を有する予備発泡粒子を用いな
がら、その予備発泡粒子の結晶特性と加熱温度とを関連
付けて目的を達成させる技術は開示されていない。
[0007] Regarding the heating temperature, usually, preferably 0.8 to 1.5 kg / cm 2 (G) of steam (11
6 to 127 ° C.) or a statement that hot air of 100 ° C. or higher is used (Japanese Patent Laid-Open No. 23428/1985), or the formula:
The description of heating at a temperature T (° C.) represented by Tm−65 <T <Tm−30 (where Tm represents the melting end temperature of the base resin) (JP-A-60-90228) However, there is no disclosure of a technique for using pre-expanded particles having a special crystal structure and achieving the object by associating the crystal properties of the pre-expanded particles with the heating temperature.

【0008】さらに、こうしたポリオレフィン系樹脂発
泡粒子の加熱発泡を行なうばあいには、加熱温度が高す
ぎると、えられる予備発泡粒子の連泡率が増大し、こう
した予備発泡粒子を用いて型内成形を行なったばあい、
えられる成形体の機械的強度がいちじるしく低下した
り、あるいは発泡粒子の相互融着が発生し、発泡粒子を
成形機に供給する際、充填不良の原因となったりするこ
とが想定され、これらの現象については、前記公報にお
いても言及されている。
Further, when the polyolefin resin foamed particles are heated and foamed, if the heating temperature is too high, the open cell ratio of the obtained pre-foamed particles increases, and the pre-foamed particles are used in a mold. After molding,
It is assumed that the mechanical strength of the obtained molded article is significantly reduced, or that the foamed particles are mutually fused to each other, which causes defective filling when supplying the foamed particles to a molding machine. The phenomenon is also mentioned in the above publication.

【0009】そこで、本発明者らが、前記Tm=157
℃のエチレン−プロピレンランダム共重合体を基材樹脂
とし、製造後水および酸性水溶液などを用いて充分に洗
浄を行なった、前記特殊な結晶構造を有する発泡粒子
(発泡倍率11.3倍、平均セル径300μm、内圧減
少速度係数k=0.15)を用い、水蒸気圧1.5kg
/cm2(G)(約126℃)の水蒸気での加熱発泡
(発泡時間30秒)を行なったところ、確かに、高発泡
倍率でかつ独立気泡構造を有する予備発泡粒子をうるこ
とができたものの、発泡粒子の相互融着が生じ、成形時
に、発泡粒子の充填不良が生じてしまった。
Therefore, the present inventors have proposed that the above Tm = 157
C. An ethylene-propylene random copolymer at a temperature of .degree. C. was used as a base resin, and the foamed particles having the special crystal structure were subjected to sufficient washing with water and an acidic aqueous solution after production (expansion ratio 11.3 times, average Using a cell diameter of 300 μm and an internal pressure reduction rate coefficient k = 0.15), a steam pressure of 1.5 kg
When foaming was carried out by heating with water vapor at a rate of about 126 ° C./cm 2 (G) (about 126 ° C.), pre-expanded particles having a high expansion ratio and a closed-cell structure could be obtained. However, mutual fusion of the foamed particles occurred, resulting in poor filling of the foamed particles during molding.

【0010】加熱発泡法を利用して予備発泡粒子を製造
するばあい、えられる予備発泡粒子の発泡倍率を大きく
するための有力な手段の1つとして、加熱温度を上げ、
発泡粒子内圧を高めるとともに、発泡粒子表面の樹脂層
を軟化させることが考えられるが、前記のごとき発泡粒
子の相互融着が発生してしまうと、実質上、これ以上加
熱温度を上げることができず、えられる予備発泡粒子の
発泡倍率を高めることができない。
In the case of producing pre-expanded particles by using the heating expansion method, one of the effective means for increasing the expansion ratio of the obtained pre-expanded particles is to increase the heating temperature,
While it is conceivable to increase the internal pressure of the foamed particles and soften the resin layer on the surface of the foamed particles, if the mutual fusion of the foamed particles occurs as described above, the heating temperature can be increased substantially further. Therefore, the expansion ratio of the obtained pre-expanded particles cannot be increased.

【0011】一方、前記特殊な結晶構造を有する予備発
泡粒子を成形機に充填し、水蒸気にて加熱融着せしめ、
所望の形状を有する発泡成形体をうるポリオレフィン系
樹脂発泡成形体の製造方法において、成形融着性を支配
する因子の1つとして、予備発泡粒子の表面の付着物量
があることが知られている(たとえば特開平4−578
38号公報)。
On the other hand, the pre-expanded particles having the special crystal structure are charged into a molding machine and heated and fused with steam.
In a method for producing a polyolefin-based resin foam molded article that can obtain a foam molded article having a desired shape, it is known that one of the factors governing the mold fusion property is the amount of deposits on the surface of the pre-expanded particles. (For example, Japanese Patent Application Laid-Open No. 4-578
No. 38).

【0012】すなわち、ポリオレフィン系樹脂粒子を密
閉容器内で水系分散媒に分散させ、さらに揮発性発泡剤
を導入し、ついで前記樹脂粒子をポリオレフィン系樹脂
の軟化点温度以上の温度に加熱し、前記密閉容器の内圧
よりも低圧の雰囲気中に放出させてポリオレフィン系樹
脂発泡粒子を製造する方法において、ポリオレフィン系
樹脂粒子とともに、分散剤あるいは融着防止剤などと呼
ばれる無機粉末などを添加し、ポリオレフィン系樹脂粒
子の表面に付着させ、水系分散媒中では樹脂粒子の相互
融着を防止し、予備発泡粒子の製造中あるいは製造後に
この表面付着物を洗浄、除去することにより、成形融着
性を向上させる方法である。
That is, polyolefin resin particles are dispersed in an aqueous dispersion medium in a closed container, a volatile foaming agent is introduced, and the resin particles are heated to a temperature higher than the softening point of the polyolefin resin. In a method of producing expanded polyolefin resin particles by releasing into an atmosphere at a pressure lower than the internal pressure of a closed container, an inorganic powder called a dispersant or an anti-fusion agent is added together with the polyolefin resin particles, and the polyolefin resin is added. By adhering to the surface of the resin particles, preventing mutual fusion of the resin particles in the aqueous dispersion medium, and washing and removing the surface deposits during or after the production of the pre-expanded particles, thereby improving the molding fusing property. It is a way to let.

【0013】たとえば、特開平4−57838号公報に
記載の方法においては、エチレン−プロピレンランダム
共重合体ペレット100部(重量部、以下同様)に対
し、分散剤としてパウダー状第三リン酸カルシウム3部
およびn−パラフィンスルホン酸ナトリウム0.12部
を添加し、予備発泡粒子の生成直後の洗浄方法を変更す
ることにより、予備発泡粒子表面の付着物(主として第
三リン酸カルシウム)量を変化させている。しかしなが
ら、かかる付着物の量が3300ppm以上のばあい、
成形融着性がいちじるしく低下し、成形体の融着率が0
%となるといった問題が、かかる公報でも指摘されてい
る。
[0013] For example, in the method described in JP-A-4-57838, 100 parts (parts by weight, hereinafter the same) of ethylene-propylene random copolymer pellets are mixed with 3 parts of powdery tribasic calcium phosphate as a dispersant and By adding 0.12 parts of sodium n-paraffin sulfonate and changing the washing method immediately after the generation of the pre-expanded particles, the amount of deposits (mainly tricalcium phosphate) on the surface of the pre-expanded particles is changed. However, if the amount of such deposits is more than 3300 ppm,
The fusing property of the molded article is remarkably reduced, and the fusing rate of the molded article is zero.
% Is pointed out in such a gazette.

【0014】[0014]

【発明が解決しようとする課題】そこで、本発明者ら
は、まず、前記予備発泡粒子表面の付着物の量によって
は、加熱発泡中の発泡粒子の相互融着を防止または抑制
することができるのではないかと考え、前記加熱発泡時
の水蒸気圧1.5kg/cm2(G)で発泡粒子の相互
融着が生じたばあいとまったく同じ条件で、原料発泡粒
子表面の付着物の量を多くした際の加熱発泡実験を行な
い、その結果、水蒸気圧を3kg/cm2(G)(=1
43℃)としても、発泡粒子の相互融着が生じないこと
を見出した。
Therefore, the present inventors can prevent or suppress the mutual fusion of the foamed particles during the heat foaming depending on the amount of the deposit on the surface of the pre-expanded particles. The amount of deposits on the surface of the raw material expanded particles was determined under exactly the same conditions as when the expanded particles were mutually fused at a steam pressure of 1.5 kg / cm 2 (G) during the heat expansion. A heating foaming experiment was performed when the amount was increased, and as a result, the steam pressure was increased to 3 kg / cm 2 (G) (= 1).
(43 ° C.), it was found that mutual fusion of the foamed particles did not occur.

【0015】また、融解終了温度の異なるエチレン−プ
ロピレンランダム共重合体、エチレン−α−オレフィン
共重合体、エチレン−α−オレフィン共重合体にエチレ
ン系アイオノマーを添加した樹脂組成物などのその他の
ポリオレフィン系樹脂またはその組成物についても前記
と同様の実験を実施した。その結果、原料とする予備発
泡粒子が有する2つの融点のうちの低温側の融点TL
対してTL−30(℃)未満の温度では、加熱発泡によ
る発泡倍率の向上がいちじるしく小さく、2つの融点を
示すピーク間の鞍部温度TV(℃)をこえる温度では、
基材樹脂(組成物)の融解終了温度または原料発泡粒子
表面の付着物の量に関係なく、発泡粒子の相互融着が発
生するか、あるいは加熱発泡の結果、えられる予備発泡
粒子の連泡率が20%以上となり、これらの理由によ
り、良好な成形性を維持することが困難であることを見
出した。
Other polyolefins such as ethylene-propylene random copolymers, ethylene-α-olefin copolymers, and resin compositions obtained by adding an ethylene ionomer to the ethylene-α-olefin copolymer having different melting end temperatures. The same experiment as described above was carried out for the base resin or its composition. As a result, at a temperature lower than T L -30 (° C.) with respect to the lower melting point T L of the two melting points of the pre-expanded particles as the raw material, the improvement in the expansion ratio due to the heat expansion is extremely small. At temperatures above the saddle temperature T V (° C.) between the two melting peaks,
Irrespective of the melting end temperature of the base resin (composition) or the amount of deposits on the surface of the raw foamed particles, mutual fusion of the foamed particles occurs or open foam of the pre-foamed particles obtained as a result of heating and foaming Rate was 20% or more, and it was found that it was difficult to maintain good moldability for these reasons.

