JPH1032357A - Magnetoresistance effect film and magnetoresistance effect element using the film - Google Patents

Magnetoresistance effect film and magnetoresistance effect element using the film

Info

Publication number
JPH1032357A
JPH1032357A JP8183477A JP18347796A JPH1032357A JP H1032357 A JPH1032357 A JP H1032357A JP 8183477 A JP8183477 A JP 8183477A JP 18347796 A JP18347796 A JP 18347796A JP H1032357 A JPH1032357 A JP H1032357A
Authority
JP
Japan
Prior art keywords
magnetic
layer
film
magnetic field
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8183477A
Other languages
Japanese (ja)
Other versions
JP2853664B2 (en
Inventor
Taku Kondo
近藤  卓
Atsushi Kamijo
敦 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8183477A priority Critical patent/JP2853664B2/en
Publication of JPH1032357A publication Critical patent/JPH1032357A/en
Application granted granted Critical
Publication of JP2853664B2 publication Critical patent/JP2853664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetoresistance effect film having high magnetic field sensitivity and a magnetoresistance effect element using the film by a method in which they are composed of the alloy layer, a non-magnetic layer and a soft magnetic layer consisting of a magnetic element and a non-magnetic element, on which spinodal decomposition is generated on a substrate. SOLUTION: An alloy layer 2, consisting of a spinodal-decomposed magnetic element and a non-magnetic element, is formed on a substrate 1, and a soft magnetic layer 4 is formed thereon through a non-magnetic layer 3. The alloy layer 2 has magnetic particles which are depositedly grown in uniaxial direction in parallel with the substrate 1, and also has a uniaxial magnetic anisotropy having the growing direction of easy magnetization axis. The magnetic particles, which are once deposited and grown, are not extinguished as long as the alloy alloy layer 2 is not fused, and the magnetic anisotropy once generated on the alloy layer 2 is very stable. When the magnetic particles become single magnetic domain particles by their progress and growth and their uniaxial magnetic anisotropic control becomes larger equal to the square of spontaneous magnetization, the coercive force when magnetic field is applied to the axis of easy magnetization becomes equal to the spontaneous magnetization. As a result, an artificial lattice film, having high magnetic field sensitivity, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気センサや薄膜
磁気ヘッド等に用いられる、磁気抵抗効果膜及びこれを
用いた磁気抵抗効果素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-resistance effect film used for a magnetic sensor, a thin-film magnetic head, and the like, and a magneto-resistance effect element using the same.

【0002】[0002]

【従来の技術】印加磁場により抵抗が変化する磁気抵抗
効果を利用した磁気抵抗効果素子は、磁場検出用センサ
ーや磁気ヘッド等に用いられている。従来、磁気抵抗効
果素子としては、パーマロイを中心とした磁性合金薄膜
が用いられている。この磁気抵抗効果素子は、電流方向
と磁化方向の相対角度に依存して生じる抵抗の差を利用
したものであるが、磁気抵抗変化量が3〜4%程度と小
さく、高感度化のためには、磁気抵抗変化量の大きな材
料が望まれている。これに対して、近年、新しい磁気抵
抗効果膜として次の2種類が注目されている。
2. Description of the Related Art A magnetoresistive element utilizing a magnetoresistive effect in which the resistance changes according to an applied magnetic field is used for a magnetic field detecting sensor, a magnetic head and the like. Conventionally, a magnetic alloy thin film mainly made of permalloy has been used as a magnetoresistive element. This magnetoresistive effect element utilizes a difference in resistance generated depending on the relative angle between the current direction and the magnetization direction, but has a small magnetoresistance change of about 3 to 4%. Therefore, a material having a large magnetoresistance change is desired. On the other hand, in recent years, the following two types of new magnetoresistive films have attracted attention.

【0003】その一つは、パーマロイ等の軟磁性層を銅
(Cu)等の非磁性層で分離し、一方の軟磁性層に交換
バイアス磁場を印加するための磁性層(交換バイアス
層)を設けて、それに隣接する軟磁性層(ピン層と呼
ぶ。これに対し、もう一方の軟磁性層をフリー層と呼
ぶ。)の磁化を一定方向に固定した構造を持つスピンバ
ルブ膜である。このスピンバルブ膜の示す磁気抵抗効果
は、フリー層の磁化方向と固定されたピン層の磁化方向
が磁場の印加によって反平行な配列から平行な配列に変
化することによって生じ、室温において10%に近い磁
気抵抗変化を示す。交換バイアス層としては反強磁性体
である鉄マンガン合金が当初から使われているが、その
耐腐食性やブロッキング温度が低いことから、実用上問
題があった。この問題点を解決する手段として、交換バ
イアス層に酸化物系反強磁性体である酸化ニッケルを用
いる方法(特開平7−220246号公報)や、交換バ
イアス層をなくし、ピン層に硬質磁性体であるコバルト
(Co)を用いる方法(日本応用磁気学会第88回研究
会資料、88−2,1995年1月)が知られている。
後者の方法は、コバルトの保磁力が小さいため、数十エ
ルステッドから数百エルステッドの外部磁界の影響によ
って固定していたピン層の磁化方向が変わってしまうと
いう欠点がある。
One is to separate a soft magnetic layer such as permalloy by a non-magnetic layer such as copper (Cu) and provide a magnetic layer (exchange bias layer) for applying an exchange bias magnetic field to one soft magnetic layer. This is a spin valve film having a structure in which the magnetization of a soft magnetic layer adjacent to it (called a pinned layer, whereas the other soft magnetic layer is called a free layer) is fixed in a fixed direction. The magnetoresistance effect of the spin-valve film is caused by the magnetization direction of the free layer and the magnetization direction of the fixed pinned layer changing from an antiparallel arrangement to a parallel arrangement by applying a magnetic field. It shows a near magnetoresistance change. An iron-manganese alloy, which is an antiferromagnetic material, has been used for the exchange bias layer from the beginning, but has a practical problem due to its low corrosion resistance and low blocking temperature. As a means for solving this problem, a method using nickel oxide which is an oxide antiferromagnetic material for the exchange bias layer (Japanese Patent Application Laid-Open No. Hei 7-220246), a method using no exchange bias layer and providing a pin layer with a hard magnetic material A method using cobalt (Co), which is the 88th meeting of the Japan Society of Applied Magnetics, 88-2, January 1995, is known.
The latter method has a disadvantage that the magnetization direction of the pinned layer is changed by the influence of an external magnetic field of several tens of Oersteds to several hundreds of Oersteds because the coercive force of cobalt is small.

【0004】もう一つは、コバルト(Co)、鉄(F
e)等の強磁性体と銅(Cu)、クロム(Cr)等の非
磁性体を数ナノメーターの周期で交互に積層した人工格
子(多層)膜である。この人工格子膜の示す磁気抵抗効
果は、非磁性層を介して隣り合う強磁性層の磁化が磁場
の印加によって反強磁性配列から強磁性配列に変化する
ことによって生じ、室温において10%を越える磁気抵
抗変化を示す。人工格子膜としては、(Co/Cu)、
(Fe/Cr)、(パーマロイ/Cu/Co/Cu)等
が知られている。しかし、人工格子膜は、磁気抵抗の飽
和する飽和磁場HS が、パーマロイの数エルステッド
(Oe)に対し、数kOe〜10kOeと大きいため、
磁場感度の必要とされる磁気センサーや磁気ヘッドに人
工格子膜を適用することは困難であった。そこで、人工
格子膜の大きな磁気抵抗効果変化量を保ちつつ、その飽
和磁場を小さくするための手段として、膜面内に一軸磁
気異方性を導入することが提案されている。例えば、F
e/Cr人工格子膜の成膜時に永久磁石により膜面内に
100Oe程度の磁場を印加し、膜面内に一軸磁気異方
性を導入する方法(特開平4−212402号公報)
や、(110)方位のFe/Cr人工格子膜に生ずる微
細構造による形状磁気異方性により膜面内に一軸磁気異
方性を導入する方法(ジャーナル・アプライド・フィジ
クス(J.Appl.Phys.) 第73巻、3922頁、1933
年)が知られている。後者の方法は、Fe/Cr人工格
子膜にしか適用できない欠点がある。
The other is cobalt (Co), iron (F)
This is an artificial lattice (multilayer) film in which a ferromagnetic material such as e) and a non-magnetic material such as copper (Cu) and chromium (Cr) are alternately laminated at a period of several nanometers. The magnetoresistance effect of the artificial lattice film is caused by the magnetization of the ferromagnetic layer adjacent via the nonmagnetic layer changing from the antiferromagnetic arrangement to the ferromagnetic arrangement by application of a magnetic field, and exceeds 10% at room temperature. 3 shows a change in magnetoresistance. As the artificial lattice film, (Co / Cu),
(Fe / Cr), (Permalloy / Cu / Co / Cu) and the like are known. However, in the artificial lattice film, the saturation magnetic field H S at which the magnetoresistance is saturated is several kOe to 10 kOe, which is larger than several Oersted (Oe) of Permalloy.
It has been difficult to apply artificial lattice films to magnetic sensors and magnetic heads that require magnetic field sensitivity. Therefore, it has been proposed to introduce uniaxial magnetic anisotropy in the film plane as a means for reducing the saturation magnetic field while maintaining a large magnetoresistance effect change amount of the artificial lattice film. For example, F
A method in which a magnetic field of about 100 Oe is applied to the film surface by a permanent magnet during the formation of the e / Cr artificial lattice film to introduce uniaxial magnetic anisotropy in the film surface (Japanese Patent Laid-Open No. 4-212402).
And a method of introducing uniaxial magnetic anisotropy in a film surface by a shape magnetic anisotropy caused by a fine structure generated in a (110) oriented Fe / Cr artificial lattice film (Journal Applied Physics (J. Appl. Phys. 73, 3922, 1933
Year) is known. The latter method has a disadvantage that it can be applied only to the Fe / Cr artificial lattice film.

【0005】[0005]

【発明が解決しようとする課題】上述したように、交換
バイアス層として反強磁性体である鉄マンガン合金を用
いるスピンバルブ膜、又は交換バイアス層をなくしピン
層に硬質磁性体を用いるスピンバルブ膜は、耐腐食性や
ブロッキング温度が低い、又は外部磁界の影響によって
固定していたピン層の磁化方向が変わってしまうという
欠点を有しており、製品化に適さないという問題点があ
った。また、微細構造を有する(110)方位のFe/
Cr人工格子膜は、大きな磁気抵抗変化量を保ちながら
飽和磁場を小さくできるものの、他の人工格子膜に応用
できないという問題点があった。
As described above, a spin valve film using an iron-manganese alloy which is an antiferromagnetic material as an exchange bias layer, or a spin valve film using a hard magnetic material for a pin layer without an exchange bias layer. However, they have a drawback that they have low corrosion resistance and low blocking temperature, or change the magnetization direction of the pinned layer fixed by the influence of an external magnetic field, and are not suitable for commercialization. In addition, (110) -oriented Fe /
Although the Cr artificial lattice film can reduce the saturation magnetic field while maintaining a large magnetoresistance change, it has a problem that it cannot be applied to other artificial lattice films.

【0006】[0006]

【発明の目的】本発明の目的は、磁場感度の高い磁気抵
抗効果膜及びこれを用いた磁気抵抗効果素子を提供する
ことにある。本発明の他の目的は、耐腐食性に優れ、か
つ、外部磁界の影響を受けない磁気抵抗効果膜及びこれ
を用いた磁気抵抗効果素子を提供することにある。
An object of the present invention is to provide a magnetoresistive film having high magnetic field sensitivity and a magnetoresistive element using the same. Another object of the present invention is to provide a magnetoresistive effect film which is excellent in corrosion resistance and is not affected by an external magnetic field, and a magnetoresistive effect element using the same.

【0007】[0007]

【課題を解決するための手段】本発明の第一の磁気抵抗
効果膜は、図1に示すように、基板上に、スピノーダル
分解を起こした磁性元素と非磁性元素からなる合金層、
非磁性層、軟磁性層により構成される。磁性元素と非磁
性元素とからなる合金は、図2に示すように、基板面に
平行な磁場中でスピノーダル分解させることにより、磁
場を印加した方向に析出成長した磁性粒子をもち、この
析出成長方向を磁化容易軸とする一軸磁気異方性と強い
保磁力とを有する。
As shown in FIG. 1, a first magnetoresistive film of the present invention comprises, on a substrate, an alloy layer composed of a magnetic element and a nonmagnetic element that have undergone spinodal decomposition,
It is composed of a non-magnetic layer and a soft magnetic layer. As shown in FIG. 2, the alloy composed of a magnetic element and a nonmagnetic element has magnetic particles that have been deposited and grown in the direction in which the magnetic field was applied by spinodal decomposition in a magnetic field parallel to the substrate surface. It has uniaxial magnetic anisotropy whose direction is the axis of easy magnetization and strong coercive force.

【0008】本発明の第二の磁気抵抗効果膜は、図3に
示すように、基板、スピノーダル分解を起こした磁性元
素と非磁性元素とからなる合金層、及び磁性層と非磁性
層とを交互に集積させた人工格子膜により構成される。
磁性元素と非磁性元素とからなる合金層は、図2に示す
ように、基板面に平行な磁場中でスピノーダル分解させ
ることより、磁場を印加した方向に析出成長した磁性粒
子を持ち、この析出成長方向を磁化容易軸とする一軸磁
気異方性を有する。
As shown in FIG. 3, the second magnetoresistive film of the present invention comprises a substrate, an alloy layer composed of a magnetic element and a nonmagnetic element that have undergone spinodal decomposition, and a magnetic layer and a nonmagnetic layer. It is composed of artificial lattice films that are alternately integrated.
As shown in FIG. 2, the alloy layer composed of a magnetic element and a non-magnetic element has magnetic particles that have been deposited and grown in the direction in which the magnetic field was applied by spinodal decomposition in a magnetic field parallel to the substrate surface. It has uniaxial magnetic anisotropy whose growth direction is the axis of easy magnetization.

【0009】本発明の第三の磁気抵抗効果膜は、図4に
示すように、基板、及びスピノーダル分解を起こす磁性
元素と非磁性元素とを交互に積層させた人工格子膜によ
り構成される。磁性層と非磁性層との界面領域は、図5
に示すように、基板面に平行な磁場中でスピノーダル分
解させることにより、磁場を印加した方向に析出成長し
た磁性粒子を持ち、この析出成長方向を磁化容易軸とす
る一軸磁気異方性を有する。
As shown in FIG. 4, the third magnetoresistive film of the present invention is composed of a substrate and an artificial lattice film in which magnetic elements and nonmagnetic elements that cause spinodal decomposition are alternately laminated. The interface region between the magnetic layer and the non-magnetic layer is shown in FIG.
As shown in the figure, by spinodal decomposition in a magnetic field parallel to the substrate surface, it has magnetic particles that have been deposited and grown in the direction to which the magnetic field is applied, and has uniaxial magnetic anisotropy with this deposited growth direction as the axis of easy magnetization. .

【0010】次に、本発明の作用について説明する。Next, the operation of the present invention will be described.

【0011】コバルト(Co)と銅(Cu)のような非
混和性の2元素を高温での混合液体状態から冷却する
と、2相に分離して組成ゆらぎを生じ始める。この組成
ゆらぎには、2元素の最初の混合比と温度で決まる最低
波長が存在し、最低波長より大きな波長を持った組成ゆ
らぎのみが成長する。このような分解機構を特にスピノ
ーダル分解という。スピノーダル分解は、融点以下の固
相反応でも起こるので、スピーノダル分解を起こす磁性
元素と非磁性元素とからなる合金を磁場中で長時間焼鈍
すると、組成ゆらぎによって析出した磁性元素が磁場を
かけた方向に成長し、非常に細長い軸状の磁性微粒子が
できる。成長が進むと、その軸径は数ナノメートル(n
m)、軸長は数ミクロン(μm)にもなるので、この磁
性微粒子は、成長方向すなわち焼鈍中に磁場を印加した
方向を磁化容易軸とする非常に強い一軸磁気異方性を持
った単磁区粒子になる。十分に細長い単磁区磁性粒子の
一軸異方性定数K(erg/cc) は、磁性粒子の自発磁化を
S (emu/cc)とすると、K=πMS 2 で表されるので、
その磁化容易軸方向について期待される最大の保磁力H
c (Oe)は、単磁区磁性微粒子の論理により、Hc
2K/MS =2πMSとなる。鉄(Fe)やコバルトで
は、室温でMS 〜103 (emu/cc)なので、十分に細長い
単磁区粒子になると、K〜106 (erg/cc) 、Hc 〜1
3 (Oe)にも達することになる。従って、スピノー
ダル分解により一軸方向に析出成長した磁性微粒子を有
する合金は、強い保磁力と大きな磁気異方性を持つこと
になる。合金の一軸異方性定数KA (erg/cc)は、単磁区
磁性微粒子の平均体積をv、平均密度をρとしてKA
Kvρと見積もれる。
When two immiscible elements such as cobalt (Co) and copper (Cu) are cooled from a mixed liquid state at a high temperature, they are separated into two phases and composition fluctuation starts to occur. This composition fluctuation has a minimum wavelength determined by the initial mixing ratio of the two elements and the temperature, and only the composition fluctuation having a wavelength larger than the minimum wavelength grows. Such a decomposition mechanism is particularly called spinodal decomposition. Spinodal decomposition also occurs in a solid-state reaction below the melting point, so if an alloy consisting of a magnetic element and a non-magnetic element that cause spinodal decomposition is annealed for a long time in a magnetic field, the magnetic element deposited due to composition fluctuations will be applied in the direction in which the magnetic field is applied. To form very long and thin axial magnetic particles. As the growth progresses, the shaft diameter becomes several nanometers (n
m), and the axial length becomes several microns (μm). Therefore, these magnetic fine particles have a very strong uniaxial magnetic anisotropy whose easy axis of magnetization is the growth direction, that is, the direction in which a magnetic field is applied during annealing. It becomes magnetic domain particles. The uniaxial anisotropy constant K (erg / cc) of a sufficiently elongated single domain magnetic particle is represented by K = πM S 2 where the spontaneous magnetization of the magnetic particle is M S (emu / cc).
The maximum coercive force H expected in the easy axis direction
c (Oe) is expressed as H c =
The 2K / M S = 2πM S. The iron (Fe) or cobalt, since M S to 10 3 at room temperature (emu / cc), becomes sufficiently elongated single domain particles, K~10 6 (erg / cc) , H c ~1
0 3 (Oe). Therefore, an alloy having magnetic fine particles deposited and grown uniaxially by spinodal decomposition has a strong coercive force and a large magnetic anisotropy. Alloy uniaxial anisotropy constant K A (erg / cc) is, K A ~ the average volume of the single domain magnetic particles v, the average density of ρ
It can be estimated as Kvρ.

【0012】上述のことを利用して、本発明は次の3種
類の作用を奏する。
Utilizing the above, the present invention has the following three functions.

【0013】第一に、スピノーダル分解した合金層上に
非磁性層を介して軟磁性層を形成すると、合金層の磁化
が、その保磁力により、磁化容易軸方向に固定されたス
ピンバルブ膜ができる。スピノーダル分解した合金層の
保磁力は非常に強くできるので、外部磁界の影響を受け
ない安定なスピンバルブ膜を得ることができる。
First, when a soft magnetic layer is formed on a spinodal-decomposed alloy layer via a non-magnetic layer, the magnetization of the alloy layer is changed by a coercive force to a spin valve film fixed in the easy axis direction. it can. Since the coercive force of the spinodal-decomposed alloy layer can be very high, a stable spin valve film not affected by an external magnetic field can be obtained.