【0016】さらに、前記TL−30(℃)以上の温度
かつTV(℃)以下の温度領域において、前記発泡粒子
表面の付着物の量と発泡粒子の相互融着を生じる加熱発
泡温度t(℃)との関係について検討を行なった結果、
驚くべきことに、いずれのポリオレフィン系樹脂の発泡
粒子のばあいにおいても、式:t−Tvで表わされる温
度の上限値(かかる温度以上では発泡粒子の相互融着が
生じてしまう)と発泡粒子表面に付着した融着防止剤の
量とのあいだに直線関係があることを見出し、本発明を
完成するに至った。
Further, in a temperature range of T L -30 (° C.) or more and T V (° C.) or less, the amount of deposits on the surface of the foamed particles and the heating foaming temperature t at which the foamed particles are mutually fused are heated. (° C.)
Surprisingly, even when the expanded particles of any polyolefin resin, wherein: t-T v upper limit of temperature represented by (at such temperature above occurs mutual fusion bonding of the foamed particles) and foamed It has been found that there is a linear relationship between the amount of the anti-fusing agent attached to the particle surface and the present invention has been completed.

【0017】本発明は、前記知見に基づいてなされたも
のであり、前記特殊な結晶構造を有するポリオレフィン
系樹脂発泡粒子を用い、加熱発泡法により、発泡粒子の
相互融着が生じず、気泡の独立性を維持したままで、高
発泡倍率を有するポリオレフィン系樹脂予備発泡粒子を
うることができる方法を提供することを目的とする。
The present invention has been made on the basis of the above-described findings, and uses the expanded polyolefin resin particles having the above-mentioned special crystal structure, and does not cause the fusion of the expanded particles to each other by the heating and foaming method. It is an object of the present invention to provide a method capable of obtaining polyolefin resin pre-expanded particles having a high expansion ratio while maintaining independence.

【0018】[0018]

【課題を解決するための手段】本発明は、 示差走査熱量測定によるDSC曲線において2つの融
点を示す結晶構造を有するポリオレフィン系樹脂発泡粒
子に発泡能を付与したのち、発泡能が付与された発泡粒
子を加熱発泡させるポリオレフィン系樹脂予備発泡粒子
の製造方法において、前記加熱発泡させる温度と、前記
ポリオレフィン系樹脂発泡粒子の表面に付着した融着防
止剤の量との関係が式(I): t−TV≦49.1C−27.0 (I) (式中、tは加熱発泡させる温度(℃)、Cはポリオレ
フィン系樹脂発泡粒子の表面に付着した融着防止剤の量
(phr)、TVはDSC曲線における2つの融点を示
すピーク間の鞍部温度(℃)を示す)で表わされ、かつ
加熱発泡させる温度が式(II): TL−30≦t≦TV (II) (式中、tは加熱発泡させる温度、TVはDSC曲線に
おける2つの融点を示すピーク間の鞍部温度(℃)、T
Lは前記2つの融点のうちの低温側の融点(℃)を示
す)で表わされる温度範囲であることを特徴とするポリ
オレフィン系樹脂予備発泡粒子の製造方法、 前記ポリオレフィン系樹脂発泡粒子の表面に付着した
融着防止剤の量が0.001〜0.3phrである前記
ポリオレフィン系樹脂予備発泡粒子の製造方法、および 前記融着防止剤が第三リン酸カルシウムを主成分とし
たものである前記ポリオレフィン系樹脂予備発泡粒子の
製造方法に関する。
SUMMARY OF THE INVENTION The present invention relates to a foamed polyolefin resin particle having a crystal structure exhibiting two melting points in a DSC curve obtained by differential scanning calorimetry. In the method for producing polyolefin-based resin pre-expanded particles in which the particles are heated and expanded, the relationship between the temperature at which the particles are heated and expanded and the amount of the anti-fusing agent attached to the surface of the expanded polyolefin-based resin particles is represented by formula (I): t -T V ≤49.1C-27.0 (I) (where, t is the temperature for heating and foaming (° C.), C is the amount (phr) of the anti-fusing agent attached to the surface of the polyolefin resin foam particles, T V is represented by the saddle temperature (° C.) between two peaks indicating the melting points in the DSC curve), and the temperature for foaming by heating is represented by the formula (II): T L− 30 ≦ t ≦ T V (II) (Where Temperature for heating and foaming, T V is saddle temperature between peaks showing two melting points in a DSC curve (℃) is, T
L is a temperature range represented by a lower melting point (° C.) of the two melting points), a method for producing polyolefin resin pre-expanded particles, wherein the surface of the polyolefin resin expanded particles is A method for producing the polyolefin-based resin pre-expanded particles wherein the amount of the adhered anti-fusing agent is 0.001 to 0.3 phr, and the polyolefin-based agent wherein the anti-fusing agent is mainly composed of tricalcium phosphate The present invention relates to a method for producing resin pre-expanded particles.

【0019】[0019]

【発明の実施の形態】本発明のポリオレフィン系樹脂予
備発泡粒子の製造方法は、前記したように、示差走査熱
量測定によるDSC曲線において2つの融点を示す結晶
構造を有するポリオレフィン系樹脂発泡粒子に発泡能を
付与したのち、発泡能が付与された発泡粒子を加熱発泡
させる方法において、前記加熱発泡させる温度と、前記
ポリオレフィン系樹脂発泡粒子の表面に付着した融着防
止剤の量との関係が式(I): t−TV≦49.1C−27.0 (I) (式中、tは加熱発泡させる温度(℃)、Cはポリオレ
フィン系樹脂発泡粒子の表面に付着した融着防止剤の量
(phr)、TVはDSC曲線における2つの融点を示
すピーク間の鞍部温度(℃)を示す)で表わされ、かつ
加熱発泡させる温度が式(II): TL−30≦t≦TV (II) (式中、tは加熱発泡させる温度、TVはDSC曲線に
おける2つの融点を示すピーク間の鞍部温度(℃)、T
Lは前記2つの融点のうちの低温側の融点(℃)を示
す)で表わされる温度範囲であることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the method for producing polyolefin resin pre-expanded particles according to the present invention comprises foaming polyolefin resin expanded particles having a crystal structure showing two melting points in a DSC curve obtained by differential scanning calorimetry. In the method of heating and foaming the foamed particles to which the foaming ability has been imparted, the relationship between the temperature at which the foaming is performed and the amount of the anti-fusing agent attached to the surface of the polyolefin resin foamed particles is represented by the following formula. (I): t−T V ≦ 49.1C-27.0 (I) (where, t is the temperature (° C.) at which the foam is heated and foamed, and C is the fusion-preventing agent attached to the surface of the polyolefin resin foamed particles. The amount (phr) and T V are represented by the saddle temperature (° C.) between two peaks indicating the melting points in the DSC curve), and the temperature at which foaming is carried out by heating is represented by the formula (II): TL− 30 ≦ t ≦ T V II) (wherein, t is the temperature for heating foam, T V is saddle temperature between peaks showing two melting points in a DSC curve (° C.), T
L is a temperature range represented by the lower melting point (° C.) of the two melting points.

【0020】本発明において、前記示差走査熱量測定と
は、たとえば特開昭60−23428号公報、特開昭6
0−90228号公報などに開示された方法と同様にし
て行ない、発泡粒子の結晶化特性を、示差走査熱量計に
よって10℃/分の昇温速度で220℃まで昇温するこ
とにより測定する。
In the present invention, the differential scanning calorimetry is described in, for example, JP-A-60-23428,
The crystallization characteristics of the expanded particles are measured by raising the temperature to 220 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter in the same manner as disclosed in, for example, Japanese Patent Application No. 0-90228.

【0021】本発明に用いられるポリオレフィン系樹脂
発泡粒子では、前記示差走査熱量測定によるDSC曲線
において、たとえば図2のグラフに示されるように、結
晶化に伴う吸熱ピーク(融点)が2つ現れる。これらの
2つのピークのうち、低温側のピーク(融点)をT
L(℃)(図2中の符号α)、高温側のピーク(融点)
をTH(℃)(図2中の符号β)とすると、通常、この
2つの融点の温度差TH−TLは5〜20℃程度であり、
図2に示されるように、これら2つのピークが全体とし
て馬の鞍のような形を形成する。この鞍部において、D
SC曲線が最も放熱側に寄った位置でもう1つの極値を
有し、本発明においては、この温度を鞍部温度T
V(℃)(図2中の符号γ)と定義する。
In the polyolefin resin foam particles used in the present invention, two endothermic peaks (melting points) accompanying crystallization appear in the DSC curve obtained by the differential scanning calorimetry, for example, as shown in the graph of FIG. Of these two peaks, the peak (melting point) on the low temperature side is represented by T
L (° C) (symbol α in Fig. 2), peak on high temperature side (melting point)
When the T H (℃) (symbols in Figure 2 beta), normally, the temperature difference T H -T L between the two melting points is about 5 to 20 ° C.,
As shown in FIG. 2, these two peaks together form a horse saddle-like shape. In this saddle, D
The SC curve has another extreme value at the position closest to the heat radiation side. In the present invention, this temperature is defined as the saddle portion temperature T.
V (° C.) (symbol γ in FIG. 2).

【0022】前記のごとき特定の結晶構造を有するポリ
オレフィン系樹脂発泡粒子は、ポリオレフィン系樹脂の
発泡用樹脂粒子を発泡剤にて発泡させることによって製
造することができる。
The expanded polyolefin resin particles having the specific crystal structure as described above can be produced by expanding the resin particles for expanding the polyolefin resin with a blowing agent.