【0014】第二に、スピノーダル分解した合金層上に
磁性層と非磁性層とを交互に積層させた人工格子膜を形
成すると、合金層の磁化容易軸方向と同じ方向を容易軸
とする誘導磁気異方性が人工格子膜内にも生じ、この磁
化容易軸方向に磁場を印加した時、人工格子膜の磁気抵
抗の飽和磁場が最も小さくなる。これにより、磁場感度
の高い人工格子膜を得ることができる。
Secondly, when an artificial lattice film in which magnetic layers and non-magnetic layers are alternately laminated on the spinodal-decomposed alloy layer is formed, an induction in which the easy axis is the same as the easy axis direction of the alloy layer is obtained. Magnetic anisotropy also occurs in the artificial lattice film, and when a magnetic field is applied in the direction of the easy axis of magnetization, the saturation magnetic field of the magnetoresistance of the artificial lattice film is minimized. Thereby, an artificial lattice film having high magnetic field sensitivity can be obtained.

【0015】第三に、スピノーダル分解を起こす磁性元
素と非磁性元素とを交互に積層させた人工格子膜を形成
し、磁性層と非磁性層の界面に平行な磁場中で焼鈍する
と、界面領域で非磁性粒子と混じって分布する磁性粒子
が磁場方向に析出成長して、磁場方向を磁化容易軸とす
る誘導磁気異方性が人工格子膜に生じる。この磁化容易
軸方向に磁場を印加した時、人工格子膜の磁気抵抗の飽
和磁場が最も小さくなる。これは、界面で磁性元素と非
磁性元素とを技術的に完全に分離できないことを逆手に
利用したものであり、磁性層と非磁性層との間に磁性元
素と非磁性元素のと合金層を薄く形成しても同じ効果が
得られる。
Third, an artificial lattice film in which magnetic elements and non-magnetic elements that cause spinodal decomposition are alternately laminated is formed and annealed in a magnetic field parallel to the interface between the magnetic layer and the non-magnetic layer. Then, the magnetic particles distributed mixed with the non-magnetic particles precipitate and grow in the direction of the magnetic field, and induced magnetic anisotropy having the direction of the magnetic field as the easy axis of magnetization is generated in the artificial lattice film. When a magnetic field is applied in the easy axis direction, the saturation magnetic field of the magnetoresistance of the artificial lattice film becomes the smallest. This utilizes the fact that the magnetic element and the non-magnetic element cannot be completely separated technically at the interface, and an alloy layer of the magnetic element and the non-magnetic element is interposed between the magnetic layer and the non-magnetic layer. The same effect can be obtained even if is formed thin.

【0016】[0016]

【発明の実施の形態】次に、本発明の第一実施形態につ
いて図面を参照して詳細に説明する。図1及び図2は、
本発明の第一実施形態における磁気抵抗効果膜の概略図
である。図1では、基板1上に、スピノーダル分解を起
こした磁性元素と非磁性元素からなる合金層2が形成さ
れ、この上に、非磁性層3を介して軟磁性層4が形成さ
れている。合金層2は、図2に示すように、基板1に平
行な一軸方向に析出成長した磁性粒子5をもち、成長方
向を磁化容易軸とする一軸磁気異方性を持つ。一度析出
成長した磁性粒子5は合金層2を融解させない限り消滅
することはないので、合金層2に一度生じた磁気異方性
は非常に安定である。析出成長が進んで、磁性粒子5が
単磁区粒子となり、その一軸異方性定数が自発磁化の平
方に匹敵するほど大きくなると、磁化容易軸方向に磁場
を印加したときの保磁力は自発磁化なみの大きさとな
る。合金層2を構成する元素は、スピノーダル分解を起
こす磁性元素と非磁性元素との組み合わせで、耐腐食性
に優れ、かつ析出する磁性粒子5の自発磁化が大きいも
のを選ぶべできである。例えば、アルニコ5(14Ni-24C
o-8Al-3Cu-51Fe(wt%)合金) 、60Cu-20Ni-20Fe(wt
%)合金、銅コバルト合金(Cu1-X CoX ) 等が好ま
しい。より詳細には、銅コバルト合金が好適である。構
成元素が少ないため、成膜が容易なのに加えて、それ自
身磁気抵抗効果も持つからである。
Next, a first embodiment of the present invention will be described in detail with reference to the drawings. 1 and 2
FIG. 2 is a schematic view of a magnetoresistive film according to the first embodiment of the present invention. In FIG. 1, an alloy layer 2 composed of a magnetic element and a non-magnetic element that have undergone spinodal decomposition is formed on a substrate 1, and a soft magnetic layer 4 is formed on the alloy layer 2 via a non-magnetic layer 3. As shown in FIG. 2, the alloy layer 2 has magnetic particles 5 precipitated and grown in a uniaxial direction parallel to the substrate 1 and has uniaxial magnetic anisotropy with the growth direction being the axis of easy magnetization. The magnetic particles 5 once deposited and grown do not disappear unless the alloy layer 2 is melted, so that the magnetic anisotropy once generated in the alloy layer 2 is very stable. When the precipitation growth proceeds and the magnetic particles 5 become single magnetic domain particles, and the uniaxial anisotropy constant becomes large enough to be equal to the square of the spontaneous magnetization, the coercive force when a magnetic field is applied in the direction of the easy axis of magnetization becomes smaller than the spontaneous magnetization. It becomes the size of. The element constituting the alloy layer 2 can be selected from a combination of a magnetic element and a non-magnetic element which cause spinodal decomposition and which has excellent corrosion resistance and large spontaneous magnetization of the precipitated magnetic particles 5. For example, Alnico 5 (14Ni-24C
o-8Al-3Cu-51Fe (wt%) alloy), 60Cu-20Ni-20Fe (wt%)
%) Alloy, a copper-cobalt alloy (Cu 1-X Co X ), or the like. More specifically, a copper-cobalt alloy is preferred. This is because, because there are few constituent elements, in addition to easy film formation, the film itself has a magnetoresistive effect.

【0017】合金層2のスピノーダル分解は、基板1に
合金層2を形成した後、200℃〜800℃で、基板面
に平行な磁場中で真空焼鈍することによって行う。印加
する磁場の大きさはなるべく大きい方が良いが、2キロ
エルステッド(kOe)もあれば十分である。スピノー
ダル分解によって合金層2に生じる磁気異方性は、焼鈍
温度が高く、焼鈍時間が長くなるほど大きくなるが、保
磁力は、ある最適の焼鈍温度と焼鈍時間とで最大とな
る。これは、スピノーダル分解が進んで、磁性粒子5が
非常に小さくなると、熱擾乱によって磁性粒子5の磁化
反転が容易になる(超常磁性)からだと考えられる。こ
のスピノーダル分解した合金層2上に非磁性層3を介し
て保磁力の小さい軟磁性層4を形成し、合金層2の磁化
容易軸方向に磁場を印加して、合金層2の保磁力以下の
大きさで磁場を掃引すると、合金層2の磁化が磁化容易
軸方向に固定されたまま、軟磁性層4の磁化の向きだけ
が変わる。合金層2の磁化方向の軟磁性層4の磁化方向
が磁場の掃引によって反平行な配列から平行な配列に変
化すると、磁気抵抗は最大から最小に減少する。磁気抵
抗の変化量は、合金層2の焼鈍温度が高く、焼鈍時間が
長くなると減少する。これは、焼鈍とともに合金層2の
表面の凹凸が激しくなるため、合金層2上に形成された
非磁性層3と軟磁性層4の平坦性が低下するからだと考
えられる。
The spinodal decomposition of the alloy layer 2 is performed by forming the alloy layer 2 on the substrate 1 and then performing vacuum annealing at 200 ° C. to 800 ° C. in a magnetic field parallel to the substrate surface. It is better that the magnitude of the applied magnetic field is as large as possible, but 2 kOe is sufficient. The magnetic anisotropy generated in the alloy layer 2 by the spinodal decomposition increases as the annealing temperature is higher and the annealing time is longer, but the coercive force is maximized at a certain optimum annealing temperature and annealing time. This is considered to be because when the spinodal decomposition proceeds and the magnetic particles 5 become very small, the magnetization reversal of the magnetic particles 5 becomes easy (superparamagnetism) due to thermal disturbance. A soft magnetic layer 4 having a small coercive force is formed on the spinodal-decomposed alloy layer 2 via a non-magnetic layer 3, and a magnetic field is applied in the direction of the easy axis of magnetization of the alloy layer 2 to reduce the coercive force of the alloy layer 2. When the magnetic field is swept by the magnitude of, the magnetization direction of the soft magnetic layer 4 changes only while the magnetization of the alloy layer 2 is fixed in the easy axis direction. When the magnetization direction of the soft magnetic layer 4 in the magnetization direction of the alloy layer 2 changes from the antiparallel arrangement to the parallel arrangement by sweeping the magnetic field, the magnetic resistance decreases from the maximum to the minimum. The change in the magnetoresistance decreases as the annealing temperature of the alloy layer 2 is higher and the annealing time is longer. It is considered that this is because the unevenness of the surface of the alloy layer 2 becomes intense with the annealing, so that the flatness of the nonmagnetic layer 3 and the soft magnetic layer 4 formed on the alloy layer 2 is reduced.

【0018】次に、本発明の第一実施形態の実施例につ
いて図面を参照して詳細に説明する。
Next, an example of the first embodiment of the present invention will be described in detail with reference to the drawings.

【0019】以下に説明する実施例では、図6に示した
磁場中焼鈍のできるイオンビームスパッタ装置を用い
た。図6において、スパッタ装置の真空チャンバー内に
は、銅ターゲット8aを装着した回転ターゲット台9
a、コバルトターゲット8bとパーマロイターゲット8
cを装着した回転ターゲット台9b、イオンガン10
a、10b、仕切り板11、基板をマウントした基板ホ
ルダ12、基板加熱用ヒータ13、スパッタ速度をモニ
ターするための水晶振動子膜厚計14a、14b、スパ
ッタターゲットからのスパッタ粒子線束の開閉を行うた
めのシャッタ15a、15b、真空ゲージ16、基板上
に成長した膜の表面構造評価を行うための反射高速電子
線回析(RHEED)用の電子銃17及び蛍光スクリー
ン18を備え、ゲートバルブ19を通してクライオポン
プ20により真空排気される。到達真空度は1×10-7
トール、スパッタ時の真空度は1×10-4トールであ
る。真空チャンバーの外側には、基板ホルダ12に平行
に磁場を印加するためのヘルムホルツコイル21が設置
されている。その最大印加可能磁場は2キロエルステッ
ド(kOe)である。焼鈍時の真空度は1×10-7トー
ル、焼鈍以外の成膜は室温で行ない、膜成長速度は0.
1nm/sとした。 磁気抵抗は、リソグラフィーによ
り作製したパターンを用い、室温で磁場を膜面に平行に
印加し、直流4端子法により測定した。磁化は、振動試
料型磁力計を用いて室温で測定した。
In the embodiment described below, an ion beam sputtering apparatus capable of annealing in a magnetic field as shown in FIG. 6 was used. In FIG. 6, a rotating target table 9 on which a copper target 8a is mounted is placed in a vacuum chamber of a sputtering apparatus.
a, cobalt target 8b and permalloy target 8
c, a rotating target table 9b, an ion gun 10
a, 10b, a partition plate 11, a substrate holder 12 on which a substrate is mounted, a heater 13 for heating a substrate, crystal oscillator film thickness meters 14a, 14b for monitoring a sputtering speed, and opening and closing of a sputtered particle beam from a sputter target. 15a and 15b, a vacuum gauge 16, an electron gun 17 for reflection high-speed electron beam diffraction (RHEED) for evaluating the surface structure of a film grown on the substrate, and a fluorescent screen 18; It is evacuated by the cryopump 20. Ultimate vacuum is 1 × 10 -7
The degree of vacuum at the time of torr and sputtering is 1 × 10 −4 torr. A Helmholtz coil 21 for applying a magnetic field parallel to the substrate holder 12 is provided outside the vacuum chamber. Its maximum applicable magnetic field is 2 kilooersted (kOe). The degree of vacuum during annealing is 1 × 10 −7 Torr, film formation other than annealing is performed at room temperature, and the film growth rate is 0.
1 nm / s. The magnetoresistance was measured by a direct current four-terminal method using a pattern produced by lithography and applying a magnetic field at room temperature in parallel to the film surface. The magnetization was measured at room temperature using a vibrating sample magnetometer.

【0020】〔実施例1〕本実施例では銅コバルト合金
(Cu1-X CoX )用いて行った。Cu1-1XCoの成膜
は、銅ターゲット上にコバルトチップを置いてスパッタ
することによって行ない、コバルト組成xはコバルトチ
ップの量を変えることによって調節した。熱酸化シリコ
ン基板上に銅コバルト合金を10nm成膜した後、40
0℃〜600℃で1時間〜50時間、基板面に平行な磁
場(2kOe)中で真空焼鈍を行って、合金層に生じた
誘導磁気異方性について調べたところ、図7に示すよう
な結果が得られた。誘導磁気異方性の大きさ(一軸異方
性定数)は、コバルト粒子の析出方向に20キロエルス
テッドの磁場で飽和磁化させた銅コバルト合金層を基板
に平行な磁場中で回転して測定したトルク曲線の振幅か
ら求めた。図7で、試料番号6,10,12,16及び
18の異方性定数は、焼鈍時間を50時間(3000
分)まで延ばしても変わらなかったので、それらが各組
成比での最大飽和値と考えられる。コバルトの組成比x
が増えれば、析出する磁性微粒子の密度も増えるので、
x=0.5のとき、異方性定数が最も大きくなるはずだ
が、実際は、x=0.3のときと同じ値である。これは
x=0.5の方が磁性微粒子の軸径が大きくなって、そ
の形状磁気異方性がx=0.3のそれより小さくなるか
らだと考えられる。試料番号3,5,9,11,15及
び17を比べるとわかるように、同じ焼鈍時間(100
分)では、焼鈍温度が高いほど異方性定数が大きい。こ
れは、焼鈍温度が高いほど、コバルト粒子の析出成長速
度が大きいことを示している。焼鈍温度が400℃のと
きは、焼鈍時間を50時間まで延ばしても異方性定数が
飽和しないことから、コバルト粒子の析出成長が非常に
遅くなっていることがわかる。
[Embodiment 1] In this embodiment, a copper-cobalt alloy (Cu 1-x Co x ) was used. The film formation of Cu1-1XCo was performed by placing a cobalt chip on a copper target and performing sputtering, and the cobalt composition x was adjusted by changing the amount of the cobalt chip. After forming a 10 nm thick copper-cobalt alloy on a thermally oxidized silicon substrate,
Vacuum annealing was performed at 0 ° C. to 600 ° C. for 1 hour to 50 hours in a magnetic field (2 kOe) parallel to the substrate surface, and the induced magnetic anisotropy generated in the alloy layer was examined. The result was obtained. The magnitude of the induced magnetic anisotropy (uniaxial anisotropy constant) was measured by rotating a copper-cobalt alloy layer saturated and magnetized by a magnetic field of 20 kOe in the deposition direction of the cobalt particles in a magnetic field parallel to the substrate. It was determined from the amplitude of the torque curve. In FIG. 7, the anisotropy constants of Sample Nos. 6, 10, 12, 16, and 18 are obtained by setting the annealing time to 50 hours (3000 hours).
Min), it is considered that they are the maximum saturation values at each composition ratio. Composition ratio x of cobalt
Increases, the density of the precipitated magnetic fine particles also increases,
When x = 0.5, the anisotropy constant should be the largest, but it is actually the same value as when x = 0.3. This is considered to be because the axis diameter of the magnetic fine particles becomes larger when x = 0.5, and the shape magnetic anisotropy becomes smaller than that when x = 0.3. As can be seen by comparing sample numbers 3, 5, 9, 11, 15 and 17, the same annealing time (100
In (2), the higher the annealing temperature, the larger the anisotropy constant. This indicates that the higher the annealing temperature, the higher the deposition growth rate of the cobalt particles. When the annealing temperature is 400 ° C., even if the annealing time is extended to 50 hours, the anisotropy constant is not saturated, indicating that the deposition growth of cobalt particles is extremely slow.

【0021】〔実施例2〕実施例1で示した銅コバルト
合金層(試料番号1〜18)について、その磁化容易軸
方向に磁場を印加したときの保磁力について調べたとこ
ろ、図8に示すような結果が得られた。単磁区磁性微粒
子の理論によれば、保磁力は、異方性定数に比例する
が、図8からわかるように、どのコバルト組成xでも、
焼鈍温度500℃、焼鈍時間1000分のとき、保磁力
が最も強くなっていて、焼鈍温度600℃、焼鈍時間1
000分では、異方性定数が一定または増加しているの
に対して保磁力が減少している。これは、スピノーダル
分解が進んで、磁性粒子が非常に小さくなったため、熱
擾乱による磁性粒子の磁化反転が起こりやすい状態(超
常磁性)になったからだと考えられる。試料番号10
(コバルト組成比xが0.3、焼鈍温度が500℃、焼
鈍時間が1000分)の磁化容易軸方向とそれに垂直な
面内方向(磁化困難軸方向)及び磁化容易軸方向と磁化
困難軸方向の間の方向(45°方向)に磁場を印加した
場合の磁化曲線を図9に示す。図9からわかるように、
磁化容易軸方向で保磁力が最も強くなっている。
EXAMPLE 2 The coercive force of the copper-cobalt alloy layer (Sample Nos. 1 to 18) shown in Example 1 when a magnetic field was applied in the direction of the axis of easy magnetization was examined. Such a result was obtained. According to the theory of the single domain magnetic fine particles, the coercive force is proportional to the anisotropy constant. As can be seen from FIG.
When the annealing temperature is 500 ° C. and the annealing time is 1000 minutes, the coercive force is the strongest, and the annealing temperature is 600 ° C. and the annealing time is 1
At 000 minutes, the coercive force decreased while the anisotropy constant was constant or increased. This is probably because the spinodal decomposition progressed and the magnetic particles became very small, so that the magnetic particles became in a state (superparamagnetism) where the magnetization reversal of the magnetic particles was likely to occur due to thermal disturbance. Sample No. 10
(Cobalt composition ratio x: 0.3, annealing temperature: 500 ° C., annealing time: 1000 minutes) Easy magnetization direction and in-plane direction perpendicular thereto (hard magnetization direction), easy magnetization direction and hard magnetization direction FIG. 9 shows a magnetization curve when a magnetic field is applied in the direction (45 ° direction). As can be seen from FIG.
The coercive force is the strongest in the easy axis direction.