【0023】前記ポリオレフィン系樹脂としては、たと
えばポリプロピレン、エチレン−プロピレンランダム共
重合体、エチレン−プロピレンブロック共重合体、エチ
レン−プロピレン−α−オレフィンターポリマーなどの
プロピレン系樹脂;直鎖低密度ポリエチレン、低密度ポ
リエチレン、高密度ポリエチレンなどのエチレン系樹脂
などが用いられるが、予備発泡粒子を用いた成形体の機
械的強度を保持するために、加熱発泡に供する発泡粒子
の示差走査熱量測定において、2つの融点を含むピーク
全体の吸熱量が30J/g以上、なかんづく50J/g
以上となるような結晶性を示すものが好ましい。また、
機械的強度以外の成形体の物性のバランスおよび成形時
の融着性、適性範囲の広さなどを考慮したばあい、エチ
レン−プロピレンランダム共重合体および直鎖低密度ポ
リエチレンがとくに好適に使用される。
Examples of the polyolefin resin include propylene resins such as polypropylene, ethylene-propylene random copolymer, ethylene-propylene block copolymer, ethylene-propylene-α-olefin terpolymer; linear low-density polyethylene; Ethylene resins such as low-density polyethylene and high-density polyethylene are used. However, in order to maintain the mechanical strength of the molded article using the pre-expanded particles, in the differential scanning calorimetry of the expanded particles subjected to heat expansion, 2 Endotherm of the whole peak including two melting points is 30 J / g or more, especially 50 J / g
Those showing the crystallinity as described above are preferable. Also,
In consideration of the balance of physical properties of the molded body other than the mechanical strength and the fusing property at the time of molding, a wide suitable range, etc., ethylene-propylene random copolymer and linear low-density polyethylene are particularly preferably used. You.

【0024】また、前記ポリオレフィン系樹脂には、え
られる発泡粒子、予備発泡粒子および成形体の物性をい
ちじるしく阻害しない範囲で、親水性の無機物および親
水性の有機化合物を発泡造核剤として含有させることが
できる。
The polyolefin resin contains a hydrophilic inorganic substance and a hydrophilic organic compound as a foam nucleating agent within a range that does not significantly impair the physical properties of the obtained expanded particles, pre-expanded particles, and molded article. be able to.

【0025】後述するように、加熱発泡時に、水および
/またはアルコールを発泡粒子に含有させ、これらを発
泡助剤として利用することにより、加熱発泡効率がより
改善されるが、ポリオレフィン系樹脂は疎水性の化合物
であるので、これら親水性の物質を含有させることによ
り、発泡粒子中に発泡助剤である水および/またはアル
コールを含有させやすくなる。
As will be described later, by adding water and / or alcohol to the foamed particles at the time of foaming by heating and using them as a foaming aid, the foaming efficiency by heating is further improved. Since these compounds are water-soluble compounds, the inclusion of these hydrophilic substances makes it easier to include water and / or alcohol as a foaming aid in the foamed particles.

【0026】前記親水性の無機物としては、たとえばタ
ルク、シリカ、ホウ砂、リン酸ナトリウムなどがあげら
れる。また親水性の有機化合物としては、たとえば架橋
ポリアクリル酸ナトリウムなどの吸水性ポリマー、エチ
レン系アイオノマーなどがあげられる。これら親水性の
物質の添加量は、ポリオレフィン系樹脂100部に対し
て0.001〜20部程度であることが好ましい。
Examples of the hydrophilic inorganic substance include talc, silica, borax, sodium phosphate and the like. Examples of the hydrophilic organic compound include a water-absorbing polymer such as cross-linked sodium polyacrylate, and an ethylene ionomer. The addition amount of these hydrophilic substances is preferably about 0.001 to 20 parts based on 100 parts of the polyolefin resin.

【0027】ポリオレフィン系樹脂の発泡用樹脂粒子を
うるには、たとえばポリオレフィン系樹脂に前記親水性
の物質などを配合し、これを単軸あるいは2軸押出機な
どで溶融混練するなどすればよい。
In order to obtain polyolefin resin foaming resin particles, for example, the above-mentioned hydrophilic substance or the like is mixed with a polyolefin resin, and the mixture is melt-kneaded with a single-screw or twin-screw extruder.

【0028】つぎに、前記発泡用樹脂粒子に発泡剤およ
び融着防止剤を配合し、これを密閉容器内に供給して適
切な条件にて発泡させることにより、前記のごとき特定
の結晶構造を有し、その表面に融着防止剤が付着したポ
リオレフィン系樹脂発泡粒子がえられる。
Next, a foaming agent and an anti-fusing agent are blended with the foaming resin particles, and the resulting mixture is supplied into a closed container and foamed under appropriate conditions, whereby the specific crystal structure as described above is obtained. Thus, foamed polyolefin resin particles having an anti-fusing agent adhered to the surface thereof are obtained.

【0029】前記発泡剤としては、たとえば、後述する
ようにしてポリオレフィン系樹脂発泡粒子に発泡能を付
与する際に用いられる発泡剤などを用いることができ、
その添加量は、ポリオレフィン系樹脂発泡粒子が所望の
発泡倍率を有するように適宜調整すればよいが、たとえ
ば前記発泡用樹脂粒子100部に対して0.1〜30部
程度であることが好ましい。
As the foaming agent, for example, a foaming agent used for imparting foaming ability to polyolefin resin foam particles as described later can be used.
The addition amount may be appropriately adjusted so that the polyolefin-based resin expanded particles have a desired expansion ratio. For example, it is preferably about 0.1 to 30 parts based on 100 parts of the expanded resin particles.

【0030】前記融着防止剤としては、従来分散剤また
は融着防止剤として用いられている物質がいずれも適用
可能であるが、たとえば微粒状酸化アルミニウム、第三
リン酸カルシウム、炭酸カルシウム、炭酸マグネシウ
ム、カオリン、ベントナイトなどがあげられ、これらは
単独でまたは2種以上を混合して用いることができる。
これらのなかでは、第三リン酸カルシウムが融着防止効
果が高くとくに好ましい。かかる融着防止剤の添加量
は、融着防止剤のポリオレフィン系樹脂発泡粒子の表面
への付着量が後述する範囲となるように調整すればよ
い。
As the anti-fusing agent, any substance conventionally used as a dispersing agent or an anti-fusing agent can be used. For example, finely divided aluminum oxide, tribasic calcium phosphate, calcium carbonate, magnesium carbonate, Kaolin, bentonite and the like can be mentioned, and these can be used alone or in combination of two or more.
Among these, tricalcium phosphate is particularly preferred because of its high fusion-preventing effect. The amount of the anti-fusing agent to be added may be adjusted so that the amount of the anti-fusing agent attached to the surface of the expanded polyolefin resin particles is in the range described below.

【0031】また、前記発泡用樹脂粒子には、たとえば
n−パラフィンスルホン酸ソーダ、ドデシルベンゼンス
ルホン酸ソーダ、塩化ベンザルコニウム、塩化アルキル
トリメチルアンモニウムなどの分散助剤を適宜配合して
もよい。
The foaming resin particles may appropriately contain a dispersing aid such as sodium n-paraffin sulfonate, sodium dodecylbenzene sulfonate, benzalkonium chloride, or alkyltrimethyl ammonium chloride.

【0032】かくしてえられるポリオレフィン系樹脂発
泡粒子の表面に付着した融着防止剤の量は、前記加熱発
泡に適した温度領域における発泡粒子の相互融着防止効
果を充分に発現させるためには、0.001phr以
上、好ましくは0.005phr以上であることが望ま
しく、また加熱発泡中の発泡粒子の相互融着はほぼ完全
に防止することができるが、えられた予備発泡粒子を成
形に供するばあいの融着性がいちじるしく低下するた
め、成形前に洗浄を行なわなければならなくなるおそれ
をなくすためには、0.3phr以下、好ましくは0.
15phr以下、さらに好ましくは0.13phr以下
であることが望ましい。
The amount of the anti-fusing agent adhered to the surface of the polyolefin resin expanded particles thus obtained is determined in order to sufficiently exhibit the effect of preventing the mutual fusion of the expanded particles in the temperature range suitable for the heat expansion. It is desirable that the pressure is 0.001 phr or more, preferably 0.005 phr or more. Further, the mutual fusion of the foamed particles during the heating and foaming can be almost completely prevented. In order to eliminate the possibility that washing must be performed before molding, since the melt-adhesiveness is significantly reduced, 0.3 phr or less, preferably 0.1 phr or less.
It is desirably 15 phr or less, more preferably 0.13 phr or less.

【0033】また、前記ポリオレフィン系樹脂発泡粒子
は、そのDSC曲線において、通常、TLが90〜16
0℃程度、THが110〜180℃程度、TVが95〜1
75℃程度のものであり、また発泡倍率が2〜30倍程
度、平均セル径が10〜500μm程度であることが好
ましい。
The DSC curve of the polyolefin-based resin foamed particles usually has a T L of 90 to 16
0 ℃ about, T H is about 110~180 ℃, T V is 95-1
It is preferable that the temperature is about 75 ° C., the expansion ratio is about 2 to 30 times, and the average cell diameter is about 10 to 500 μm.

【0034】つぎに、前記ポリオレフィン系樹脂発泡粒
子に発泡能を付与する。
Next, expandability is imparted to the polyolefin resin expanded particles.

【0035】発泡能を付与する方法にはとくに限定がな
く、たとえば従来より公知の方法によって行なわれる。
たとえば、加熱発泡に供しようとするポリオレフィン系
樹脂発泡粒子に、沸点が加熱発泡温度未満であり、かつ
ポリオレフィン系樹脂を溶解させない発泡剤を、その量
を適宜調整して含有させることによって行なわれる。こ
のような発泡剤には種々のものがあるが、たとえば空
気、チッ素ガス、炭酸ガスなどの無機ガスが、汎用性が
あり、燃焼性および毒性がなく、しかも加熱発泡時に気
体であって、発泡粒子の内圧を高く保持しやすいという
点からとくに好ましい。また、従来ポリオレフィン系樹
脂予備発泡粒子の製造に広範に用いられてきた、たとえ
ばプロパン、ブタン、イソブタン、ペンタン、イソペン
タン、シクロペンタンなどの低級脂肪族炭化水素類、ハ
ロゲン化炭化水素類なども利用することが可能である。
これらのなかで、ハロゲン化炭化水素類では、とくにオ
ゾン層破壊の問題などを考慮して、分子中に塩素を含有
しない、いわゆる第3世代フロンが好ましい。かかる発
泡剤の量にはとくに限定がないが、通常加熱発泡時の発
泡粒子内圧が0.1〜30kg/cm2(G)程度とな
るように調整することが好ましい。
The method for imparting foaming ability is not particularly limited, and is performed by, for example, a conventionally known method.
For example, the foaming is performed by appropriately adjusting the amount of a foaming agent having a boiling point lower than the heating foaming temperature and not dissolving the polyolefin-based resin in the foamed polyolefin resin particles to be subjected to the heat foaming. There are various kinds of such foaming agents. For example, air, nitrogen gas, inorganic gas such as carbon dioxide gas is versatile, has no flammability and toxicity, and is a gas at the time of heating and foaming. It is particularly preferable because the internal pressure of the expanded particles can be easily maintained at a high level. In addition, lower aliphatic hydrocarbons such as propane, butane, isobutane, pentane, isopentane, cyclopentane and the like, which have been widely used in the production of polyolefin resin pre-expanded particles, and halogenated hydrocarbons are also used. It is possible.
Of these, so-called third-generation fluorocarbons, which do not contain chlorine in the molecule, are preferred among halogenated hydrocarbons, especially in view of the problem of destruction of the ozone layer. The amount of the foaming agent is not particularly limited, but is preferably adjusted so that the internal pressure of the foamed particles during normal heat foaming is about 0.1 to 30 kg / cm 2 (G).