【0022】〔実施例3〕図7の条件でスピノーダル分
解した銅コバルト合金層上に、銅を2.5nm形成し、
さらに、パーマロイを10nm形成して、磁気抵抗の変
化量の試料依存性を調べた。磁気抵抗測定は、銅コバル
ト合金層の磁化容易軸方向に磁場を印加して、合金層の
保磁力以下の大きさで磁場を掃引することにより行な
い、銅コバルト合金層(ピン層)の磁化方向と、パーマ
ロイ膜(フリー層)の磁化方向とが平行な配列から反平
行な配列に変化する時の磁気抵抗の変化率を調べた。そ
の結果を図10に示す(試料番号は図7に対応して1’
〜18’とする。)。ここで、磁気抵抗変化率(%)
は、磁場0のときの抵抗値RO から磁気抵抗が飽和した
ときの抵抗値RS を差し引いた値とRS との比(RO
S )×100/RS である。RO <RS のときは、そ
の絶対値をとる。図10からわかるように、磁気抵抗変
化率は、焼鈍温度が高く、焼鈍時間が長くなると減少す
る。これは、焼鈍とともに銅コバルト合金層の表面の凹
凸が激しくなるため、合金層上に形成された非磁性層と
軟磁性層の平坦性が低下するからだと考えられる。しか
しながら、保磁力の最も強い試料番号10’の磁気抵抗
変化率(3.5%)は、硬質磁性体であるコバルト膜上
に銅膜を介してパーマロイ膜を形成した場合の値(4
%)とほぼ同等の性能である。従って、この磁気抵抗効
果膜から、外部磁界の影響を受けない安定な磁気抵抗効
果(スピンバルブ)素子を得られることがわかる。
Example 3 Copper was formed to a thickness of 2.5 nm on a copper-cobalt alloy layer that had undergone spinodal decomposition under the conditions of FIG.
Further, permalloy was formed to a thickness of 10 nm, and the sample dependence of the amount of change in magnetoresistance was examined. Magnetoresistance is measured by applying a magnetic field in the direction of the easy axis of magnetization of the copper-cobalt alloy layer and sweeping the magnetic field with a magnitude smaller than the coercive force of the alloy layer. Then, the change rate of the magnetoresistance when the magnetization direction of the permalloy film (free layer) changes from the parallel arrangement to the antiparallel arrangement was examined. The result is shown in FIG. 10 (sample number is 1 ′ corresponding to FIG. 7).
1818 ′. ). Here, magnetoresistance change rate (%)
The ratio between the value and the R S obtained by subtracting the resistance value R S when the magnetic resistance is saturated from the resistance value R O when the field 0 (R O -
R S ) × 100 / R S. If R O <R S , take its absolute value. As can be seen from FIG. 10, the magnetoresistance change rate decreases as the annealing temperature increases and the annealing time increases. This is presumably because the surface irregularities of the copper-cobalt alloy layer become more intense with annealing, and the flatness of the non-magnetic layer and the soft magnetic layer formed on the alloy layer is reduced. However, the magnetoresistance ratio (3.5%) of Sample No. 10 ′ having the strongest coercive force is the value (4) obtained when a permalloy film is formed on a cobalt film as a hard magnetic material via a copper film.
%). Therefore, it is understood that a stable magnetoresistive (spin-valve) element which is not affected by an external magnetic field can be obtained from the magnetoresistive film.

【0023】〔実施例4〕本実施例では、合金層にアル
ニコ5(14Ni−24Co−8Al−3Cu−51F
e(wt%)合金)を用いた。アルニコ5の成膜は、ア
ルニコ5のターゲットをスパッタすることによって行っ
た。熱酸化シリコン基板上にアルニコ5合金を10nm
成膜した後、基板面に平行な磁場(2kOe)中で80
0℃30分間真空焼鈍を行った後、さらに、500℃〜
600℃で1時間〜50時間、真空焼鈍を行った。この
とき、合金層に生じた誘導磁気異方性と保磁力について
調べたところ図11に示すような結果が得られた。誘導
磁気異方性の大きさ(一軸異方性定数)は、磁性粒子
(鉄コバルト合金)の析出方向に20キロエルステッド
の磁場で飽和磁化させたアルニコ5合金層を、基板に平
行な磁場中で回転して測定したトルク曲線の振幅から求
めた。保磁力の測定は、磁化容易軸方向に磁場を印加し
たときの磁化曲線から求めた。図11からわかるよう
に、焼鈍温度が高く、焼鈍時間が長くなるほど、異方性
定数と保磁力は大きくなるが、その最大値は、コバルト
合金層のそれと比較して半分以下しかない。アルニコ5
の析出粒子(鉄コバルト合金)の自発磁化(約1700
ガウス)はコバルト合金のそれ(1400ガウス)より
大きいので、本来ならば、異方性定数や保磁力も大きく
なるはずだが、そうならないのは、アルニコ5合金層内
の磁性粒子の析出密度がほぼ1に近いために、隣接する
磁性粒子の磁極が打ち消されてしまうからだと考えられ
る。このように、アルニコ5では、合金中の磁性元素の
含有量が決まっているために、析出粒子の密度を調節で
きないのが難点である。
Embodiment 4 In this embodiment, Alnico 5 (14Ni-24Co-8Al-3Cu-51F) was added to the alloy layer.
e (wt%) alloy). The Alnico 5 film was formed by sputtering an Alnico 5 target. Alnico 5 alloy 10nm on thermally oxidized silicon substrate
After the film is formed, 80 in a magnetic field (2 kOe) parallel to the substrate surface.
After performing vacuum annealing at 0 ° C. for 30 minutes,
Vacuum annealing was performed at 600 ° C. for 1 hour to 50 hours. At this time, when the induced magnetic anisotropy and the coercive force generated in the alloy layer were examined, the results shown in FIG. 11 were obtained. The magnitude of the induced magnetic anisotropy (uniaxial anisotropy constant) is determined by saturating an Alnico 5 alloy layer, which is saturated with a magnetic field of 20 kOe in the magnetic particle (iron-cobalt alloy) deposition direction, in a magnetic field parallel to the substrate. It was determined from the amplitude of the torque curve measured by rotating at. The coercive force was measured from a magnetization curve when a magnetic field was applied in the easy axis direction. As can be seen from FIG. 11, the higher the annealing temperature and the longer the annealing time, the larger the anisotropy constant and the coercive force, but the maximum value is only half or less as compared with that of the cobalt alloy layer. Alnico 5
Magnetization of precipitated particles of iron (cobalt alloy) (about 1700
Gauss) is larger than that of the cobalt alloy (1400 Gauss), so the anisotropy constant and coercive force should originally be large, but this is not the case because the precipitation density of the magnetic particles in the Alnico 5 alloy layer is almost the same. It is considered that the value is close to 1 so that the magnetic poles of adjacent magnetic particles are canceled out. As described above, in Alnico 5, since the content of the magnetic element in the alloy is determined, it is difficult to control the density of precipitated particles.

【0024】〔実施例5〕図11の条件でスピノーダル
分解したアルニコ5合金層上に、銅を2.5nm形成
し、さらに、パーマロイを10nm形成して、磁気抵抗
の変化量の試料依存性を調べた。磁気抵抗測定は、アル
ニコ5合金層の磁化容易軸方向に磁場を印加して、合金
層の保磁力以下の大きさで磁場を掃引することにより、
行い、アルニコ5(ピン層)の磁化方向と、パーマロイ
膜(フリー層)の磁化方向とが平行な配列から反平行な
配列に変化する時の磁気抵抗の変化率を調べた。その結
果を図12に示す(試料番号は図11に対応して19’
〜27’とする)。実施例3と比較して焼鈍温度が高い
こともあり、最大飽和磁場での磁気抵抗変化率は、より
小さくなっている。
Example 5 Copper was formed to a thickness of 2.5 nm and permalloy was formed to a thickness of 10 nm on the Alnico 5 alloy layer spinodally decomposed under the conditions shown in FIG. Examined. In the magnetoresistance measurement, a magnetic field is applied in the direction of the easy axis of magnetization of the Alnico 5 alloy layer, and the magnetic field is swept by a magnitude equal to or smaller than the coercive force of the alloy layer.
Then, the change rate of the magnetoresistance when the magnetization direction of the Alnico 5 (pin layer) and the magnetization direction of the permalloy film (free layer) change from a parallel arrangement to an antiparallel arrangement was examined. The result is shown in FIG. 12 (sample number is 19 ′ corresponding to FIG. 11).
To 27 ′). Since the annealing temperature is higher than in Example 3, the rate of change in magnetoresistance at the maximum saturation magnetic field is smaller.

【0025】〔実施例6〕本実施例では、合金層に60
Cu−20Ni−20Fe(wt%)合金を用いた。6
0Cu−20Ni−20Fe(wt%)合金の成膜は、
60Cu−20Ni−20Fe(wt%)合金のターゲ
ットをスパッタすることによって行った。熱酸化シリコ
ン基板上に60Cu−20Ni−20Fe(wt%)合
金を10nm成膜した後、400℃〜600℃で1時間
〜50時間、基板面に平行な磁場(2kOe)中で真空
焼鈍を行った。このとき、合金層に生じた誘導磁気異方
性と保磁力について調べたところ、図13に示すような
結果が得られた。誘導磁気異方性の大きさ(一軸異方性
定数)は、磁性粒子(鉄ニッケル合金)の析出方向に2
0キロエルステッドの磁場で飽和変化させた60Cu−
20Ni−20Fe(wt%)合金層を、基板に平行な
磁場中で回転して測定したトルク曲線の振幅から求め
た。保磁力の測定は、磁化容易軸方向に磁場を印加した
ときの磁化曲線から求めた。図13で、試料番号33の
異方性定数は、焼鈍時間を50時間(3000分)まで
延ばしても変わらなかったので、最大飽和値と考えられ
る。異方性定数や保磁力の最大値は、実施例1や実施例
4と比較して非常に小さい。これは、析出磁性粒子(鉄
ニッケル合金)がもともと軟磁性体であることの他に、
磁性粒子が単磁区構造をとりにくいからだと考えられ
る。
[Embodiment 6] In this embodiment, the alloy layer is
A Cu-20Ni-20Fe (wt%) alloy was used. 6
The film formation of 0Cu-20Ni-20Fe (wt%) alloy is as follows.
This was performed by sputtering a target of a 60Cu-20Ni-20Fe (wt%) alloy. After forming a 60 nm Cu-20Ni-20Fe (wt%) alloy on a thermally oxidized silicon substrate to a thickness of 10 nm, vacuum annealing is performed at 400 ° C. to 600 ° C. for 1 hour to 50 hours in a magnetic field (2 kOe) parallel to the substrate surface. Was. At this time, when the induced magnetic anisotropy and the coercive force generated in the alloy layer were examined, the results shown in FIG. 13 were obtained. The magnitude of the induced magnetic anisotropy (uniaxial anisotropy constant) is 2 in the precipitation direction of the magnetic particles (iron-nickel alloy).
60Cu- which is saturated by a magnetic field of 0 kOe
The 20Ni-20Fe (wt%) alloy layer was determined from the amplitude of the torque curve measured by rotation in a magnetic field parallel to the substrate. The coercive force was measured from a magnetization curve when a magnetic field was applied in the easy axis direction. In FIG. 13, the anisotropy constant of Sample No. 33 did not change even when the annealing time was extended to 50 hours (3000 minutes), and is considered to be the maximum saturation value. The maximum values of the anisotropy constant and the coercive force are much smaller than those of the first and fourth embodiments. This is because the deposited magnetic particles (iron nickel alloy) are originally soft magnetic materials,
It is considered that the magnetic particles are unlikely to have a single magnetic domain structure.