【0036】さらに、本発明においては、水および/ま
たはアルコールが、加熱発泡中の蒸気圧こそ低いもの
の、発泡助剤として利用すると発泡効率がさらに上昇す
るという点から好適に用いられる。
Further, in the present invention, water and / or alcohol are preferably used because they have a low vapor pressure during heating and foaming, but when used as a foaming aid, the foaming efficiency is further increased.

【0037】つぎに、前記のごとく発泡能が付与された
発泡粒子を加熱させてポリオレフィン系樹脂予備発泡粒
子を製造する。
Next, the expanded particles provided with the expandability as described above are heated to produce polyolefin resin pre-expanded particles.

【0038】前記加熱発泡させる方法としては、たとえ
ば熱風または蒸気を用いる方法などを採用することがで
きるが、たとえば特開昭59−133233号公報に開
示されるように、蒸気を用いた方法が発泡粒子に対する
熱量の供給が早く、生産性が向上するという点からとく
に好ましい。また、蒸気を用いるばあいには、加熱時間
は、通常1分間程度であれば充分である。
As a method for foaming by heating, for example, a method using hot air or steam can be adopted. For example, as disclosed in JP-A-59-133233, a method using steam is used. It is particularly preferable because the supply of heat to the particles is quick and the productivity is improved. When steam is used, a heating time of about 1 minute is usually sufficient.

【0039】本発明の製造方法においては、発泡能が付
与された発泡粒子を加熱発泡させる温度と、前記ポリオ
レフィン系樹脂発泡粒子の表面に付着した融着防止剤の
量との関係、および前記加熱発泡させる温度と、TV
Lとの関係に大きな特徴がある。
In the production method of the present invention, the relationship between the temperature at which the foamed particles provided with the foaming ability is heated and foamed and the amount of the anti-fusing agent attached to the surface of the polyolefin resin foamed particles, a temperature of foaming, T V,
There is a great feature in the relationship with TL .

【0040】発泡能が付与された発泡粒子を加熱発泡さ
せる温度と、ポリオレフィン系樹脂発泡粒子の表面に付
着した融着防止剤の量との関係は、前記したように、式
(I): t−TV≦49.1C−27.0 (I) (式中、tは加熱発泡させる温度(℃)、Cはポリオレ
フィン系樹脂発泡粒子の表面に付着した融着防止剤の量
(phr)、TVはDSC曲線における2つの融点を示
すピーク間の鞍部温度(℃)を示す)で表わされるもの
であり、このとき前記tは、式(II): TL−30≦t≦TV (II) (式中、TVは前記と同じ、TLは前記2つの融点のうち
の低温側の融点(℃)を示す)で表わされる温度範囲で
ある。
As described above, the relationship between the temperature at which the foamed particles provided with the foaming ability is heated and foamed and the amount of the anti-fusing agent adhered to the surface of the polyolefin resin foamed particles is represented by the formula (I): t -T V ≤49.1C-27.0 (I) (where, t is the temperature for heating and foaming (° C.), C is the amount (phr) of the anti-fusing agent attached to the surface of the polyolefin resin foam particles, T V is the saddle temperature (° C.) between two peaks indicating the melting points in the DSC curve), where t is expressed by the formula (II): TL− 30 ≦ t ≦ T V ( II) where T V is the same as above, and T L is the lower melting point (° C.) of the two melting points.

【0041】前記加熱発泡させる温度tは、TL−30
(℃)以上、好ましくはTL−25(℃)以上であり、
かつTV(℃)以下、好ましくはTV−2(℃)以下であ
る。
The temperature t for the heating and foaming is TL- 30.
(° C.) or more, preferably TL- 25 (° C.) or more,
And it is below T V (° C.), preferably below T V -2 (° C.).

【0042】前記tが前記下限値未満の温度であるばあ
いには、加熱温度が低すぎるため、発泡粒子をなす樹脂
層が硬く、発泡効率εが低くなり、加熱発泡前後の発泡
倍率の比が小さくなるので、好ましくない。
When the temperature t is lower than the lower limit, the heating temperature is too low, so that the resin layer forming the foamed particles is hard, the foaming efficiency ε is low, and the ratio of the foaming ratio before and after the heating and foaming is increased. Is not preferred.

【0043】ここで、発泡効率εは、以下の式(II
I):
Here, the foaming efficiency ε is calculated by the following equation (II)
I):

【0044】[0044]

【数1】 (Equation 1)

【0045】(式中、K0は加熱発泡前の発泡粒子の発
泡倍率、Kは加熱発泡後の予備発泡粒子の発泡倍率、P
0は加熱発泡直前の室温(23℃)における発泡粒子内
圧[atm(abs)]、Tは加熱発泡温度(t+27
3.2(℃))、TrはPO測定時の室温(=23℃)を
示す)で与えられる。
(Where K 0 is the expansion ratio of the expanded particles before thermal expansion, K is the expansion ratio of the pre-expanded particles after thermal expansion, P
0 is the internal pressure of the foamed particles at room temperature (23 ° C.) [atm (abs)] immediately before heating and foaming, and T is the heating foaming temperature (t + 27).
3.2 (° C.)), and Tr is given at room temperature (= 23 ° C.) at the time of PO measurement.

【0046】すなわち、加熱発泡前後の発泡倍率が変化
しないばあい(KO=K)、ε=0であり、また付与さ
れた発泡粒子内圧の温度換算値が加熱発泡により大気圧
となるまでの体積膨張分が、加熱発泡前後の発泡粒子の
体積膨張と等しくなるばあい、ε=1である。したがっ
て、水あるいは水蒸気、アルコールなどの発泡助剤の作
用が付加されたばあいには、ε>1となることがありう
る。
That is, when the expansion ratio before and after the heating and foaming does not change (K O = K), ε = 0, and the temperature converted value of the applied internal pressure of the expanded particles until the pressure becomes the atmospheric pressure due to the heating and foaming. If the volume expansion is equal to the volume expansion of the expanded beads before and after the heating expansion, ε = 1. Therefore, when an action of a foaming aid such as water, steam, or alcohol is added, ε> 1 may be satisfied.

【0047】加熱発泡温度が低く、t<(TL−30)
であるばあい、発泡効率が低く、ε<0.1となった。
したがって、前記式(III)より、Kを大きくしたいば
あいには、P0を大きくしなければならず、このために
は、発泡能を付与するときの圧力を上げるか、あるいは
発泡能を付与する時間を長くしなければならず、好まし
くない。
The heating foaming temperature is low, and t <(T L− 30)
In the case of, the foaming efficiency was low, and ε <0.1.
Therefore, according to the above formula (III), if it is desired to increase K, it is necessary to increase P 0. For this purpose, it is necessary to increase the pressure at which the foaming ability is applied or to increase the foaming ability. The time to do this must be lengthened, which is not desirable.

【0048】また、tが上限値をこえるばあいには、発
泡粒子の相互融着および/または連泡化が生じるため、
好ましくない。
If t exceeds the upper limit value, mutual fusion and / or open cell formation of the expanded particles occur.
Not preferred.

【0049】このように、加熱発泡させる温度tが式
(II)で表わされる温度範囲であるばあいには、t−T
Vの上限温度(℃)とポリオレフィン系樹脂発泡粒子の
表面に付着した融着防止剤の量C(phr)とのあいだ
に直線関係、すなわち前記式(I): t−TV≦49.1C−27.0 (I) で表わされる関係が成立する。
As described above, when the temperature t for foaming by heating is within the temperature range represented by the formula (II), t−T
A linear relationship between the upper limit temperature (° C.) of V and the amount C (phr) of the anti-fusing agent attached to the surface of the expanded polyolefin resin particles, that is, the above formula (I): t−T V ≦ 49.1C The relationship represented by −27.0 (I) holds.

【0050】ある特定の発泡粒子の表面に付着した融着
防止剤の量Cが決定されると、決定されたCおよびTV
に基づき、発泡粒子の相互融着を生じずに、良好な加熱
発泡を可能とする温度tの上限が一義的に定められる。
この温度tの上限は、たとえばTVおよびCの異なる数
種の発泡粒子を準備し、それぞれの発泡粒子について、
数水準の加熱温度での加熱発泡評価実験を実施すること
により求められる。
Once the amount C of the anti-fusing agent attached to the surface of a particular expanded particle is determined, the determined C and T V are determined.
, The upper limit of the temperature t that enables good heating and foaming without causing mutual fusion of the foamed particles is uniquely determined.
The upper limit of the temperature t is set, for example, by preparing several types of expanded particles having different TV and C, and for each expanded particle,
It is determined by conducting a heating foaming evaluation experiment at several heating temperatures.

【0051】図1に、前記上限温度t−TV(℃)と、
融着防止剤の量C(phr)との関係を示す。図1から
明らかなように、t−TVはCと直線関係にあり、図1
中の連泡臨界線Aおよび融着臨界線Bで囲まれた右下の
領域では相互融着が発生せず、ここが好ましい領域であ
り、逆に左上の領域では相互融着が発生した。また、こ
のばあい、t−TV>0かつt−TV<49.1C−2
7.0の領域(連泡臨界線Aよりも上の領域)では、発
泡粒子の相互融着は生じなかったが、えられた予備発泡
粒子の連泡率が20%をこえてしまった。
FIG. 1 shows the upper limit temperature t-T V (° C.)
The relationship with the amount C (phr) of the anti-fusing agent is shown. As apparent from FIG. 1, t-T V is in C and linear relationship, Figure 1
In the lower right region surrounded by the open cell critical line A and the fusion critical line B, mutual fusion did not occur. This was a preferable region, and conversely, mutual fusion occurred in the upper left region. In this case, t-T V> 0 and t-T V <49.1C-2
In the region of 7.0 (the region above the open cell critical line A), mutual fusion of the expanded particles did not occur, but the open cell ratio of the obtained pre-expanded particles exceeded 20%.

【0052】前記したように、式(I)および式(II)
で表わされる条件となるようにポリオレフィン系樹脂発
泡粒子の表面に付着させる融着防止剤の量および発泡能
が付与された発泡粒子を加熱発泡させる温度を調整する
ことにより、発泡粒子の相互融着が生じず、気泡の独立
性を維持したままで、高発泡倍率を有するポリオレフィ
ン系樹脂予備発泡粒子がえられる。
As described above, the formulas (I) and (II)
By adjusting the amount of the anti-fusing agent to be adhered to the surface of the polyolefin-based resin foamed particles and the temperature at which the foamed particles provided with the foaming ability are heated and foamed so as to satisfy the condition represented by the above, mutual fusion of the foamed particles is performed. Does not occur, and polyolefin-based resin pre-expanded particles having a high expansion ratio can be obtained while maintaining the independence of the cells.

【0053】[0053]

【実施例】つぎに、本発明のポリオレフィン系樹脂予備
発泡粒子の製造方法を実施例に基づいてさらに詳細に説
明するが、本発明はかかる実施例のみに限定されるもの
ではない。
Next, the method for producing the pre-expanded polyolefin resin particles of the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to only these Examples.

【0054】なお、以下の実施例および比較例で用いた
ポリオレフィン系樹脂(基材樹脂)の融点および融解終
了温度について、基材樹脂粒子約1〜10mgを精秤
し、示差走査熱量計(セイコー電子工業(株)製、SS
C5200)にて10℃/minの昇温速度で室温から
220℃まで昇温してえられた吸熱ピークを融点とし
た。また、融解終了温度は、特開平60−23428号
公報に記載の方法に準拠して測定した。
About the melting point and the melting end temperature of the polyolefin resin (base resin) used in the following Examples and Comparative Examples, about 1 to 10 mg of base resin particles were precisely weighed, and a differential scanning calorimeter (Seiko) was used. SS manufactured by Electronic Industry Co., Ltd.
C5200), the endothermic peak obtained by raising the temperature from room temperature to 220 ° C. at a rate of 10 ° C./min was taken as the melting point. The melting end temperature was measured according to the method described in JP-A-60-23428.

【0055】実施例1および比較例1〜4 ポリオレフィン系樹脂としてエチレン−プロピレンラン
ダム共重合体(融点:137℃、融解終了温度:157
℃)を用い、単軸押出機(50mmφ、L/D=3)に
て粒重量約1.8mgの発泡用樹脂粒子を作製した。こ
の際、発泡造核剤としてタルク0.005phrを混合
した。
Example 1 and Comparative Examples 1 to 4 Ethylene-propylene random copolymer (melting point: 137 ° C., melting end temperature: 157) as polyolefin resin
C)) to produce resin particles for foaming having a particle weight of about 1.8 mg with a single screw extruder (50 mmφ, L / D = 3). At this time, 0.005 phr of talc was mixed as a foam nucleating agent.

【0056】えられた発泡用樹脂粒子100部を、第1
の密閉容器内に、水300部、融着防止剤として第三リ
ン酸カルシウム1.4部および分散助剤としてn−パラ
フィンスルホン酸ソーダ0.03部とともに供給し、発
泡温度138℃、発泡圧力17kg/cm2(G)の条
件にて、直径4mmの円形オリフィスを通じて発泡さ
せ、ポリオレフィン系樹脂発泡粒子をえた。この際、発
泡剤としてイソブタン13部を用いた。
100 parts of the obtained resin particles for foaming were mixed with the first
Are supplied together with 300 parts of water, 1.4 parts of tribasic calcium phosphate as an anti-fusing agent and 0.03 parts of sodium n-paraffin sulfonate as a dispersing aid, at a foaming temperature of 138 ° C and a foaming pressure of 17 kg /. Under a condition of cm 2 (G), the mixture was foamed through a circular orifice having a diameter of 4 mm to obtain polyolefin resin foamed particles. At this time, 13 parts of isobutane was used as a foaming agent.

【0057】えられたポリオレフィン系樹脂発泡粒子の
特性として発泡倍率および平均セル径を以下に示す方法
にしたがって調べた。その結果、このポリオレフィン系
樹脂発泡粒子は、発泡倍率が11.3倍、平均セル径が
300μmの独立気泡構造を有する発泡粒子であった。
The expansion ratio and average cell diameter of the obtained expanded polyolefin resin particles were examined in accordance with the following methods. As a result, the polyolefin resin foamed particles were foamed particles having an expansion ratio of 11.3 times and an average cell diameter of 300 μm and having a closed cell structure.

【0058】また、このポリオレフィン系樹脂発泡粒子
は、示差走査熱量計(セイコー電子工業(株)製、SS
C5200)を用いた示差走査熱量測定によるDSC曲
線において2つの融点を示す特殊な結晶構造を有し、T
Lが136.8℃、TVが149.4℃、THが156.
7℃であった。
The polyolefin-based resin foamed particles were obtained by using a differential scanning calorimeter (manufactured by Seiko Denshi Kogyo KK, SS
C5200) has a special crystal structure showing two melting points in a DSC curve by differential scanning calorimetry using
L is 136.8 ° C., T V is 149.4 ° C., T H is 156.
7 ° C.

【0059】つぎに、このポリオレフィン系樹脂発泡粒
子をpH3の塩酸水溶液で充分に洗浄、水洗したのち乾
燥した。この乾燥したポリオレフィン系樹脂発泡粒子の
表面に付着した融着防止剤の量を以下に示す方法にした
がって測定した。その結果、かかる融着防止剤の量は
0.05phrであった。ついで、この発泡粒子を第2
の密閉容器内に供給して空気により5kg/cm
2(G)とし、室温にて約24時間放置して発泡能を付
与した。第2の密閉容器から取り出したのち、内圧減少
速度係数を求めると0.15であり、加熱発泡直前の発
泡能が付与された発泡粒子の23℃での内圧は3.9a
tm(abs)であった。
Next, the foamed polyolefin resin particles were sufficiently washed with an aqueous hydrochloric acid solution of pH 3, washed with water, and dried. The amount of the anti-fusing agent attached to the surface of the dried polyolefin resin foam particles was measured according to the method described below. As a result, the amount of the anti-fusing agent was 0.05 phr. Then, the expanded particles are
5kg / cm
2 (G) and left at room temperature for about 24 hours to give foaming ability. After taking out from the second closed container, the internal pressure decreasing rate coefficient was calculated to be 0.15, and the internal pressure at 23 ° C. of the expanded particles provided with the expandability immediately before the heat expansion was 3.9 a.
tm (abs).

【0060】さらに、前記発泡能が付与された発泡粒子
を第3の密閉容器内に供給したのち、表1に示す条件に
て加熱発泡を行なってポリオレフィン系樹脂予備発泡粒
子をえた。
Further, after the foamed particles provided with the foaming ability were supplied into a third hermetically sealed container, they were subjected to heating and foaming under the conditions shown in Table 1 to obtain polyolefin-based resin pre-foamed particles.

【0061】えられたポリオレフィン系樹脂予備発泡粒
子の特性として発泡倍率、発泡効率、連泡率および相互
融着を以下に示す方法にしたがって調べた。その結果を
表1に示す。
As the characteristics of the obtained polyolefin resin pre-expanded particles, the expansion ratio, expansion efficiency, open cell ratio and mutual fusion were examined in accordance with the following methods. Table 1 shows the results.

【0062】[ポリオレフィン系樹脂発泡粒子] (発泡倍率(K0))発泡粒子約2gを精秤し、水没法
により体積を測定し、発泡粒子の真比重を求めたのち、
樹脂(組成物)の真比重を発泡粒子の真比重で除するこ
とにより求めた。
[Expanded Polyolefin Resin Particles] (Expansion Ratio (K 0 )) Approximately 2 g of expanded particles were precisely weighed, the volume was measured by a submersion method, and the true specific gravity of the expanded particles was determined.
It was determined by dividing the true specific gravity of the resin (composition) by the true specific gravity of the foamed particles.

【0063】(平均セル径)発泡粒子断面を顕微鏡観察
することにより求めた。
(Average cell diameter) The cross section of the expanded particles was determined by microscopic observation.

【0064】(発泡粒子表面に付着した融着防止剤(第
三リン酸カルシウム)の量(C))メタバナジン酸アン
モニウム0.022重量%、モリブデン酸アンモニウム
0.54重量%および硝酸3重量%を含む水溶液(比色
液)50.0mlとW(g)の発泡粒子とをコニカルビ
ーカーにとり、1分間撹拌したのち、10分間放置し
た。えられた液相を光路長1.0cmの石英セルにと
り、分光光度計により410nmでの吸光度Aを測定し
た。
(Amount of Anti-Fusing Agent (Tricalcium Phosphate) Attached to Surface of Expanded Particles (C)) An aqueous solution containing 0.022% by weight of ammonium metavanadate, 0.54% by weight of ammonium molybdate and 3% by weight of nitric acid (Colorimetric liquid) 50.0 ml and W (g) expanded particles were placed in a conical beaker, stirred for 1 minute, and then left for 10 minutes. The obtained liquid phase was placed in a quartz cell having an optical path length of 1.0 cm, and the absorbance A at 410 nm was measured with a spectrophotometer.

【0065】同一の比色液についてあらかじめ測定して
おいた第三リン酸カルシウムの410nmでの吸光度係
数μ(g/L・cm)を用い、以下の式に基づいて融着
防止剤の量C(phr)を求めた。
Using the absorbance coefficient μ (g / L · cm) of the tricalcium phosphate at 410 nm, which was measured in advance for the same colorimetric liquid, the amount C (phr ).

【0066】[0066]

【数2】 (Equation 2)

【0067】[ポリオレフィン系樹脂予備発泡粒子] (発泡倍率(K))前記ポリオレフィン系樹脂発泡粒子
の発泡倍率(K0)と同様にして求めた。
[Pre-expanded Polyolefin Resin Particles] (Expansion Ratio (K)) The expansion ratio (K 0 ) was determined in the same manner as the expansion ratio (K 0 ) of the polyolefin resin expanded particles.