【0026】次に、本発明の第二実施形態について図面
を参照して詳細に説明する。図3は、本発明の第二実施
形態における磁気抵抗効果膜の概略図である。基板1上
に、スピノーダル分解を起こした磁性元素と非磁性元素
からなる合金層2が形成され、この上に、磁性層6と非
磁性層7を交互に積層した人工格子膜が形成されてい
る。合金層2は、図2に示すように、基板1に平行な一
軸方向に析出成長した磁性粒子5を持ち、成長方向を磁
化容易軸とする一軸磁気異方性を持つ。合金層2の上に
形成された人工格子膜の磁性層6には、合金層2と同じ
方向を磁化容易軸とする誘導磁気異方性が生じ、この容
易軸方向に磁場を印加した時、人工格子膜の磁気抵抗の
飽和する磁場が最も小さくなる。飽和磁場は、合金層2
の磁気異方性が大きいほど小さくなるが、磁気抵抗の変
化量は、合金層2の焼鈍温度が低く、焼鈍時間の短い方
が大きくなる。これは、焼鈍温度が高いほど、また、焼
鈍時間が長くなるほど、合金層2の表面の凹凸が激しく
なるため、合金層2上に形成された人工格子膜の平坦性
が低下するからだと考えられる。磁気抵抗の変化量は印
加磁場方向に依存しないが、飽和磁場は、磁化容易軸方
向に磁場を印加した場合、磁化困難軸方向に印加した場
合より最大で2桁近く減少する。
Next, a second embodiment of the present invention will be described in detail with reference to the drawings. FIG. 3 is a schematic diagram of a magnetoresistive film according to the second embodiment of the present invention. An alloy layer 2 composed of a magnetic element and a non-magnetic element that have undergone spinodal decomposition is formed on a substrate 1, and an artificial lattice film in which magnetic layers 6 and non-magnetic layers 7 are alternately stacked is formed thereon. . As shown in FIG. 2, the alloy layer 2 has magnetic particles 5 deposited and grown in a uniaxial direction parallel to the substrate 1, and has uniaxial magnetic anisotropy with the growth direction being an easy axis of magnetization. The magnetic layer 6 of the artificial lattice film formed on the alloy layer 2 has an induced magnetic anisotropy having an easy axis of magnetization in the same direction as that of the alloy layer 2, and when a magnetic field is applied in the easy axis direction, The magnetic field at which the magnetoresistance of the artificial lattice film saturates is minimized. The saturation magnetic field depends on the alloy layer 2
The larger the magnetic anisotropy of the alloy layer 2 becomes, the smaller the magnetic anisotropy becomes. This is considered to be because the higher the annealing temperature and the longer the annealing time, the more uneven the surface of the alloy layer 2 becomes, and the lower the flatness of the artificial lattice film formed on the alloy layer 2 becomes. . Although the amount of change in the magnetic resistance does not depend on the direction of the applied magnetic field, the saturation magnetic field is reduced by up to two orders of magnitude when the magnetic field is applied in the easy axis direction, compared to when the magnetic field is applied in the hard axis direction.

【0027】次に、本発明の第二実施形態の実施例につ
いて詳細に説明する。 〔実施例7〕スピノーダル分解を起こす磁性元素と非磁
性元素からなる合金層は、実施例1と同様に銅コバルト
合金(Cu1-X CoX )膜を採用した。熱酸化シリコン
基板上に銅コバルト合金を10nm成膜した後、図7と
同じ条件で磁場中焼鈍した試料を作成し(試料番号は図
7に対応して1”〜18”とする)、各々の上に、2n
mのコバルト(Co)と1nmの銅(Cu)を交互に3
0回積層させた人工格子(以下[Co(2nm)/Cu
(1nm)]30と記す。)を形成した。20キロエルス
テッドの磁場でコバルト粒子の析出方向に飽和磁化させ
た後、生じた誘導磁気異方性の磁化容易軸方向に磁場を
印加して、磁気抵抗変化率及び飽和磁場の試料依存性を
調べた。その結果を図14に示す。図14からわかるよ
うに、異方性定数が最大の時(試料番号10”,1
2”,16”及び18”)、飽和磁場が最小になる(5
0Oe)が、磁気抵抗変化率は、焼鈍温度が低く、か
つ、焼鈍時間の短い方が大きい。これは、焼鈍温度が高
い程、また、焼鈍時間が長くなる程、焼鈍中に銅コバル
ト合金層の表面に発生する凹凸の起伏が激しくなるた
め、合金層上に形成された人工格子膜の平坦性が低下し
て、[Co(2nm)/Cu(1nm)]30のCo層間
の磁気カップリングが弱まるためであると考えられる。
試料番号10”(コバルトの組成比xが0.3、焼鈍温
度が500℃、焼鈍時間が1000分)の磁化容易軸方
向とそれに垂直な面内方向(磁化困難軸方向)に磁場を
印加した場合の磁化曲線と磁気抵抗曲線を図15と図1
6にそれぞれ示す。図16からわかるように、磁気抵抗
変化率は印加磁場方向に依存しないが、磁気抵抗が飽和
する磁場は、図15の磁気異方性の差を反映して、磁化
容易軸方向に磁場を印加した場合に、磁化困難軸方向に
印加した場合より2桁近く減少している。
Next, an example of the second embodiment of the present invention will be described in detail. Example 7 A copper-cobalt alloy (Cu 1-x Co x ) film was used as an alloy layer made of a magnetic element and a non-magnetic element that cause spinodal decomposition, as in the first embodiment. After forming a 10 nm-thick copper-cobalt alloy on a thermally oxidized silicon substrate, a sample was annealed in a magnetic field under the same conditions as in FIG. 7 (sample numbers are 1 ″ to 18 ″ corresponding to FIG. 7). On top of 2n
m of cobalt (Co) and 1 nm of copper (Cu) alternately 3
An artificial lattice (hereinafter referred to as [Co (2 nm) / Cu
(1nm)] referred to as 30. ) Formed. After performing saturation magnetization in the precipitation direction of cobalt particles with a magnetic field of 20 kOe, a magnetic field is applied in the direction of the easy axis of the induced magnetic anisotropy generated, and the magnetoresistance change rate and the sample dependence of the saturation magnetic field are examined. Was. The result is shown in FIG. As can be seen from FIG. 14, when the anisotropy constant is maximum (sample No. 10 ″, 1
2 ", 16" and 18 ") and the saturation field is minimized (5
0 Oe), the magnetoresistance change rate is larger when the annealing temperature is lower and the annealing time is shorter. This is because the higher the annealing temperature and the longer the annealing time, the more irregularities that occur on the surface of the copper-cobalt alloy layer during annealing become more severe, so the flatness of the artificial lattice film formed on the alloy layer is increased. It is considered that this is because the magnetic coupling between the Co layers of [Co (2 nm) / Cu (1 nm)] 30 is weakened.
A magnetic field was applied in the easy axis direction of sample number 10 ″ (cobalt composition ratio x: 0.3, annealing temperature: 500 ° C., annealing time: 1000 minutes) and an in-plane direction perpendicular thereto (hard axis direction). FIG. 15 and FIG.
6 respectively. As can be seen from FIG. 16, the rate of change in magnetoresistance does not depend on the direction of the applied magnetic field, but the magnetic field at which the magnetoresistance saturates reflects the difference in magnetic anisotropy in FIG. In this case, the value is reduced by almost two orders of magnitude when applied in the direction of the hard magnetization axis.

【0028】次に、本発明の第三実施形態について図面
を参照して詳細に説明する。図4は、本発明の第三実施
形態における磁気抵抗効果膜の概略図である。基板1上
に、スピノーダル分解を起こす磁性元素と非磁性元素と
の組み合わせで、磁性層8と非磁性層9とを交互に積層
した人工格子膜が形成されている。スピノーダル分解を
起こした磁性層8と非磁性層9の界面10領域は、図5
に示すように、界面10に平行な一軸方向に析出成長し
た磁性粒子5をもち、成長方向を磁化容易軸とする一軸
磁気異方性を持つ。スピノーダル分解を起こす磁性元素
と非磁性元素は、交互に積層したとき磁気抵抗効果を示
すものを選ばねばならない。例えば、パーマロイ(Ni
−Fe)と銅(Cu)、コバルト(Co)と銅等であ
る。より詳細には、人工格子を形成したとき、磁気抵抗
の変化量が最も大きくなるコバルトと銅の組み合わせが
好適である。
Next, a third embodiment of the present invention will be described in detail with reference to the drawings. FIG. 4 is a schematic diagram of a magnetoresistive film according to the third embodiment of the present invention. An artificial lattice film in which magnetic layers 8 and nonmagnetic layers 9 are alternately stacked on a substrate 1 is formed by a combination of a magnetic element and a nonmagnetic element that cause spinodal decomposition. The interface 10 region between the magnetic layer 8 and the non-magnetic layer 9 in which spinodal decomposition has occurred is shown in FIG.
As shown in (1), the magnetic particles 5 have the uniaxial magnetic anisotropy in which the magnetic particles 5 are deposited and grown in a uniaxial direction parallel to the interface 10, and the growth direction is the easy axis of magnetization. As the magnetic element and the non-magnetic element that cause spinodal decomposition, those that exhibit a magnetoresistance effect when alternately stacked must be selected. For example, permalloy (Ni
-Fe) and copper (Cu), and cobalt (Co) and copper. More specifically, a combination of cobalt and copper that gives the largest amount of change in magnetoresistance when an artificial lattice is formed is preferable.

【0029】分析用透過型電子顕微鏡を用いて、人工格
子膜の層断面の組成分析を行うと、どんなに理想的な条
件で成膜しても、磁性元素と非磁性元素が混合している
領域が、磁性層8と非磁性層9の界面10の数オングス
トローム近傍に存在することがわかる。従って、この人
工格子膜を400℃〜600℃で基板面に平行な磁場中
で真空焼鈍すると、界面10の近傍領域で磁性粒子5が
一軸方向に析出成長することになる。印加する磁場の大
きさはなるべく大きい方が良いが、2キロエルステッド
(kOe)もあれば十分である。人工格子膜の磁性層8
には、界面10の近傍領域と同じ方向を磁化容易軸とす
る一軸磁気異方性が生じ、この容易軸方向に磁場を印加
した時、人工格子膜の磁気抵抗の飽和する磁場が最も小
さくなる。飽和磁場は、磁気異方性が大きいほど小さく
なるが、磁気抵抗の変化量は、人工格子膜の焼鈍温度が
低く、焼鈍時間の短い方が大きくなる。これは、焼鈍温
度が高いほど、また、焼鈍時間が長くなるほど、人工格
子膜の界面の平坦性が低下するからだと考えられる。磁
気抵抗の変化量は印加磁場方向に依存しないが、飽和磁
場は、磁化容易軸方向に磁場を印加した場合、磁化困難
軸方向に印加した場合より最大で2桁近く減少する。人
工格子膜の磁性層8と非磁性層9の間に磁性元素と非磁
性元素の合金層を薄く形成してスピノーダル分解した場
合には、合金層がない場合よりも大きな一軸磁気異方性
が得られるが、磁気抵抗の変化量は小さくなる。これ
は、合金層の形成により、磁性層間の磁気カップリング
が弱まるからだと考えられる。
When the composition analysis of the layer cross section of the artificial lattice film is performed by using a transmission electron microscope for analysis, the region where the magnetic element and the non-magnetic element are mixed can be obtained no matter how ideal the film is formed. Is present in the vicinity of several angstroms at the interface 10 between the magnetic layer 8 and the non-magnetic layer 9. Therefore, when this artificial lattice film is vacuum-annealed at 400 ° C. to 600 ° C. in a magnetic field parallel to the substrate surface, the magnetic particles 5 are deposited and grown uniaxially in the region near the interface 10. It is better that the magnitude of the applied magnetic field is as large as possible, but 2 kOe is sufficient. Magnetic layer 8 of artificial lattice film
Generates an uniaxial magnetic anisotropy having an easy axis of magnetization in the same direction as the region near the interface 10, and when a magnetic field is applied in this easy axis direction, the magnetic field at which the magnetic resistance of the artificial lattice film saturates is minimized. . The saturation magnetic field decreases as the magnetic anisotropy increases, but the change in the magnetoresistance increases as the annealing temperature of the artificial lattice film is lower and the annealing time is shorter. This is presumably because the higher the annealing temperature and the longer the annealing time, the lower the flatness of the interface of the artificial lattice film. Although the amount of change in the magnetic resistance does not depend on the direction of the applied magnetic field, the saturation magnetic field is reduced by up to two orders of magnitude when the magnetic field is applied in the easy axis direction, compared to when the magnetic field is applied in the hard axis direction. When a thin alloy layer of a magnetic element and a non-magnetic element is formed between the magnetic layer 8 and the non-magnetic layer 9 of the superlattice film and subjected to spinodal decomposition, a larger uniaxial magnetic anisotropy is obtained than without the alloy layer. However, the amount of change in the magnetoresistance is small. This is presumably because the formation of the alloy layer weakens the magnetic coupling between the magnetic layers.

【0030】次に、本発明の第三実施形態の実施例につ
いて詳細に説明する。 〔実施例8〕スピノーダル分解を起こす磁性元素と非磁
性元素の組み合わせとしては、人工格子を形成したとき
に最大の磁気抵抗効果を持つコバルトと銅を採用した。
熱酸化シリコン基板上に2nmのコバルト(Co)と1
nmの銅(Cu)を交互に30回積層させた人工格子
(以下[Co(2nm)/Cu(1nm)]30と記
す。)を形成した後、400℃〜600℃で1時間〜5
0時間、基板面に平行な磁場(2kOe)中で真空焼鈍
を行って、人工格子膜に生じた誘導磁気異方性について
調べたところ図17に示すような結果が得られた。誘導
磁気異方性の大きさ(一軸異方性定数)は、コバルト粒
子の析出方向に20キロエルステッドの磁場で飽和磁化
させた人工格子膜を基板に平行な磁場中で回転して測定
したトルク曲線の振幅から求めた。図17からわかるよ
うに、スピノーダル分解によって合金層に生じる磁気異
方性は、焼鈍温度が高く、また、焼鈍時間が長くなるほ
ど大きくなり、最大飽和値も、銅コバルト合金層をスピ
ノーダル分解した実施例1の場合と同じである。これ
は、コバルト粒子の析出領域が界面の近傍領域に限られ
ていることと、界面が磁性層に隣接していることの相殺
効果によるものと考えられる。次に、一軸磁気異方性の
磁化容易軸方向に磁場を印加して、磁気抵抗変化率及び
飽和磁場の試料依存性を調べた。その結果を図18に示
す。図18からわかるように、飽和磁場は、焼鈍温度が
高く、焼鈍時間が長いほど小さくなるが、それに比例し
て、磁気抵抗変化率も減少してしまう。これは、焼鈍中
に界面の平坦性が低下し、[Co(2nm)/Cu(1
nm)]30のCoの層間の磁気カップリングが弱まるた
めであると考えられる。
Next, an example of the third embodiment of the present invention will be described in detail. Example 8 As a combination of a magnetic element and a nonmagnetic element that cause spinodal decomposition, cobalt and copper having the maximum magnetoresistance effect when an artificial lattice was formed were employed.
2 nm of cobalt (Co) and 1 nm on a thermally oxidized silicon substrate
After forming an artificial lattice (hereinafter referred to as [Co (2 nm) / Cu (1 nm)] 30 ) in which copper (Cu) having a thickness of 30 nm is alternately laminated 30 times, it is heated at 400 ° C. to 600 ° C. for 1 hour to 5 hours.
Vacuum annealing was performed for 0 hour in a magnetic field (2 kOe) parallel to the substrate surface, and the induced magnetic anisotropy generated in the artificial lattice film was examined. The result shown in FIG. 17 was obtained. The magnitude of the induced magnetic anisotropy (uniaxial anisotropy constant) is the torque measured by rotating an artificial lattice film, which is saturated and magnetized by a magnetic field of 20 kOe in the direction of deposition of cobalt particles, in a magnetic field parallel to the substrate. It was determined from the amplitude of the curve. As can be seen from FIG. 17, the magnetic anisotropy generated in the alloy layer by spinodal decomposition increases as the annealing temperature increases and the annealing time increases, and the maximum saturation value also increases with the spinodal decomposition of the copper-cobalt alloy layer. Same as 1 This is considered to be due to the fact that the precipitation region of the cobalt particles is limited to the region near the interface and that the interface is adjacent to the magnetic layer. Next, a magnetic field was applied in the direction of the easy axis of the uniaxial magnetic anisotropy, and the sample dependence of the magnetoresistance change rate and the saturation magnetic field was examined. FIG. 18 shows the result. As can be seen from FIG. 18, the saturation magnetic field becomes smaller as the annealing temperature is higher and the annealing time is longer, but the rate of change in magnetoresistance is reduced in proportion thereto. This is because the flatness of the interface decreases during annealing, and [Co (2 nm) / Cu (1
nm)] It is considered that this is because the magnetic coupling between the layers of Co of 30 is weakened.

【0031】[0031]

【発明の効果】第一の効果は、磁場感度の高い人工格子
膜(磁気抵抗効果膜)及びこれを用いた磁気抵抗効果素
子を得ることができるということである。その理由は、
スピノーダル分解により異方的に析出成長した磁性粒子
が強い一軸磁気異方性を持つためである。
The first effect is that an artificial lattice film (magnetoresistive film) having high magnetic field sensitivity and a magnetoresistive element using the same can be obtained. The reason is,
This is because magnetic particles anisotropically deposited and grown by spinodal decomposition have strong uniaxial magnetic anisotropy.

【0032】第二の効果は、外部磁界の影響を受けない
スピンバルブ膜(磁気抵抗効果膜)及びこれを用いた磁
気抵抗効果素子を得ることができるということである。
その理由は、スピノーダル分解により異方的に析出成長
した磁性単磁区微粒子がその磁化容易軸方向に磁場をか
けたときに強い保磁力を持つためである。
A second effect is that a spin valve film (magnetoresistive film) which is not affected by an external magnetic field and a magnetoresistive element using the same can be obtained.
The reason is that the magnetic single magnetic domain fine particles anisotropically deposited and grown by spinodal decomposition have a strong coercive force when a magnetic field is applied in the direction of the easy axis of magnetization.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第一実施形態における磁気抵抗効果膜を示す概
略図である。
FIG. 1 is a schematic diagram showing a magnetoresistive effect film according to a first embodiment.

【図2】第一実施形態における磁気抵抗効果膜の一部を
示す概略図である。
FIG. 2 is a schematic view showing a part of a magnetoresistive film according to the first embodiment.

【図3】第二実施形態における磁気抵抗効果膜を示す概
略図である。
FIG. 3 is a schematic diagram illustrating a magnetoresistive effect film according to a second embodiment.

【図4】第三実施形態における磁気抵抗効果膜を示す概
略図である。
FIG. 4 is a schematic diagram illustrating a magnetoresistive effect film according to a third embodiment.

【図5】第三実施形態における磁気抵抗効果膜の一部を
示す概略図である。
FIG. 5 is a schematic view showing a part of a magnetoresistive film according to a third embodiment.

【図6】実施例で用いたスパッタ装置の概略図である。FIG. 6 is a schematic view of a sputtering apparatus used in an example.

【図7】実施例1における磁気抵抗効果膜の特性を示す
図表である。
FIG. 7 is a table showing characteristics of the magnetoresistive film in Example 1.

【図8】実施例2における磁気抵抗効果膜の特性を示す
図表である。
FIG. 8 is a table showing characteristics of a magnetoresistive film in Example 2.

【図9】実施例2における磁気抵抗効果膜の磁化曲線を
示すグラフである。
FIG. 9 is a graph showing a magnetization curve of a magnetoresistive film in Example 2.

【図10】実施例3における磁気抵抗効果膜の特性を示
す図表である。
FIG. 10 is a table showing characteristics of a magnetoresistive film in Example 3.

【図11】実施例4における磁気抵抗効果膜の特性を示
す図表である。
FIG. 11 is a table showing characteristics of a magnetoresistive film in Example 4.

【図12】実施例5における磁気抵抗効果膜の特性を示
す図表である。
FIG. 12 is a table showing characteristics of a magnetoresistive film in Example 5.

【図13】実施例6における磁気抵抗効果膜の特性を示
す図表である。
FIG. 13 is a table showing characteristics of a magnetoresistive film in Example 6.

【図14】実施例7における磁気抵抗効果膜の特性を示
す図表である。
FIG. 14 is a table showing characteristics of a magnetoresistive film in Example 7.

【図15】実施例7における磁気抵抗効果膜の磁化曲線
を示すグラフである。
FIG. 15 is a graph showing a magnetization curve of a magnetoresistive film in Example 7.

【図16】実施例7における磁気抵抗効果膜の磁気抵抗
曲線を示すグラフである。
FIG. 16 is a graph showing a magnetoresistance curve of a magnetoresistance effect film in Example 7.

【図17】実施例8における磁気抵抗効果膜の特性を示
す図表である。
FIG. 17 is a table showing characteristics of the magnetoresistive film in Example 8.

【図18】実施例8における磁気抵抗効果膜の特性を示
す図表である。
FIG. 18 is a chart showing characteristics of a magnetoresistive film in Example 8.

【符号の説明】[Explanation of symbols]

1 基板 2 合金層 3 非磁性層 4 軟磁性層 5 磁性粒子 6,8 磁性層 7,9 非磁性層 10 磁性層と非磁性層との界面 DESCRIPTION OF SYMBOLS 1 Substrate 2 Alloy layer 3 Nonmagnetic layer 4 Soft magnetic layer 5 Magnetic particle 6,8 Magnetic layer 7,9 Nonmagnetic layer 10 Interface between magnetic layer and nonmagnetic layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 スピノーダル分解により析出した一方向
にそろった針状の磁性粒子を有する合金層が基板上に設
けられ、前記合金層上に非磁性層を介して軟磁性層を積
層したことを特徴とする磁気抵抗効果膜。
An alloy layer having unidirectionally arranged needle-like magnetic particles deposited by spinodal decomposition is provided on a substrate, and a soft magnetic layer is laminated on the alloy layer via a non-magnetic layer. Characteristic magnetoresistive film.
【請求項2】 スピノーダル分解により析出した一方向
にそろった針状の磁性粒子を有する合金層が基板上に設
けられ、前記合金層上に磁性層と非磁性層とを交互に積
層させた人工格子膜が設けられたことを特徴とする磁気
抵抗効果膜。
2. An artificial layer comprising: an alloy layer having unidirectionally aligned needle-like magnetic particles deposited by spinodal decomposition provided on a substrate; and a magnetic layer and a nonmagnetic layer alternately laminated on the alloy layer. A magnetoresistive film comprising a lattice film.
【請求項3】 スピノーダル分解を起こす磁性元素と非
磁性元素とを基板上に交互に積層させた人工格子膜を有
し、かつ当該磁性元素と当該非磁性元素との界面領域
に、スピノーダル分解により析出した一方向にそろった
針状の磁性粒子が設けられたことを特徴とする磁気抵抗
効果膜。
3. An artificial lattice film in which a magnetic element and a nonmagnetic element that cause spinodal decomposition are alternately laminated on a substrate, and an interface region between the magnetic element and the nonmagnetic element is formed by spinodal decomposition. A magnetoresistive film, comprising needle-like magnetic particles that are deposited in one direction.
【請求項4】 請求項1,2又は3記載の磁気抵抗効果
膜を用い、前記スピノーダル分解によって生じた一軸磁
気異方性の磁化容易軸方向と平行に磁場を印加する手段
を有することを特徴とする磁気抵抗効果素子。
4. A means for applying a magnetic field in parallel with a direction of an easy axis of uniaxial magnetic anisotropy generated by the spinodal decomposition, using the magnetoresistive effect film according to claim 1, 2, or 3. Magneto-resistance effect element.
JP8183477A 1996-07-12 1996-07-12 Magnetoresistance effect film and magnetoresistance effect element using the same Expired - Lifetime JP2853664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8183477A JP2853664B2 (en) 1996-07-12 1996-07-12 Magnetoresistance effect film and magnetoresistance effect element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8183477A JP2853664B2 (en) 1996-07-12 1996-07-12 Magnetoresistance effect film and magnetoresistance effect element using the same

Publications (2)

Publication Number Publication Date
JPH1032357A true JPH1032357A (en) 1998-02-03
JP2853664B2 JP2853664B2 (en) 1999-02-03

Family

ID=16136495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8183477A Expired - Lifetime JP2853664B2 (en) 1996-07-12 1996-07-12 Magnetoresistance effect film and magnetoresistance effect element using the same

Country Status (1)

Country Link
JP (1) JP2853664B2 (en)

Also Published As

Publication number Publication date
JP2853664B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
Nogués et al. Exchange bias
US5373238A (en) Four layer magnetoresistance device and method for making a four layer magnetoresistance device
JP3483895B2 (en) Magnetoresistive film
Soeya et al. Magnetic exchange coupling for bilayered Ni81Fe19/NiO and trilayered Ni81Fe19/NiFeNb/NiO films
Garcia et al. Exchange bias in (Pt/Co 0.9 Fe 0.1) n/FeMn multilayers with perpendicular magnetic anisotropy
Shiratsuchi et al. Control of the Interfacial Exchange Coupling Energy in Pt/Co/$\alpha $-Cr $ _ {2} $ O $ _ {3} $ Films by Inserting a Pt Spacer Layer at the Co/$\alpha $-Cr $ _ {2} $ O $ _ {3} $ Interface
Singh et al. Large uniaxial anisotropy induced in soft ferromagnetic thin films by oblique deposition of underlayer
Dieny et al. Impact of intergrain spin-transfer torques due to huge thermal gradients in heat-assisted magnetic recording
JP3249052B2 (en) Magnetoresistive element, method of manufacturing the same, and magnetic head provided with the element
Minor et al. Stress dependence of soft, high moment and nanocrystalline FeCoB films
JPH09293611A (en) Magnetoresistive effect element thin film and its manufacturing method
Matthes et al. Magnetotransport properties of perpendicular [Pt/Co]/Cu/[Co/Pt] pseudo-spin-valves
JP2743806B2 (en) Magnetoresistive film and method of manufacturing the same
Pang et al. Magnetization behavior of thick epitaxial Gd (0001) films on W (110)
Fernandez-Outon et al. Large exchange bias IrMn/CoFe for magnetic tunnel junctions
Elphick et al. Perpendicular exchange Bias in (Co/Pt) n multilayers
JP3547974B2 (en) Magnetic element, magnetic head and magnetic storage device using the same
JP2000091665A (en) Magnetoresistance effect film and manufacture thereof
Klemmer et al. Exchange induced unidirectional anisotropy observed using Cr–Al antiferromagnetic films
JP3226254B2 (en) Exchange coupling film, magnetoresistive element and magnetoresistive head
Demirci et al. Angle-dependent inverted hysteresis loops in an exchange-biased [Co/Pt] 5/IrMn thin film
JP2853664B2 (en) Magnetoresistance effect film and magnetoresistance effect element using the same
Magnan et al. Beyond the magnetic domain matching in magnetic exchange coupling
Tsunoda et al. Systematic Study for Magnetization Dependence of Exchange Anisotropy Strength in Mn-Ir/FM (FM ${=} $ Ni-Co, Co-Fe, Fe-Ni) Bilayer System
JP2002074639A (en) Perpendicular magnetic recording medium and magnetic storage device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981020