【0068】(発泡効率(ε))式(III):(Expansion efficiency (ε)) Formula (III):

【0069】[0069]

【数3】 (Equation 3)

【0070】(式中、K0、K、P0、TおよびTrは前
記と同じ)に基づいて求めた。
(Where K 0 , K, P 0 , T and Tr are the same as above).

【0071】(連泡率)空気比較式比重計(東京サイエ
ンス社製、1000型)を用い、えられた予備発泡粒子
の独立気泡体積を求め、これを別途水没法により求めた
見かけの体積で除してえられた独立気泡率(%)を、1
00から引くことにより求めた。
(Open cell ratio) The closed cell volume of the obtained pre-expanded particles was determined by using an air comparison type hydrometer (manufactured by Tokyo Science Co., Ltd., type 1000), and this was determined by the apparent volume separately determined by the submerged method. The closed cell rate (%) obtained by dividing
It was determined by subtracting from 00.

【0072】(相互融着)えられた予備発泡粒子を目視
にて観察し、相互融着の有無を調べた。
(Mutual fusion) The obtained pre-expanded particles were visually observed to check for mutual fusion.

【0073】実施例2 融着防止剤の添加量を2.5部とし、第1の密閉容器か
ら放出直後に充分に水洗を行ない、塩酸水溶液による洗
浄を行なわなかったほかは、比較例3と同様にしてポリ
オレフィン系樹脂予備発泡粒子をえた。
Example 2 Comparative Example 3 was repeated except that the addition amount of the anti-fusing agent was 2.5 parts, washing was carried out sufficiently immediately after being discharged from the first closed container, and washing with an aqueous hydrochloric acid solution was not carried out. Similarly, pre-expanded polyolefin resin particles were obtained.

【0074】えられたポリオレフィン系樹脂予備発泡粒
子の特性および途中えられたポリオレフィン系樹脂発泡
粒子の特性を実施例1と同様にして調べた。その結果を
表1に示す。
The properties of the obtained polyolefin-based resin pre-expanded particles and the properties of the polyolefin-based resin expanded particles obtained on the way were examined in the same manner as in Example 1. Table 1 shows the results.

【0075】実施例3〜5および比較例5 ポリオレフィン系樹脂としてエチレン−プロピレンラン
ダム共重合体(融点:145℃、融解終了温度:161
℃)を用い、タルクの添加量を0.01phrとし、塩
酸水溶液による洗浄を行なわなかったほかは、実施例1
と同様にしてポリオレフィン系樹脂予備発泡粒子をえ
た。ただし、加熱発泡直前の発泡能が付与された発泡粒
子の23℃での内圧は4.3atm(abs)であっ
た。
Examples 3 to 5 and Comparative Example 5 Ethylene-propylene random copolymer (melting point: 145 ° C., melting end temperature: 161) as polyolefin resin
° C), the amount of talc added was 0.01 phr, and washing with an aqueous hydrochloric acid solution was not performed.
In the same manner as in the above, polyolefin resin pre-expanded particles were obtained. However, the internal pressure at 23 ° C. of the foamed particles to which the foaming ability was imparted immediately before heat foaming was 4.3 atm (abs).

【0076】えられたポリオレフィン系樹脂予備発泡粒
子の特性および途中えられたポリオレフィン系樹脂発泡
粒子の特性を実施例1と同様にして調べた。その結果を
表1に示す。
The properties of the obtained polyolefin-based resin pre-expanded particles and the properties of the polyolefin-based resin expanded particles obtained on the way were examined in the same manner as in Example 1. Table 1 shows the results.

【0077】実施例6および比較例6〜7 ポリオレフィン系樹脂として、実施例3〜5および比較
例5で用いられたエチレン−プロピレンランダム共重合
体98重量%と、エチレン系アイオノマーとして、三井
デュポンポリケミカル社製「ハイミラン#1707」2
重量%とからなる樹脂混合物100部に、タルク1部を
添加したものを用い、実施例1で用いたものと同じ単軸
押出機にて発泡用樹脂粒子をえた。えられた発泡用樹脂
粒子の融点は147℃、融解終了温度は159℃であっ
た。
Example 6 and Comparative Examples 6 and 7 98% by weight of the ethylene-propylene random copolymer used in Examples 3 to 5 and Comparative Example 5 were used as the polyolefin resin, and Mitsui Dupont Polypropylene was used as the ethylene ionomer. "Himilan # 1707" manufactured by Chemical Company 2
Using 100 parts by weight of a resin mixture containing 100 parts by weight of talc and 1 part of talc, resin particles for foaming were obtained using the same single screw extruder as used in Example 1. The melting point of the obtained resin particles for foaming was 147 ° C, and the melting end temperature was 159 ° C.

【0078】つぎに、第1の密閉容器からポリオレフィ
ン系樹脂発泡粒子をうる際、水を発泡剤として使用し、
発泡温度155℃、発泡圧力30kg/cm2(G)
(チッ素ガス加圧)としたほかは、実施例1と同様にし
てポリオレフィン系樹脂発泡粒子をえた。このポリオレ
フィン系樹脂発泡粒子は、発泡倍率が9.8倍、平均セ
ル径が150μmであり、DSC曲線におけるTLが1
43.5℃、TVが155.6℃であった。
Next, when foamed polyolefin resin particles are obtained from the first closed container, water is used as a foaming agent.
Foaming temperature 155 ° C, Foaming pressure 30kg / cm 2 (G)
(Pressurized nitrogen gas), except that foamed polyolefin resin particles were obtained in the same manner as in Example 1. The expanded polyolefin resin particles have an expansion ratio of 9.8 times, an average cell diameter of 150 μm, and a T L of 1 on a DSC curve.
43.5 ℃, T V was 155.6 ℃.

【0079】つぎに、このポリオレフィン系樹脂発泡粒
子をpH1の塩酸水溶液で充分に洗浄したのち、第2の
密閉容器内に入れ、チッ素ガスにて第2の密閉容器の内
圧を8kg/cm2(G)とし、80℃の水槽中で3時
間放置して発泡能を付与した。発泡能が付与された発泡
粒子の内圧減少速度係数は1.7、加熱発泡直前の23
℃での内圧は5.0atm(abs)であった。
Next, the foamed polyolefin resin particles are sufficiently washed with a hydrochloric acid aqueous solution having a pH of 1 and then placed in a second closed container, and the internal pressure of the second closed container is increased to 8 kg / cm 2 with nitrogen gas. (G) and left for 3 hours in a water bath at 80 ° C. to give foaming ability. The internal pressure reduction rate coefficient of the foamed particles to which the foaming ability has been imparted is 1.7, which is 23 immediately before heating and foaming.
The internal pressure at ° C. was 5.0 atm (abs).

【0080】さらに、前記発泡能が付与された発泡粒子
を第3の密閉容器内に供給したのち、表1に示す条件に
て加熱発泡を行なってポリオレフィン系樹脂予備発泡粒
子をえた。
Further, after the foamed particles provided with the foaming ability were supplied into a third closed container, they were heated and foamed under the conditions shown in Table 1 to obtain polyolefin resin pre-foamed particles.

【0081】えられたポリオレフィン系樹脂予備発泡粒
子の特性および途中えられたポリオレフィン系樹脂発泡
粒子の特性を実施例1と同様にして調べた。その結果を
表1に示す。
The characteristics of the obtained polyolefin resin pre-expanded particles and the characteristics of the polyolefin resin expanded particles obtained on the way were examined in the same manner as in Example 1. Table 1 shows the results.

【0082】実施例7〜8および比較例8 ポリオレフィン系樹脂として、直鎖低密度ポリエチレン
(融点:120℃、融解終了温度:132℃)を用い、
タルクの添加量を0.01phrとしたほかは、実施例
1と同様にして発泡用樹脂粒子をえた。
Examples 7 to 8 and Comparative Example 8 A linear low-density polyethylene (melting point: 120 ° C., melting end temperature: 132 ° C.) was used as the polyolefin resin.
Resin particles for foaming were obtained in the same manner as in Example 1, except that the amount of talc added was 0.01 phr.

【0083】つぎに、第1の密閉容器での発泡には水を
発泡剤として使用し、発泡温度125℃、発泡圧力35
kg/cm2(G)(空気加圧)で、融着防止剤である
第三リン酸カルシウムの添加量を4.0部としたほか
は、実施例1と同様にしてポリオレフィン系樹脂発泡粒
子をえた。
Next, water is used as a foaming agent for foaming in the first closed container, at a foaming temperature of 125 ° C. and a foaming pressure of 35 ° C.
Foamed polyolefin-based resin particles were obtained in the same manner as in Example 1 except that the addition amount of tribasic calcium phosphate as an anti-fusing agent was changed to 4.0 parts at kg / cm 2 (G) (air pressurization). .

【0084】また、第2の密閉容器での発泡能の付与
は、ポリオレフィン系樹脂発泡粒子の洗浄を行なわず、
空気加圧により第2の密閉容器の内圧を8kg/cm2
(G)とし、室温にて18時間放置することにより行な
った。その結果、内圧減少速度係数は0.15、加熱発
泡直前の発泡能が付与された発泡粒子の23℃での内圧
は5.0atm(abs)であった。
The foaming ability in the second closed container is obtained by washing the polyolefin resin foam particles without washing.
The internal pressure of the second closed container is increased to 8 kg / cm 2 by air pressurization.
(G) and left at room temperature for 18 hours. As a result, the internal pressure decreasing rate coefficient was 0.15, and the internal pressure at 23 ° C. of the expanded particles to which the foaming ability was imparted immediately before heating and foaming was 5.0 atm (abs).

【0085】さらに、前記発泡能が付与された発泡粒子
を第3の密閉容器に供給したのち、表1に示す条件にて
加熱発泡を行なってポリオレフィン系樹脂予備発泡粒子
をえた。
Further, the foamed particles provided with the foaming ability were supplied to a third airtight container, and then heated and foamed under the conditions shown in Table 1 to obtain polyolefin resin pre-foamed particles.

【0086】えられたポリオレフィン系樹脂予備発泡粒
子の特性および途中えられたポリオレフィン系樹脂発泡
粒子の特性を実施例1と同様にして調べた。その結果を
表1に示す。
The characteristics of the obtained polyolefin-based resin pre-expanded particles and the characteristics of the polyolefin-based resin expanded particles obtained on the way were examined in the same manner as in Example 1. Table 1 shows the results.

【0087】なお、これら実施例7〜8および比較例8
で用いたポリオレフィン系樹脂発泡粒子の示差走査熱量
測定によるDSC曲線を図2に示す。
Note that these Examples 7 to 8 and Comparative Example 8
FIG. 2 shows a DSC curve by differential scanning calorimetry of the expanded polyolefin resin particles used in Example 1.

【0088】実施例9〜11および比較例9〜10 ポリオレフィン系樹脂として、実施例7〜8および比較
例8で用いられた直鎖低密度ポリエチレン95重量%
と、エチレン系アイオノマーとして、三井デュポンポリ
ケミカル社製「ハイミラン#1856」5重量%とから
なる樹脂混合物100部に、タルク0.1部を添加した
ものを用い、実施例1で用いたものと同じ単軸押出機に
て発泡用樹脂粒子をえた。
Examples 9 to 11 and Comparative Examples 9 to 10 As the polyolefin resin, 95% by weight of the linear low-density polyethylene used in Examples 7 to 8 and Comparative Example 8
And an ethylene ionomer obtained by adding 0.1 part of talc to 100 parts of a resin mixture composed of 5% by weight of "Himilan # 1856" manufactured by DuPont-Mitsui Polychemicals Co., Ltd. Resin particles for foaming were obtained with the same single screw extruder.

【0089】つぎに、前記発泡用樹脂粒子を用い、実施
例7〜8および比較例8と同様にしてポリオレフィン系
樹脂発泡粒子を作製したところ、発泡倍率が3.1倍、
平均セル径が160μm、TLが108.6℃、TVが1
18.7℃の独立気泡構造を有するものであった。
Next, foamed polyolefin-based resin particles were prepared using the foamed resin particles in the same manner as in Examples 7 to 8 and Comparative Example 8, and the expansion ratio was 3.1 times.
Average cell diameter of 160 .mu.m, T L is 108.6 ° C., T V is 1
It had a closed cell structure at 18.7 ° C.

【0090】さらに、前記ポリオレフィン系樹脂発泡粒
子に、実施例7〜8および比較例8と同様にして発泡能
を付与し、表1に示す条件で加熱発泡を行なってポリオ
レフィン系樹脂予備発泡粒子をえた。
Further, the foamed polyolefin-based resin particles were given foaming ability in the same manner as in Examples 7 to 8 and Comparative Example 8, and subjected to heat foaming under the conditions shown in Table 1 to obtain pre-expanded polyolefin-based resin particles. I got it.

【0091】えられたポリオレフィン系樹脂予備発泡粒
子の特性および途中えられたポリオレフィン系樹脂発泡
粒子の特性を実施例1と同様にして調べた。その結果を
表1に示す。
The properties of the obtained polyolefin-based resin pre-expanded particles and the properties of the polyolefin-based resin expanded particles obtained on the way were examined in the same manner as in Example 1. Table 1 shows the results.

【0092】なお、表1中には、各ポリオレフィン系樹
脂発泡粒子のTLおよびTVならびにt−TLおよびt−
Vもあわせて示す。
Table 1 shows that T L and T V and t-T L and t-
T V is also shown together.

【0093】[0093]

【表1】 [Table 1]

【0094】表1に示された結果から、以下のことがわ
かる。
The following can be seen from the results shown in Table 1.

【0095】(イ)実施例1と比較例1〜4とを比較し
て、実施例1のように、t、TV、TLおよびCが式
(I)および式(II)で表わされる関係をいずれも満足
するばあいには、発泡倍率、発泡効率および連泡率がい
ずれも良好であるうえ、相互融着がないすぐれた予備発
泡粒子がえられるのに対し、比較例1〜3のように、
t、TVおよびCが式(I)で表わされる関係を満足し
ないばあいには、相互融着が認められ、また比較例4の
ように、t、TV、TLおよびCが式(I)および式(I
I)で表わされる関係をいずれも満足しないばあいに
は、相互融着が認められるうえ、連泡率もきわめて高く
なる。
(A) By comparing Example 1 with Comparative Examples 1-4, as in Example 1, t, T V , T L and C are represented by the formulas (I) and (II). When all of the relationships are satisfied, the expansion ratio, the expansion efficiency and the open cell ratio are all good, and excellent pre-expanded particles without mutual fusion are obtained. like,
When t, T V and C do not satisfy the relationship represented by the formula (I), mutual fusion is recognized, and as shown in Comparative Example 4, t, T V , T L and C have the formulas ( I) and the formula (I
If none of the relations represented by I) is satisfied, mutual fusion is recognized and the open cell rate becomes extremely high.

【0096】なお、発泡粒子の表面に付着した融着防止
剤の量が、このように0.05phrと少ないばあいに
は、比較的低い加熱温度で発泡粒子の相互融着が発生
し、加熱発泡させる温度を高くすることができないこと
がわかる。
When the amount of the anti-fusing agent attached to the surface of the expanded particles is as small as 0.05 phr, mutual fusion of the expanded particles occurs at a relatively low heating temperature. It can be seen that the foaming temperature cannot be increased.

【0097】(ロ)実施例2と比較例3とを比較して、
実施例2のように、Cを0.49phrと多くし、t、
V、TLおよびCが式(I)および式(II)で表わされ
る関係をいずれも満足するようにしたばあいには、発泡
倍率および発泡効率が高く、連泡率が低いうえ、相互融
着がないすぐれた予備発泡粒子がえられる。
(B) Comparison between Example 2 and Comparative Example 3
As in Example 2, C was increased to 0.49 phr and t,
When T V , T L and C satisfy the relations represented by the formulas (I) and (II), the expansion ratio and the expansion efficiency are high, the open cell ratio is low, and the mutual expansion ratio is low. Excellent pre-expanded particles without fusion are obtained.

【0098】(ハ)実施例3〜5と比較例5とを比較し
て、実施例3〜5のように、t、TV、TLおよびCが式
(I)および式(II)で表わされる関係をいずれも満足
するばあいには、発泡倍率、発泡効率および連泡率がい
ずれも良好であるうえ、相互融着がないすぐれた予備発
泡粒子がえられるのに対し、比較例5のように、t、T
VおよびCが式(I)で表わされる関係を満足しないば
あいには、相互融着が認められる。
(C) By comparing Examples 3 to 5 with Comparative Example 5, as in Examples 3 to 5, t, T V , T L and C are represented by the formulas (I) and (II). When all of the relationships expressed are satisfied, the expansion ratio, the expansion efficiency and the open cell ratio are all good, and excellent pre-expanded particles free from mutual fusion are obtained. T, T
When V and C do not satisfy the relationship represented by the formula (I), mutual fusion is recognized.

【0099】なお、発泡粒子の表面に付着した融着防止
剤の量が、このように0.28phrと多いばあいに
は、比較的高い発泡温度に至るまで発泡粒子の相互融着
が生じず、発泡効率および発泡倍率を高めることができ
ることがわかる。
When the amount of the anti-fusing agent attached to the surface of the foamed particles is as large as 0.28 phr, mutual fusion of the foamed particles does not occur until a relatively high foaming temperature is reached. It can be seen that the expansion efficiency and expansion ratio can be increased.

【0100】(ニ)実施例6と比較例6〜7とを比較し
て、実施例6のように、t、TV、TLおよびCが式
(I)および式(II)で表わされる関係をいずれも満足
するばあいには、発泡倍率、発泡効率および連泡率がい
ずれも良好であるうえ、相互融着がないすぐれた予備発
泡粒子がえられるのに対し、比較例6のように、t、T
V、TLが式(II)で表わされる関係を満足しないばあい
には、発泡効率がいちじるしく低くなり、また比較例7
のように、t、TVおよびCが式(I)で表わされる関
係を満足しないばあいには、相互融着が認められる。
(D) By comparing Example 6 with Comparative Examples 6 and 7, as in Example 6, t, T V , T L and C are represented by the formulas (I) and (II). When all of the relationships are satisfied, the expansion ratio, the expansion efficiency and the open cell ratio are all good, and excellent pre-expanded particles without mutual fusion are obtained. , T, T
When V and T L do not satisfy the relationship represented by the formula (II), the foaming efficiency becomes extremely low.
When t, T V and C do not satisfy the relationship represented by the formula (I), mutual fusion is recognized.

【0101】なお、加熱発泡においては、融着防止剤の
量を少なくしすぎると、発泡粒子の相互融着が生じやす
いため、適性加熱温度条件幅が狭くなることがわかる。
In the heat foaming, if the amount of the anti-fusing agent is too small, mutual fusion of the foamed particles is likely to occur, so that the range of the suitable heating temperature condition is narrowed.

【0102】(ホ)実施例7〜8と比較例8とを比較し
て、実施例7〜8のように、t、TV、TLおよびCが式
(I)および式(II)で表わされる関係をいずれも満足
するばあいには、発泡倍率、発泡効率および連泡率がい
ずれも良好であるうえ、相互融着がないすぐれた予備発
泡粒子がえられるのに対し、比較例8のように、加熱温
度が高すぎ、t、TV、TLが式(II)で表わされる関係
を満足しないばあいには、連泡率が41.7%といちじ
るしく高くなり、独立気泡構造を有する発泡粒子とはい
えないものとなってしまう。
(E) By comparing Examples 7 and 8 with Comparative Example 8, as shown in Examples 7 and 8, t, T V , T L and C are represented by the formulas (I) and (II). When all of the relations are satisfied, the expansion ratio, the expansion efficiency and the open cell ratio are all good, and excellent pre-expanded particles free of mutual fusion are obtained. When the heating temperature is too high and t, T V , and T L do not satisfy the relationship represented by the formula (II), the open cell rate becomes extremely high as 41.7%, and the closed cell structure However, it cannot be said that the expanded particles have the following.

【0103】なお、実施例7〜8および比較例8のよう
に、融着防止剤の量が0.765phrと多いと、型内
成形時の成形融着性が低下するため、型内成形前に、酸
性水溶液で充分に洗浄し、型内成形時の融着防止剤の量
が0.3phr以下となるようにした。
As in Examples 7 to 8 and Comparative Example 8, when the amount of the anti-fusing agent is as large as 0.765 phr, the molding fusing property during in-mold molding is reduced. Then, it was sufficiently washed with an acidic aqueous solution so that the amount of the anti-fusing agent at the time of molding in the mold was 0.3 phr or less.

【0104】(ヘ)実施例9〜11と比較例9〜10と
を比較して、実施例9〜11のように、t、TV、TL
よびCが式(I)および式(II)で表わされる関係をい
ずれも満足するばあいには、発泡倍率、発泡効率および
連泡率がいずれも良好であるうえ、相互融着がないすぐ
れた予備発泡粒子がえられるのに対し、比較例9〜10
のように、加熱温度が高すぎ、t、TVおよびTLが式
(II)で表わされる関係を満足しないばあいには、連泡
率が20%をこえていちじるしく高くなり、独立気泡構
造を有する発泡粒子とはいえないものである。
(F) By comparing Examples 9 to 11 and Comparative Examples 9 to 10, as shown in Examples 9 to 11, t, T V , T L and C are represented by the formulas (I) and (II). When all of the relationships represented by the formulas (1) and (2) are satisfied, the expansion ratio, the expansion efficiency and the open cell ratio are all good, and excellent pre-expanded particles without mutual fusion are obtained. Examples 9 to 10
As the heating temperature is too high, t, in the case where T V and T L does not satisfy the relationship represented by formula (II), Ren'awaritsu is remarkably increased by more than 20%, closed cell structure It cannot be said that the foamed particles have the following.

【0105】なお、実施例9〜11のように、融着防止
剤の量が0.771phrと多いと、各水準において発
泡粒子の相互融着が生じず、発泡効率を約0.4〜0.
8とし、予備発泡粒子の発泡倍率を調整することができ
ることがわかる。
When the amount of the anti-fusing agent is as large as 0.771 phr as in Examples 9 to 11, mutual fusion of the foamed particles does not occur at each level, and the foaming efficiency is about 0.4 to 0. .
8, it can be seen that the expansion ratio of the pre-expanded particles can be adjusted.

【0106】また、実施例9〜11および比較例9〜1
0のように、融着防止剤の量が0.771phrと多い
と、型内成形時の成形融着性が低下するため、型内成形
前に、酸性水溶液で充分に洗浄し、型内成形時の融着防
止剤の量が0.3phr以下となるようにした。
Examples 9 to 11 and Comparative Examples 9-1
If the amount of the anti-fusing agent is as large as 0.771 phr, as in 0, the molding fusing property at the time of in-mold molding is reduced. The amount of the anti-fusing agent at that time was adjusted to 0.3 phr or less.

【0107】[0107]

【発明の効果】本発明の製造方法により、加熱発泡中の
発泡粒子の相互融着およびセル膜の破断による予備発泡
粒子の連泡率の上昇を同時に防止しつつ、加熱発泡効率
を高くし、発泡倍率が高いポリオレフィン系樹脂予備発
泡粒子を製造することが可能となる。
According to the production method of the present invention, the heat foaming efficiency is increased while simultaneously preventing the fusion of the foamed particles during the heat foaming and the increase in the open cell ratio of the pre-expanded particles due to the breakage of the cell membrane. Polyolefin-based resin pre-expanded particles having a high expansion ratio can be produced.

【0108】本発明の製造方法によってえられたポリオ
レフィン系樹脂予備発泡粒子は、従来より公知の成形方
法により、容易に成形が可能であり、緩衝材などの用途
に好適に使用しうるものである。
The pre-expanded polyolefin resin particles obtained by the production method of the present invention can be easily molded by a conventionally known molding method, and can be suitably used for applications such as cushioning materials. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】ポリオレフィン系樹脂発泡粒子の表面に付着し
た融着防止剤の量(C)と、発泡能が付与された発泡粒
子を加熱発泡させる上限温度(t−TV)との関係を示
す図面である。
FIG. 1 shows the relationship between the amount (C) of an anti-fusing agent attached to the surface of expanded polyolefin-based resin particles and the upper limit temperature (t-T V ) at which expanded foamed particles having expanded ability are heated and foamed. It is a drawing.

【図2】実施例7〜8および比較例8で用いたポリオレ
フィン系樹脂発泡粒子の示差走査熱量測定によるDSC
曲線である。
FIG. 2 shows a DSC of the expanded polyolefin resin particles used in Examples 7 to 8 and Comparative Example 8 by differential scanning calorimetry.
It is a curve.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 示差走査熱量測定によるDSC曲線にお
いて2つの融点を示す結晶構造を有するポリオレフィン
系樹脂発泡粒子に発泡能を付与したのち、発泡能が付与
された発泡粒子を加熱発泡させるポリオレフィン系樹脂
予備発泡粒子の製造方法において、前記加熱発泡させる
温度と、前記ポリオレフィン系樹脂発泡粒子の表面に付
着した融着防止剤の量との関係が式(I): t−TV≦49.1C−27.0 (I) (式中、tは加熱発泡させる温度(℃)、Cはポリオレ
フィン系樹脂発泡粒子の表面に付着した融着防止剤の量
(phr)、TVはDSC曲線における2つの融点を示
すピーク間の鞍部温度(℃)を示す)で表わされ、かつ
加熱発泡させる温度が式(II): TL−30≦t≦TV (II) (式中、tは加熱発泡させる温度、TVはDSC曲線に
おける2つの融点を示すピーク間の鞍部温度(℃)、T
Lは前記2つの融点のうちの低温側の融点(℃)を示
す)で表わされる温度範囲であることを特徴とするポリ
オレフィン系樹脂予備発泡粒子の製造方法。
1. A polyolefin-based resin obtained by imparting expandability to expanded polyolefin-based resin particles having a crystal structure exhibiting two melting points in a DSC curve obtained by differential scanning calorimetry, and then heating and expanding the expanded particles provided with the expandability. in the method for manufacturing pre-expanded particles, wherein the temperature for heating and foaming, the relationship between the amount of anti-fusing agent adhered to the surface of the polyolefin resin expanded particles has the formula (I): t-T V ≦ 49.1C- 27.0 (I) (where, t is the temperature for foaming by heating (° C.), C is the amount (phr) of the anti-fusing agent attached to the surface of the expanded polyolefin resin particles, and T V is the two in the DSC curve. expressed in saddle temperatures between peak indicating the melting point (℃) shows a), and the temperature for heating foaming formula (II): T L -30 ≦ t ≦ T V (II) ( wherein, t is heat-foamable Temperature, T V is the saddle temperature (° C.) between the peaks indicating the two melting points in the DSC curve, T
L is a temperature range represented by the lower melting point (° C.) of the two melting points), wherein the polyolefin resin pre-expanded particles are produced.
【請求項2】 ポリオレフィン系樹脂発泡粒子の表面に
付着した融着防止剤の量が0.001〜0.3phrで
ある請求項1記載のポリオレフィン系樹脂予備発泡粒子
の製造方法。
2. The method for producing pre-expanded polyolefin resin particles according to claim 1, wherein the amount of the anti-fusing agent attached to the surface of the expanded polyolefin resin particles is 0.001 to 0.3 phr.
【請求項3】 融着防止剤が第三リン酸カルシウムを主
成分としたものである請求項1または2記載のポリオレ
フィン系樹脂予備発泡粒子の製造方法。
3. The method for producing pre-expanded polyolefin resin particles according to claim 1, wherein the anti-fusing agent contains tribasic calcium phosphate as a main component.
JP6674698A 1997-03-25 1998-03-17 Method for producing polyolefin resin pre-expanded particles Expired - Fee Related JP3628169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6674698A JP3628169B2 (en) 1997-03-25 1998-03-17 Method for producing polyolefin resin pre-expanded particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-72225 1997-03-25
JP7222597 1997-03-25
JP6674698A JP3628169B2 (en) 1997-03-25 1998-03-17 Method for producing polyolefin resin pre-expanded particles

Publications (2)

Publication Number Publication Date
JPH10324764A true JPH10324764A (en) 1998-12-08
JP3628169B2 JP3628169B2 (en) 2005-03-09

Family

ID=26407949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6674698A Expired - Fee Related JP3628169B2 (en) 1997-03-25 1998-03-17 Method for producing polyolefin resin pre-expanded particles

Country Status (1)

Country Link
JP (1) JP3628169B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219688A (en) * 2010-04-14 2011-11-04 Kaneka Corp Polyethylene resin foaming particle and polyethylene resin in-mold expansion molded product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219688A (en) * 2010-04-14 2011-11-04 Kaneka Corp Polyethylene resin foaming particle and polyethylene resin in-mold expansion molded product

Also Published As

Publication number Publication date
JP3628169B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP5041812B2 (en) Polypropylene resin pre-expanded particles and in-mold foam molding
WO2014136933A1 (en) Method for manufacturing foamed polypropylene-resin particles
KR970010470B1 (en) Propylene resin foamed particles and foamed mold article
JP5058557B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
WO2013137411A1 (en) Polypropylene resin foam particles, in-mold foam molded body comprising polypropylene resin foam particles, and method for producing same
JPH10147661A (en) Preliminarily foamed granule of flame-retardant polyolefin and production of inmold foamed molded product using the same
JP3638960B2 (en) Polyolefin resin expanded particles and method for producing the same
JP2009126914A (en) Polypropylene-based resin pre-expandable beads, method for producing the same, and in-mold expansion-molded form
US5883141A (en) Process for preparing polyolefin resin pre-expanded particles
JP2000327825A (en) Polypropylenic resin pre-expanded particle, and preparation of the pre-expanded particle and in-mold expanded molded product
JPH10324764A (en) Production of polyolefin-based resin preexpanded particle
US5430069A (en) Pre-expanded particles of polyethylene resin
US6677040B1 (en) Expanded polypropylene particles
JP6625472B2 (en) Foamed polypropylene resin particles, foamed molded article in polypropylene resin mold, and method for producing the same
JP2006022138A (en) Preliminary expanded polypropylene-based resin particle
JPWO2018190353A1 (en) Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles, and expanded molded article in polypropylene resin mold
JP5022094B2 (en) Polypropylene resin pre-expanded particles, method for producing the same, and in-mold foam molded article
JP5064745B2 (en) Polypropylene resin pre-expanded particles with reduced friction noise
JP2006297807A (en) Polypropylene-based resin in-mold foam-molding body
JP2000129028A (en) Polypropylene resin foamed particle and molded product thereof
JP2000169619A (en) Conductive polypropylene-based resin foamed molded article and its production
JP3507699B2 (en) Method for producing polypropylene resin pre-expanded particles
JP2001151928A (en) Polypropylenic resin expanded particle for molding
JP2019156872A (en) Polyethylene-based resin foamed particle, and method for producing polyethylene-based resin in-mold foamed molded product
JP5248939B2 (en) Polypropylene resin foam particles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees