JPH10323566A - Photocatalyst and its production - Google Patents

Photocatalyst and its production

Info

Publication number
JPH10323566A
JPH10323566A JP9150044A JP15004497A JPH10323566A JP H10323566 A JPH10323566 A JP H10323566A JP 9150044 A JP9150044 A JP 9150044A JP 15004497 A JP15004497 A JP 15004497A JP H10323566 A JPH10323566 A JP H10323566A
Authority
JP
Japan
Prior art keywords
mica
titanium oxide
photocatalyst
ion
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9150044A
Other languages
Japanese (ja)
Inventor
Kunio Kitajima
圀夫 北島
Toichiro Izawa
登一郎 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9150044A priority Critical patent/JPH10323566A/en
Publication of JPH10323566A publication Critical patent/JPH10323566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an excellent photocatalyst by keeping a superfine particle state of titanium oxide and to produce the photocatalyst easily capable of forming a thin film by directly blending it to a ceramic compact by a homogeneous mixing. SOLUTION: An unswelling mica powder is converted to a mica powder by exchanging their intercalation ion to a sodium ion with tetraphenyl sodium boron to coordinate a water molecule between a crystal layer, then heating and cleaving and a metallic ion is deposited on the mica powder with the metallic ion selected among potassium silver, gold, platinum, palladium and ruthenium by an ion exchange or chemical plating, then the mica powder is combined with a titanium oxide obtained by hydrolyzing a titanate soln. In this way, the photocatalyst made to an imbricate state is obtained by combining the unswelling mica carrying the titanium oxide and the metallic ion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化チタンの超微
粒子と雲母を結合した光触媒及びその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst comprising ultrafine titanium oxide particles and mica, and a method for producing the same.

【0002】[0002]

【従来の技術】酸化チタンの超微粒子による光触媒は、
光照射により電子と正孔を励起し、酸化及び還元作用を
発揮する物質として有用なものであり、酸化チタンの光
触媒作用は本質的に超微粒子性によっている。したがっ
てその粒径は分子レベルの50nm以下の粉末やゾルであ
り、又は肉厚100nm以下の薄膜で用いられている。し
かしながら、酸化チタンの超微粒子の構造は粒度調整及
び凝集性防止のため高度の技術を必要とするものであ
り、また他の材料と混合して成形物を作る場合、粒径差
が大きく均質な成形物ができなかったのである。
2. Description of the Related Art A photocatalyst using ultrafine particles of titanium oxide is:
It is useful as a substance that excites electrons and holes by light irradiation and exhibits oxidation and reduction actions. The photocatalytic action of titanium oxide is essentially based on ultrafine particles. Therefore, it is used as a powder or sol having a particle size of 50 nm or less at the molecular level, or as a thin film having a thickness of 100 nm or less. However, the structure of titanium oxide ultrafine particles requires advanced technology for particle size control and cohesion prevention, and when mixed with other materials to form a molded product, the particle size difference is large and uniform. A molded product could not be formed.

【0003】[0003]

【発明が解決しようとする課題】本発明は、研究を重ね
た結果、酸化チタンと雲母を結合したものを基本材料と
することにより、適当な粒径にして容易に光触媒粉末を
成形できるようにしたものであり、酸化チタンの超微粒
子の状態を保持して均質にセラミック成型品に配合し、
或いは薄膜形成等を容易にできる光触媒及びその製造方
法を提供するものである。
SUMMARY OF THE INVENTION As a result of repeated studies, the present invention has been made to make it possible to easily form a photocatalyst powder with an appropriate particle size by using a combination of titanium oxide and mica as a basic material. It is blended homogeneously in ceramic molded products while maintaining the state of ultrafine particles of titanium oxide,
Another object is to provide a photocatalyst capable of easily forming a thin film and the like and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】このため本発明の光触媒
は、酸化チタンと金属イオンと非膨潤性雲母とを結合し
て鱗片状粉末に構成したことを特徴としている。なお、
該金属イオンは少なくとも、カリ、銀、金、白金、パラ
ジウム、ルテニウムより選ばれた1種又は複数種として
もよい。また本発明の光触媒の製造方法は、非膨潤性雲
母の粉末をテトラフェニルナトリウムボロンによってそ
れらの層間イオンをナトリウムイオンに交換して水分子
を結晶層間に配位させた後、加熱劈開して鱗片微粉末と
成し、これにカリ、銀、金、白金、パラジウム、ルテニ
ウムより選ばれた金属イオンでイオン交換又は化学メッ
キにより金属イオンを担持させ、ついでチタン塩溶液よ
り加水分解させた酸化チタンと結合させる方法としてい
る。
For this reason, the photocatalyst of the present invention is characterized in that flaky powder is formed by combining titanium oxide, metal ions and non-swelling mica. In addition,
The metal ion may be at least one or more selected from potassium, silver, gold, platinum, palladium, and ruthenium. Further, the method for producing a photocatalyst of the present invention comprises the steps of exchanging non-swelling mica powder with sodium ions for their interlayer ions with tetraphenylsodium boron to coordinate water molecules between crystal layers, and then heating and cleaving to produce scales. Formed into a fine powder, and carried metal ions by ion exchange or chemical plating with metal ions selected from potassium, silver, gold, platinum, palladium and ruthenium, and then titanium oxide hydrolyzed from a titanium salt solution. The method is to combine them.

【0005】酸化チタンと雲母を結合した形態は雲母の
構造上から鱗片粉末であるが、適度の粒径とすることに
よりセラミックスへの配合が容易になり、この鱗片が集
合した図形はどのような形態でも雲母が介在するので酸
化チタンは会合することはなく、超微粒子を維持するの
である。また、改質雲母は触媒活性を付与する金属イオ
ンを担持するので、酸化チタンの光触媒機能が促進され
たものになる。
[0005] The form in which titanium oxide and mica are bonded is scale powder from the structure of mica. However, by setting the particle size to an appropriate value, it can be easily incorporated into ceramics. Even in the form, since mica is interposed, the titanium oxide does not associate and maintains ultrafine particles. Further, since the modified mica carries metal ions imparting catalytic activity, the photocatalytic function of titanium oxide is promoted.

【0006】[0006]

【発明の実施の形態】本発明では、酸化チタンを超微粒
子の状態で改質された雲母に結合するものであり、この
ため、(1)非膨潤性雲母を化学処理により改質して膨
潤化し、良好に劈開した雲母鱗片を得る。(2)得られ
た雲母鱗片にイオン交換又は化学メッキによりカリ、
銀、金、白金、パラジウム、ルテニウムより選ばれた金
属イオンを担持する。(3)チタン化合物の加水分解に
より酸化チタン超微粒子を雲母鱗片と結合させるのであ
る。以下、その工程を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, titanium oxide is bound to mica modified in the form of ultrafine particles. Therefore, (1) non-swelling mica is modified by chemical treatment to swell it. To obtain well-cleaved mica scales. (2) Potassium is obtained by ion exchange or chemical plating on the obtained mica scales.
It carries a metal ion selected from silver, gold, platinum, palladium and ruthenium. (3) Ultrafine titanium oxide particles are combined with mica scales by hydrolysis of the titanium compound. Hereinafter, the process will be described in detail.

【0007】ここで雲母を用いるのは、雲母鱗片に酸化
チタン薄膜を形成し、さらにその活性を促進する金属を
担持させるためである。基本材料である雲母は、珪酸塩
層状鉱物に属し、結晶軸と平行方向は強い共有結合で結
晶軸の上下方向は弱いイオン結合を持つ異方性構造であ
る。このため雲母は薄い層に剥がれるので鱗片やシート
にすることができ、また可撓性、耐熱性、耐薬品性、電
気絶縁性、光透過性に優れている。
The reason why mica is used here is to form a titanium oxide thin film on mica scales and to carry a metal which promotes its activity. Mica, which is a basic material, belongs to a silicate layered mineral, and has an anisotropic structure having strong covalent bonds in the direction parallel to the crystal axis and weak ionic bonds in the vertical direction of the crystal axis. For this reason, the mica can be peeled off into a thin layer, so that it can be formed into scales or sheets, and is excellent in flexibility, heat resistance, chemical resistance, electrical insulation, and light transmittance.

【0008】雲母は、水との反応性から膨潤性雲母と非
膨潤性雲母とに分類できる。膨潤性とは、水を雲母結晶
の層間に引き入れて膨潤する性質であり、通常の電気絶
縁材料に使われている天然の白雲母、金雲母、合成によ
るフッ素金雲母、カリ四珪素雲母等は潤滑しない非膨潤
性雲母である。これに対し、結晶の組成上、結晶層間の
結合強度が弱く層間に配位する層間イオンが、小さなイ
オン半径で水との親和性が大きいNa+とLi+であると
層間に水分子を引き入れて膨潤するのであり、こうした
雲母を膨潤性雲母という。膨潤性雲母には、ナトリウム
(又はリチウム)テニオライト、ナトリウム(又はリチ
ウム)四珪素雲母が属し、もっとも発達したものはゾル
を生成する。膨潤性雲母は、直径が5μm以下で、肉厚
が10nm以下の微細な鱗片であり、その層間イオンは他
の金属イオンとイオン交換をすることができるのであ
る。
[0008] Mica can be classified into swellable mica and non-swellable mica based on its reactivity with water. Swellability is the property of swelling by drawing water between the layers of mica crystals.Natural muscovite, phlogopite, synthetic fluorophlogopite, potassium tetrasilicic mica and the like used in ordinary electrical insulating materials are Non-swelling non-swelling mica. On the other hand, due to the composition of the crystal, the bonding strength between the crystal layers is weak, and the interlayer ions coordinated between the layers are Na + and Li + with a small ionic radius and a high affinity for water. The mica is called swelling mica. Swellable mica includes sodium (or lithium) teniolite, sodium (or lithium) tetrasilicic mica, the most developed of which produces sols. The swellable mica is a fine scale having a diameter of 5 μm or less and a thickness of 10 nm or less, and its interlayer ions can exchange ions with other metal ions.

【0009】本発明で用いる雲母は非膨潤性雲母であ
り、天然の白雲母、金雲母、合成によるフッ素金雲母、
カリ四珪素雲母等である。膨潤性雲母は、粒径が微細で
あり他の材料と混合し難いが、非膨潤性雲母は粉砕によ
り粒径を自由に選択できるので他の材料との混合が容易
である。この非膨潤性雲母の層間イオンK+をテトラフ
ェニルナトリウムボロン[NaB(C6H5)4:以下NaTPBと称
す]による処理により溶出させ、代わりにNa+を配位
させることにより、水分子を1〜3分子層(雲母1分子
当たり2〜4H2O)を結晶相間に配位させて改質する
のである。なお、雲母から溶出したK+は直ちに難溶性
のKB(C6H5)4になるため、水溶液中のK+の濃度が低く保
たれることから反応が行われるのである。
[0009] The mica used in the present invention is a non-swelling mica, natural muscovite, phlogopite, synthetic fluorophlogopite,
And potassium silicon mica. Swellable mica has a fine particle size and is difficult to mix with other materials. However, non-swellable mica can be easily mixed with other materials because the particle size can be freely selected by pulverization. The interlayer ions K + of this non-swelling mica are eluted by treatment with tetraphenyl sodium boron [NaB (C 6 H 5 ) 4 : hereinafter referred to as NaTPB], and instead of Na + coordination, water molecules are formed. Modification is performed by coordinating 1 to 3 molecular layers ( 2 to 4 H 2 O per mica molecule) between crystal phases. Since K + eluted from mica immediately becomes insoluble KB (C 6 H 5 ) 4 , the reaction is performed because the concentration of K + in the aqueous solution is kept low.

【0010】NaTPBによる処理は、NaTPBの0.05〜0.3mol
/lを主体とし、他に必要に応じてNaF0.5〜1.0mol/l、ED
DT 0.05〜0.1mol/lを混合した水溶液1000mlに対し、非
膨潤性雲母を50〜100g投入する割合で懸濁液を調
整し、常温で3〜5時間撹拌を継続することにより処理
反応が行われるのである。そして反応終了後、固液分離
して改質された改質雲母が得られるのである。得られた
改質雲母は層間の結合強度により異なるが、結晶相間
に、カリ四珪素雲母で2水層[KMg2.5(SiO4)F2・4H
2O]、天然の金雲母、白雲母、合成のフッ素金雲母で約
1水層(1分子当たり2H2O)の水分子が配位する。ま
た、改質雲母は140〜185ミリ当量のイオン交換能
(CEC)を有する。
The treatment with NaTPB is performed by adding 0.05 to 0.3 mol of NaTPB.
/ l as the main component, and if necessary, NaF 0.5-1.0mol / l, ED
The suspension is adjusted at a ratio of 50 to 100 g of non-swellable mica to 1000 ml of an aqueous solution mixed with 0.05 to 0.1 mol / l of DT, and the treatment reaction is carried out by continuing stirring at room temperature for 3 to 5 hours. It is done. After completion of the reaction, the modified mica obtained by solid-liquid separation is obtained. Although the obtained modified mica varies depending on the bonding strength between the layers, between the crystal phases, a bi-aqueous layer [KMg 2.5 (SiO 4 ) F 2 .4H
2 O], natural phlogopite, muscovite, and synthetic fluorophlogopite, coordinate about 1 water layer (2H 2 O per molecule). The modified mica has an ion exchange capacity (CEC) of 140 to 185 meq.

【0011】ついで、この改質雲母を500゜C以上で
急熱すると、水の急激揮散による膨張で雲母鱗片が劈開
され、疵のつかない鱗片が得られる。雲母の劈開度はア
スペクト比[ルート(長径+短径)/肉厚]で50以
上、好ましくは65以上が望ましい。また、表面積は1
g当たり約2〜10m2、好ましくは3m2以上がよい。
この雲母鱗片の微粒子度は用途に応じて任意に決められ
るが、一般に触媒粉末としては70〜270メッシュ、
釉薬混合用としては100〜400メッシュ、多孔質セ
ラミック用としては10〜250メッシュを用いる。
When the modified mica is rapidly heated at 500 ° C. or higher, mica scales are cleaved by expansion due to rapid volatilization of water, and scales without flaws are obtained. The degree of cleavage of the mica is desirably 50 or more, preferably 65 or more, in an aspect ratio [root (major axis + minor axis) / wall thickness]. The surface area is 1
It is preferably about 2 to 10 m 2 , preferably 3 m 2 or more per g.
The degree of fineness of the mica scales is arbitrarily determined according to the application, but generally 70 to 270 mesh as a catalyst powder,
100-400 mesh is used for glaze mixing, and 10-250 mesh is used for porous ceramic.

【0012】また、特定の金属イオンを担持するのは、
酸化チタンと固着させて電子と正孔の結合の分離、つま
り電荷分離を図ることによって反応効率を向上させるた
めである。即ち、光触媒の反応では、光エネルギーによ
り励起されて生成する電子と正孔が再結合して熱や光と
して消費されることから反応に寄与しない場合がある。
本発明ではこの電荷分離を図って光り触媒反応を良好に
するのであり、例えば、金、白金、パラジウム、ルテニ
ウムの添加は、発生電子が素早く金属イオンに移行し、
反応対象の被還元物の還元を行い、銅、銀は酸化チタン
の電子を消費して正孔の被酸化物への酸化を促進する作
用を持つのである。
Further, the specific metal ion is supported by
This is for improving the reaction efficiency by fixing the bond between the electron and the hole, that is, by separating the charge from the electron by fixing to the titanium oxide. That is, in a photocatalytic reaction, electrons and holes generated by excitation by light energy are recombined and consumed as heat or light, and thus may not contribute to the reaction.
In the present invention, this charge separation is intended to improve the photocatalytic reaction.For example, the addition of gold, platinum, palladium, and ruthenium allows the generated electrons to be quickly transferred to metal ions,
The object to be reduced is reduced, and copper and silver have the effect of consuming electrons of titanium oxide to promote oxidation of holes into oxide.

【0013】本発明ではこれら金属イオンの担持を雲母
の層間イオン交換及び化学メッキにより行う。イオン交
換は、雲母の固形分10重量%以下の懸濁液に金属化合
物の水溶液、例えば銀(AgNO3)、金(HAuCl4)、白金
(H2PtCl6)、パラジウム(PdCl2)、ルテニウム(RuCl
3)等の濃度5〜10%を含む水溶液を撹拌しながら滴
下注入して行う。金属が錯イオンとなり易い金、白金等
は充分雲母を浸漬した後、クエン酸ナトリウムやホルマ
リン等の還元液で還元処理をする。
In the present invention, these metal ions are supported by interlayer ion exchange of mica and chemical plating. In the ion exchange, an aqueous solution of a metal compound such as silver (AgNO 3 ), gold (HAuCl 4 ), platinum (H 2 PtCl 6 ), palladium (PdCl 2 ), ruthenium is added to a suspension of mica having a solid content of 10% by weight or less. (RuCl
3 ) The aqueous solution containing a concentration of 5 to 10% is dropped and injected with stirring. For gold, platinum, and the like, in which metal tends to be complex ions, mica is sufficiently immersed and then reduced with a reducing solution such as sodium citrate or formalin.

【0014】化学メッキをする方法は、常法で行われて
いる無電解メッキの方法で行われる。例えば、銀メッキ
で例示すれば、雲母5重量%以下を濃度2〜5%の硝酸
銀溶液に浸漬して撹拌でメッキ処理を行った後、酒石酸
塩、ホルマリン、クエン酸ナトリウム等の還元液や乳
酸、アラニン、EDTA等のpH緩衝剤を加えて処理を
し、銀イオンを雲母表面に析出させる。金属イオンの析
出量は雲母表面1m2当たり10mg以上あればよい。
The chemical plating is performed by a conventional electroless plating method. For example, in the case of silver plating, 5% by weight or less of mica is immersed in a silver nitrate solution having a concentration of 2 to 5%, plating is performed by stirring, and then a reducing solution such as tartrate, formalin, sodium citrate or lactic acid is used. , Alanine, EDTA and other pH buffering agents to add silver ions to the surface of the mica. Precipitation amount of metal ions may, if the mica surface 1 m 2 per 10mg or more.

【0015】さらに酸化チタンを担持して光触媒の機能
を形成する。チタン化合物としては、硫酸チタニル、四
塩化チタン、アルコキシドチタン(TTIP.TTBP)等が用
いられる。これらのチタン化合物溶液を、加温下で撹拌
しながら雲母懸濁液に滴下し、加水分解により生成する
酸化チタンを雲母鱗片に結合させるのである。
Further, titanium oxide is supported to form a photocatalytic function. As the titanium compound, titanyl sulfate, titanium tetrachloride, titanium alkoxide (TTIP.TTBP) and the like are used. These titanium compound solutions are added dropwise to the mica suspension while stirring under heating, and the titanium oxide generated by the hydrolysis is bound to the mica scales.

【0016】なお、チタン化合物は酸化チタン又は水酸
化チタンが良好に加水分解されるよう調整される。例え
ば、硫酸チタニルは雲母懸濁液(固形分3重量%)を約
70〜90゜Cに加温し、アルカリを加えてpH5〜7
に保持しながら滴下注入して加水分解をし、酸化チタン
を雲母と結合させる。四塩化チタンは、アルカリでpH
6.5〜7に保ちながら室温で雲母懸濁液に滴下し、加水
分解して酸化チタンを雲母と結合させる。
The titanium compound is adjusted so that titanium oxide or titanium hydroxide is favorably hydrolyzed. For example, titanyl sulfate is prepared by heating a mica suspension (3% by weight of solid content) to about 70 to 90 ° C.
Hydrolysis is carried out by dropping and pouring while maintaining titanium oxide, and the titanium oxide is combined with mica. Titanium tetrachloride is alkaline and pH
While maintaining the temperature at 6.5 to 7, the solution is dropped into the mica suspension at room temperature, and the titanium oxide is combined with the mica by hydrolysis.

【0017】アルコキシドチタンは、チタンイソプロポ
キシド又はチタンブトキシドを塩酸水で稀釈し、加水分
解して酸化チタンを雲母と結合させる。硫酸チタニルと
四塩化チタンによる方法は略同等の性能である。加水分
解して生成する酸化チタン又は水酸化チタンは含水状ア
モルファス体のカチオンとして、雲母のアニオンチャー
ジの表面と会合し結合する。
Titanium alkoxide is obtained by diluting titanium isopropoxide or titanium butoxide with aqueous hydrochloric acid and hydrolyzing to bind titanium oxide to mica. The method using titanyl sulfate and titanium tetrachloride has almost the same performance. Titanium oxide or titanium hydroxide produced by hydrolysis is associated with the surface of the anion charge of mica as a cation of the hydrous amorphous body and binds.

【0018】本発明では雲母鱗片に結合する酸化チタン
の付着量は、その薄膜を分子レベルの30nm以下にする
のがよい。このため雲母1m2当たり酸化チタン付着量
は50mg以下にする必要がある。この付着量は雲母表面
積、懸濁液濃度、加水分解酸化チタン生成量、反応温
度、反応時間等を因子として実験的に調整できるのであ
る。なお、雲母の表面積は、通常、電気絶縁材に用いら
れるパルプマイカの白雲母で0.5〜5m2/g、金雲母で2
〜6m2/gであり、本発明による改質雲母では、白雲母
及び金雲母で2〜10m2/g、合成のフッ素雲母で2〜
8m2/gである。
In the present invention, the amount of titanium oxide attached to the mica scale is preferably not more than 30 nm, which is the molecular level of the thin film. Therefore mica 1 m 2 per titanium oxide coating weight should be less than or equal to 50 mg. The amount of adhesion can be adjusted experimentally using factors such as mica surface area, suspension concentration, amount of hydrolyzed titanium oxide produced, reaction temperature, and reaction time. The surface area of mica is usually 0.5 to 5 m 2 / g for muscovite of pulp mica used as an electrical insulating material and 2 m 2 / g for phlogopite.
-6 m 2 / g, in the modified mica according to the present invention, 2-10 m 2 / g for muscovite and phlogopite, and 2 to 10 m 2 / g for synthetic fluorine mica.
8 m 2 / g.

【0019】また、加水分解により雲母に結合した酸化
チタンは含水状のアモルファスであるので結晶相を調え
るため焼成処理をする。この方法は、結合反応生成物を
耐火物容器に入れ、約100゜Cまでの温度で乾燥した
後、約300〜700゜C、好ましくは300〜600
゜Cで1〜2時間加熱して含水酸化チタンを結晶質酸化
チタンの形態にすると共に、酸化チタンを雲母表面に焼
き付けるのである。
The titanium oxide bonded to mica by hydrolysis is a hydrated amorphous material, so that a baking treatment is performed to adjust the crystal phase. This method involves placing the combined reaction product in a refractory vessel, drying at a temperature up to about 100 ° C, and then at about 300-700 ° C, preferably 300-600 ° C.
By heating at ゜ C for 1 to 2 hours, the hydrous titanium oxide is converted into the form of crystalline titanium oxide, and the titanium oxide is baked on the mica surface.

【0020】なお、酸化チタンの結晶相はチタン化合物
と加熱温度によって異なるが、無機チタン塩の場合、約
700゜Cまでの加熱温度ではアナタースであり、75
0゜C以上でルチルへの転移が始まる。またアルコキシ
ドチタンの場合、約550゜Cまでの加熱温度ではアナ
タースであり、600゜C以上で大部分ルチルに転移す
る。
The crystal phase of titanium oxide varies depending on the titanium compound and the heating temperature. In the case of an inorganic titanium salt, the titanium oxide is anatase at a heating temperature up to about 700 ° C.
At 0 ° C or higher, the transition to rutile starts. In the case of titanium alkoxide, anatase is present at a heating temperature up to about 550 ° C., and most of the alkoxide titanium is transformed to rutile at 600 ° C. or higher.

【0021】光エネルギーにより励起されるアナタース
のバンドギャップは3.2 eV、ルチルでは3.0 eVであり、
アナタースの方が光還元力及び光酸化が共に大きいと推
定される。したがって本発明ではなるべく酸化チタンの
結晶相がアナタースになるよう加熱温度を制御している
が、一部ルチルになる場合を考慮し、活性を付活する金
属イオンを担持して活性を補っている。
The band gap of the anatase excited by light energy is 3.2 eV, that of rutile is 3.0 eV,
It is presumed that anatase has higher photoreducing power and photooxidation. Therefore, in the present invention, the heating temperature is controlled so that the crystal phase of titanium oxide becomes anatase as much as possible, but in consideration of the case where part of the titanium oxide becomes rutile, the activity is supplemented by carrying a metal ion that activates the activity. .

【0022】また、従来の技術に、酸化チタンと雲母を
結合したラスター顔料がある。このラスター顔料は、酸
化チタンと雲母による光線干渉により紅彩色を発現する
有機質の塗料や紫外線を吸収遮蔽する化粧顔料として用
いられている。その酸化チタンの膜厚は90〜270nmの範
囲であり、且つ1000゜C付近の加熱により安定した結晶
相ルチルで構成され、本発明のような量子サイズレベル
の光触媒技術とは異なるものである。
Another prior art is a raster pigment in which titanium oxide and mica are combined. This raster pigment is used as an organic paint that develops a red color by light interference between titanium oxide and mica, and a cosmetic pigment that absorbs and blocks ultraviolet rays. The thickness of the titanium oxide is in the range of 90 to 270 nm, and it is composed of a crystalline phase rutile which is stable by heating at about 1000 ° C., which is different from the quantum size level photocatalyst technology as in the present invention.

【0023】本発明の酸化チタン結合した雲母(以下、
チタニヤ・雲母という)による粉末光触媒は、フィラー
として他の材料と混合させることで塗料材料や成型品を
造ることができる。例えば、耐火物の表面に焼き付けて
薄膜状製品とし、或いは釉薬に配合してタイルや食器等
の施釉製品を造ることができるのである。この場合、焼
結結合材として、軟化温度が700゜C以下のガラス粉
末を20〜50重量%を添加し、ルチル化を防ぐため6
50゜C以下で焼成するのがよい。但し、有機材料との
組み合わせは、有機物を分解するため化学的結合力の強
いフッ素系樹脂やシリコン系樹脂を使用するのが好まし
い。
The titanium oxide-bonded mica of the present invention (hereinafter referred to as “mica”)
The powder photocatalyst based on titania / mica) can be used as a filler to be mixed with another material to produce a coating material or a molded product. For example, it can be baked on the surface of a refractory to form a thin film product, or blended with glaze to produce glazed products such as tiles and tableware. In this case, 20 to 50% by weight of a glass powder having a softening temperature of 700 ° C. or less is added as a sintering binder to prevent rutile.
It is preferable to bake at 50 ° C. or less. However, in combination with an organic material, it is preferable to use a fluorine-based resin or a silicon-based resin having a strong chemical bonding force for decomposing organic substances.

【0024】[0024]

【発明の効果】本発明の請求項1によると、雲母の鱗片
に薄膜状チタンが形成される構造で、雲母鱗片に結合し
た酸化チタンは、酸化チタン−雲母鱗片−酸化チタン−
雲母鱗片−酸化チタンの幾何学形態により酸化チタン相
互の会合が起こらず、分子レベルの粒子を維持できるも
のである。また、適正な粒径に調整できる光触媒であ
り、耐火物の表面に焼き付けて薄膜状製品とし、釉薬に
配合してタイル等の施釉製品、或いは塗料を造ることが
できるのである。特に、薄膜製品では弾性と耐熱性に優
れた鱗片体が基体表面と平行に積層するので焼き付けの
際に剥離することがなく、良好な皮膜体となるのであ
る。また請求項2では、金属担持により光触媒の機能を
促進する効果がある。請求項3では、活性に優れた鱗片
微粉末の光触媒が容易に製造できる。
According to the first aspect of the present invention, in a structure in which thin film titanium is formed on mica scales, the titanium oxide bonded to the mica scales is titanium oxide-mica scale-titanium oxide-
Due to the geometric form of mica scale-titanium oxide, mutual association of titanium oxide does not occur, and particles at the molecular level can be maintained. It is a photocatalyst that can be adjusted to an appropriate particle size, and can be baked on the surface of a refractory to form a thin film product, and blended with glaze to produce a glazed product such as a tile or a paint. In particular, in the case of a thin film product, scales having excellent elasticity and heat resistance are laminated in parallel with the surface of the base, so that they do not peel off during baking, resulting in a good film. According to the second aspect, there is an effect that the function of the photocatalyst is promoted by supporting the metal. According to the third aspect, a photocatalyst of scale fine powder having excellent activity can be easily produced.

【0025】[0025]

【実施例】【Example】

(A:原料雲母の調整) (A-1)天然金雲母:粉末度30〜100メッシュ(8
2%が40〜70メッシュ)、平均アスペクト比31 (A-2)合成フッ素金雲母(大竹碍子株式会社製):粉
末度30〜100メッシュ(75%が40〜70メッシ
ュ)、平均アスペクト比20 (A-3)合成四珪素雲母(大竹碍子株式会社製):粉末
度30〜100メッシュ(85%が40〜70メッシ
ュ)、平均アスペクト比35 上記の原料雲母を夫々ボールミルにより24時間湿式粉
砕し、ミキサーによる急激撹拌後、静置し、沈降物を除
去し篩い分けして採取した。
(A: Adjustment of raw material mica) (A-1) Natural phlogopite: Fineness 30-100 mesh (8
(A-2) synthetic fluorophlogopite (manufactured by Otake Insulators, Ltd.): fineness: 30 to 100 mesh (75%: 40 to 70 mesh), average aspect ratio: 20 (A-3) Synthetic tetrasilicic mica (manufactured by Otake Insulator Co., Ltd.): fineness: 30 to 100 mesh (85% is 40 to 70 mesh), average aspect ratio: 35 Each of the above raw material mica is wet-ground by a ball mill for 24 hours. After rapid stirring by a mixer, the mixture was allowed to stand, the sediment was removed, and the mixture was sieved and collected.

【0026】(B:NaTPBによる改質処理)NaTPB濃度0.
2mol/l、NaF 1.0mol/l、EDDT 0.1mol/lの混合溶液500ml
内に夫々の前記Aによる原料雲母(A-1)、(A-2)、(A
-3)を夫々25g添加し、室温で7時間電磁撹拌して雲
母改質反応を行った。反応後、固相(雲母)を円心分離
して雲母をアセトン(濃度50%)で洗浄し、共存する
KB(C6H5)4を溶解除去し、さらに水洗いした。風乾した
雲母をX線回析により底面間隔値を測定し、結晶層間に
配位した水分子層(侵入配位した水分子の厚さ)を測定
する。また、常法により、フッ化水素酸で溶解処理し、
炎光分析により層間イオンK及びNa量を測定した。
(B: Reforming treatment with NaTPB)
500ml mixed solution of 2mol / l, NaF 1.0mol / l, EDDT 0.1mol / l
The raw mica (A-1), (A-2), (A)
-3) was added in an amount of 25 g, and the mica modification reaction was performed by magnetic stirring at room temperature for 7 hours. After the reaction, the solid phase (mica) is centrifugally separated, and the mica is washed with acetone (concentration 50%) and coexists.
KB (C 6 H 5 ) 4 was dissolved and removed, and further washed with water. The bottom spacing value of the air-dried mica is measured by X-ray diffraction, and the water molecule layer coordinated between the crystal layers (the thickness of the penetrated coordinated water molecule) is measured. Also, by a conventional method, dissolution treatment with hydrofluoric acid,
The amounts of interlayer ions K and Na were measured by flame light analysis.

【0027】つぎに、風乾雲母をアルミナ製るつぼに入
れ、予め500〜550゜Cに保ってある電気炉に収容
し加熱した。るつぼ中で雲母は容積が3〜5倍に増大し
た。そして、るつぼより雲母を取り出して乳鉢で摺り、
均質にほぐした。雲母の粒度は直径で細かくなった粒子
が風乾雲母と比べ重量%で15〜20%増大していた。
急激加熱による各雲母のアスペクト比はSEM写真によ
り判定すると3〜5倍の数値であった。改質雲母の性質
を表1に示す。
Next, the air-dried mica was placed in an alumina crucible, housed in an electric furnace previously maintained at 500 to 550 ° C., and heated. In the crucible, the volume of mica increased 3 to 5 times. Then take out the mica from the crucible and rub it in a mortar,
It was loosened to homogeneity. The particle size of the mica was such that the finer particles increased in diameter by 15-20% compared to air-dried mica.
The aspect ratio of each mica due to the rapid heating was 3 to 5 times as determined by SEM photograph. Table 1 shows the properties of the modified mica.

【0028】[0028]

【表1】 [Table 1]

【0029】(C1:金属イオンの担持・イオン交換法
による) (C-1:Ag担持)前記改質処理された(A-1)の天然金雲
母、(A-2)のフッ素金雲母を用い、夫々その3重量%を
分散させた懸濁液200mlを夫々調整する。AgNO3 4.38
gを水250mlに溶解した水溶液を雲母懸濁液中に撹拌
しながら滴下注入し、約1時間撹拌を継続してイオン交
換を行い、固液分離した後、固相(雲母)を水洗いし、
110゜Cで乾燥してAg−金雲母及びAg−フッ素金雲母
を得た。
(C1: Carrying Metal Ion / Ion Exchange Method) (C-1: Ag Carrying) The modified (A-1) natural phlogopite and (A-2) fluorine phlogopite are Using each, 200 ml of a suspension in which 3% by weight of each were dispersed was prepared. AgNO 3 4.38
g of water dissolved in 250 ml of water is dropped into the mica suspension with stirring, and stirring is continued for about 1 hour to carry out ion exchange. After solid-liquid separation, the solid phase (mica) is washed with water.
Drying at 110 ° C. yielded Ag-phlogopite and Ag-fluorphlogopite.

【0030】(C-2:Pd担持)前記改質処理された(A-
3)のカリ四珪素雲母を用い、その3重量%を分散させ
た懸濁液に200mlを調整する。PdCl2 3.34gを0.1N-HC
l 100mlに溶解した水溶液を雲母懸濁液中に撹拌しなが
ら滴下注入し、約1時間撹拌を継続してイオン交換を行
い、固液分離した後、固相(雲母)を水洗いし、110
゜Cで乾燥してPd−四珪素雲母を得た。
(C-2: Pd supported) The modified (A-
Using the potassium tetrasilicic mica of 3), prepare 200 ml of a suspension in which 3% by weight is dispersed. 3.34 g of PdCl 2 0.1N-HC
l An aqueous solution dissolved in 100 ml is dropped into the mica suspension while stirring, and ion stirring is continued for about 1 hour to perform solid-liquid separation, and then the solid phase (mica) is washed with water.
Drying at ゜ C gave Pd-tetrasilicic mica.

【0031】(C-3:Pt担持)前記改質処理された(A-
3)のカリ四珪素雲母を用い、その3重量%を分散させ
た懸濁液100mlを調整する。H2PtCl6・6H2O 2.65gを水
100mlに溶解した水溶液を雲母懸濁液中に撹拌しなが
ら滴下注入し、約1時間撹拌を継続し、Pt3+交換及び
[PtCl22+をインターカレーション(層間に吸着する
形式)反応させる。反応終了後、固液分離し、固相(雲
母)を別の容器に採取し、クエン酸ナトリウムの1%溶
液180mlを添加し、70〜90゜Cで20分撹拌を続
けて還元処理をした後、固液分離し固相(雲母)を水洗
いし、乾燥してPt−四珪素雲母を得た。
(C-3: Pt supported) The modified (A-
Using 100% potassium tetrasilicic mica of 3), prepare 100 ml of a suspension in which 3% by weight thereof is dispersed. H 2 PtCl 6 · 6H 2 a O 2.65 g of an aqueous solution dissolved in water 100ml was instilled with stirring mica suspension was continued for about 1 hour stirring, Pt 3+ exchanged and [PtCl 2] 2+ Is allowed to undergo an intercalation (adsorption between layers) reaction. After the completion of the reaction, solid-liquid separation was performed, the solid phase (mica) was collected in another container, 180 ml of a 1% solution of sodium citrate was added, and the mixture was stirred at 70 to 90 ° C. for 20 minutes to perform a reduction treatment. Thereafter, solid-liquid separation was performed, and the solid phase (mica) was washed with water and dried to obtain Pt-tetrasilicon mica.

【0032】(C-4:Au担持)前記改質処理された(A-
3)のカリ四珪素雲母を用い、その3重量%を分散させ
た懸濁液100mlを調整する。HAuCl4・4H2O 2gを溶解
した水溶液100mlを雲母懸濁液中に撹拌しながら滴下
注入し、約1時間撹拌を継続し、Au交換及び[AuCl]-
をインターカレーション反応させる。反応終了後、固液
分離し、固相(雲母)を別の容器に採取しクエン酸ナト
リウムの1%溶液180mlを添加し、70〜90゜Cで
20分撹拌を続けて還元処理をした後、固液分離し固相
(雲母)を水洗いし、乾燥してAu−四珪素雲母を得た。
(C-4: Au supported) The modified (A-
Using 100% potassium tetrasilicic mica of 3), prepare 100 ml of a suspension in which 3% by weight thereof is dispersed. 100 ml of an aqueous solution in which 2 g of HAuCl 4 .4H 2 O was dissolved was dropped into the mica suspension while stirring, and stirring was continued for about 1 hour to exchange Au and [AuCl] −.
Is subjected to an intercalation reaction. After completion of the reaction, solid-liquid separation was performed, the solid phase (mica) was collected in another container, 180 ml of a 1% solution of sodium citrate was added, and the mixture was reduced at 70 to 90 ° C. for 20 minutes while continuing stirring. After solid-liquid separation, the solid phase (mica) was washed with water and dried to obtain Au-tetrasilicic mica.

【0033】(C-5:Ru担持)(A-2)の改質されたフッ
素金雲母を用い、その3重量%を分散させた懸濁液10
0mlを調整する。RuCl3 2.05gを0.1N-HCl 100mlに溶解
した水溶液を雲母懸濁液中に撹拌しながら滴下注入し、
Ru3+交換及び[RuCl52-をインターカレーション反応
させる。反応終了後、固液分離し、固相(雲母)を別の
容器に採取し、クエン酸ナトリウムの1%溶液180ml
を添加し、70〜90゜Cで20分撹拌を続けて還元処
理をした後、固液分離し固相(雲母)を水洗いし、乾燥
してRu−フッ素金雲母を得た。
(C-5: Ru supported) A suspension 10 in which 3% by weight of the modified fluorophlogopite of (A-2) was dispersed.
Adjust 0 ml. An aqueous solution in which 2.05 g of RuCl 3 was dissolved in 100 ml of 0.1 N HCl was dropped into the mica suspension while stirring,
Ru 3+ exchanged and [RuCl 5] 2-a to intercalation reaction. After the completion of the reaction, the solid-liquid separation was performed, and the solid phase (mica) was collected in another container.
Was added, and the mixture was stirred at 70 to 90 ° C. for 20 minutes to carry out a reduction treatment. After solid-liquid separation, the solid phase (mica) was washed with water and dried to obtain Ru-fluorphlogopite.

【0034】(C2:金属イオンの担持・化学メッキに
よる)(A-1)の改質された天然金雲母を、500〜5
50゜Cに加熱して劈開させた後、KCl2溶液に浸漬して
カリイオン交換した後、700゜Cで1時間加熱したも
のをAg及びPdメッキ処理する。 (C-6:Ag担持)AgNO3 30gにNH4OH(比重0.88)水を
添加し、銀アンモニア錯体を形成させ、さらに錯体を再
溶解するまで添加する。ついでNaOH 5g、ブドウ糖6
0g、水2000mlの沿を調整する。これに雲母を浸漬し撹
拌しながらメッキ処理を行い、終了後、固液分離して雲
母をアセトン及び水で洗浄し、乾燥してAg−金雲母を得
る。Agの付着量は膜厚0.2〜0.3μmであった。
The modified natural phlogopite of (A-1) (C2: by carrying metal ions and by chemical plating)
After cleavage at a temperature of 50 ° C., immersion in KCl 2 solution for potassium ion exchange, and heating at 700 ° C. for 1 hour, plating with Ag and Pd. (C-6: Ag loading) NH 4 OH (specific gravity 0.88) water is added to 30 g of AgNO 3 to form a silver ammonia complex, and further added until the complex is redissolved. Then NaOH 5g, glucose 6
0 g, adjust along the water 2000 ml. The mica is immersed in it, and a plating process is performed with stirring. After completion, solid-liquid separation is performed, the mica is washed with acetone and water, and dried to obtain Ag-phlogopite. The adhesion amount of Ag was 0.2 to 0.3 μm in film thickness.

【0035】(D−1:酸化チタンと雲母の結合)前記
Aで得た改質雲母をKCl2に浸漬して層間Na+をK+
イオン交換し、700゜Cに1時間仮焼した天然金雲母
[比表面積(BET)5.5m2/g]、同様に処理してK+
換したフッ素金雲母(比表面積4.8m2/g)を用いる。原
料雲母3g、水120mlの懸濁液をつくり、1時間減圧
して気泡を除去した後、70〜90゜C加温保持した。
(D-1: Combination of titanium oxide and mica) The modified mica obtained in the above A was immersed in KCl 2 to ion-exchange interlayer Na + to K + and calcined at 700 ° C. for 1 hour. Natural phlogopite [specific surface area (BET) 5.5 m 2 / g], similarly treated and K + exchanged fluorophlogopite (specific surface area 4.8 m 2 / g) are used. A suspension of 3 g of the raw material mica and 120 ml of water was prepared, and the pressure was reduced for 1 hour to remove bubbles, and the mixture was heated and maintained at 70 to 90 ° C.

【0036】この懸濁液に0.05ml/lの硫酸チタン溶液30
0mlを、雲母表面積1m2当たり5〜10×10-7mol/mi
nに保つように、撹拌しながら滴下し、70〜90゜C
に加温を継続して熱加水分解により含水酸化チタンを生
成させ雲母と結合させる。なお、この時pHを調節する
ため、理論硫酸イオンより少し過剰のアルミニウム粉末
を反応溶液中に加えた。
To this suspension was added a 0.05 ml / l titanium sulfate solution 30
0 ml of 5-10 × 10 −7 mol / mi per m 2 of mica surface area
n-drop at 70 ° -90 ° C.
Then, heating is continued to generate hydrous titanium oxide by thermal hydrolysis and bond with mica. At this time, in order to adjust the pH, a slightly excessive amount of aluminum powder than the theoretical sulfate ion was added to the reaction solution.

【0037】反応後、反応溶液に500mlの水を加え3
0分放置してその上澄液を捨て、遊離したTiO・2H2Oや生
成夾雑分を除去した後、沈殿物を濾過洗浄し、ウェット
ケーキ状の含水酸化チタン結合雲母を得た。これを12
0゜Cで乾燥した後、白金るつぼに入れ、600゜Cで
1時間仮焼して酸化チタン結合雲母を得た。
After the reaction, 500 ml of water was added to the reaction solution for 3 hours.
After leaving it for 0 minutes, the supernatant was discarded, and the liberated TiO.2H 2 O and generated contaminants were removed. Then, the precipitate was washed by filtration to obtain a wet cake-like hydrous titanium oxide-bound mica. This is 12
After drying at 0 ° C., it was placed in a platinum crucible and calcined at 600 ° C. for 1 hour to obtain titanium oxide-bound mica.

【0038】SEM写真(×5000)及びX線回析によれ
ば酸化チタンの膜厚は天然金雲母、フッ素金雲母共に3
0nmであり、結晶相は共にアナタースと同定された。
According to the SEM photograph (× 5000) and the X-ray diffraction, the thickness of the titanium oxide film was 3 for both natural phlogopite and fluorophlogopite.
0 nm, and both crystal phases were identified as anatase.

【0039】(D−2:酸化チタンと雲母の結合の別例
1)前記(C-1)のイオン交換によるAg−金雲母とAg−
フッ素金雲母、(C-2)によるPd−四珪素雲母、(C-3)
によるPt−四珪素雲母、(C-4)によるAu−四珪素雲
母、(C-5)によるRu−フッ素金雲母、及び (C-6)の
化学メッキによるAg−金雲母を用い、夫々前記(D−
1)と同じ操作で雲母懸濁液を調整し、硫酸チタン水溶
液の熱加水分解による含水酸化チタンと雲母の結合反応
を行った。ついで、反応生成物を650゜Cで1時間加
熱してチタニヤ・雲母を得た。
(D-2: Another Example 1 of Bonding of Titanium Oxide and Mica) Ag-phlogopite and Ag- by ion exchange of (C-1)
Fluorphlogopite, (C-2) Pd-tetrasilicic mica, (C-3)
Pt-tetrasilicic mica by (C-4), Ru-fluorphlogopite by (C-5), and Ag-phlogopite by (C-6) chemical plating, (D-
A mica suspension was prepared by the same operation as in 1), and a binding reaction between mica and hydrous titanium oxide by thermal hydrolysis of an aqueous solution of titanium sulfate was performed. Then, the reaction product was heated at 650 ° C. for 1 hour to obtain titania / mica.

【0040】この操作の中で硫酸チタン水溶液の添加条
件は原料雲母の表面積に応じて可変した。得られたチタ
ニヤ・雲母の酸化チタンの膜厚、雲母表面積、結晶相等
について表2に示す。
In this operation, the conditions for adding the aqueous solution of titanium sulfate were varied according to the surface area of the raw material mica. Table 2 shows the thickness, mica surface area, crystal phase, and the like of the obtained titania / mica titanium oxide.

【0041】[0041]

【表2】 [Table 2]

【0042】(D−3:酸化チタンと雲母の結合の別例
2)前記(C-2)によるPd−四珪素雲母、及び(C-3)に
よるPt−四珪素雲母を夫々3gに対し水120mlを加え
1時間減圧し脱泡した懸濁液に、四塩化チタン10gを
溶解した水溶液500mlを添加し、室温で撹拌しながら
アンモニア水を添加してpHを7に保ち2時間撹拌を継
続して加水分解し、酸化チタンの生成及び雲母との結合
反応を行った。
(D-3: Another Example of Bonding of Titanium Oxide and Mica) 2 g of Pd-tetrasilicon mica according to (C-2) and 3 g of Pt-tetrasilicon mica according to (C-3) were mixed with water. 120 ml was added thereto, and the pressure was reduced for 1 hour. To the defoamed suspension, 500 ml of an aqueous solution in which 10 g of titanium tetrachloride was dissolved was added, and ammonia water was added while stirring at room temperature to keep the pH at 7, and stirring was continued for 2 hours. To produce titanium oxide and bond with mica.

【0043】反応液を固相分離し、固相を別の容器に移
し、約1リットルの水を加え撹拌した後、固液分離し、
さらにアセトンで洗浄して含水酸化チタンと雲母の結合
物を得た。この含水酸化チタン・雲母を乾燥し、白金る
つぼに入れて夫々700゜C及び850゜Cで仮焼して
チタニヤ・雲母を得た。
The reaction solution was subjected to solid phase separation, the solid phase was transferred to another container, and about 1 liter of water was added thereto and stirred, followed by solid-liquid separation.
Further washing with acetone gave a combined product of hydrous titanium oxide and mica. The hydrous titanium oxide / mica was dried, placed in a platinum crucible, and calcined at 700 ° C. and 850 ° C., respectively, to obtain titania / mica.

【0044】各製品は、酸化チタンの膜厚が25〜35
nmであり、X線回析によれば結晶相は、700゜C仮焼
品ではいずれもアナタースであり、850゜C仮焼品で
は各雲母ともにルチルとアナタースの共晶相であった。
Each product has a titanium oxide film thickness of 25 to 35.
According to X-ray diffraction, the crystal phase was anatase in the calcined product at 700 ° C, and in the calcined product at 850 ° C, each mica was a eutectic phase of rutile and anatase.

【0045】(D−4:酸化チタンと雲母の結合の別例
3)TTIP(チタニウムとテトライソプロボキシド)1重
量部を0.1mol/l,HCl4重量部に滴下し、2時間室温で撹
拌して加水分解したTiO2のゾルを調整した。このゾル3
00ml中に前記(C-4)によるAu−四珪素雲母、(C-5)
によるRu−フッ素金雲母の懸濁液(2重量%)300ml
を加え、50゜Cで3時間撹拌して雲母との結合反応を
行った。得られた生成物を十分洗浄し、110゜Cで乾
燥し、ついで白金るつぼに入れて夫々600゜C及び8
00゜Cで1時間仮焼してチタニヤ・雲母を得た。
(D-4: Another example 3 of bonding of titanium oxide and mica) 1 part by weight of TTIP (titanium and tetraisopropoxide) was added dropwise to 4 parts by weight of 0.1 mol / l HCl and stirred at room temperature for 2 hours. Thus, a hydrolyzed TiO 2 sol was prepared. This sol 3
Au-tetrasilicic mica according to (C-4) in 00 ml, (C-5)
300 ml of a suspension of Ru-fluorphlogopite (2% by weight)
Was added, and the mixture was stirred at 50 ° C. for 3 hours to perform a binding reaction with mica. The product obtained is thoroughly washed, dried at 110 ° C and then placed in a platinum crucible at 600 ° C and 8 ° C, respectively.
Calcination was performed at 00 ° C for 1 hour to obtain titania / mica.

【0046】X線回析によれば結晶相は、600゜C仮
焼品ではアナタースであり、800゜C仮焼品ではルチ
ルを主体としてアナタースが少量混在する結晶組織であ
った。
According to the X-ray diffraction analysis, the crystal phase was anatase in the calcined product at 600 ° C., and the crystal structure in the calcined product at 800 ° C. was mainly rutile with a small amount of anatase.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 23/48 B01J 23/48 23/66 23/66 37/02 301 37/02 301N 37/30 37/30 C01B 33/42 C01B 33/42 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 23/48 B01J 23/48 23/66 23/66 37/02 301 37/02 301N 37/30 37/30 C01B 33/42 C01B 33/42

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化チタンと金属イオンと非膨潤性雲母
とを結合して鱗片状と成した光触媒。
1. A scaly photocatalyst formed by combining titanium oxide, metal ions and non-swelling mica.
【請求項2】 金属イオンが少なくとも、カリ、銀、
金、白金、パラジウム、ルテニウムより選ばれた1種又
は複数種である請求項1の光触媒。
2. The method according to claim 1, wherein the metal ion is at least potassium, silver,
The photocatalyst according to claim 1, wherein the photocatalyst is one or more selected from gold, platinum, palladium, and ruthenium.
【請求項3】 非膨潤性雲母の粉末をテトラフェニルナ
トリウムボロンによってそれらの層間イオンをナトリウ
ムイオンに交換して水分子を結晶層間に配位させた後、
加熱劈開して鱗片微粉末と成し、これにカリ、銀、金、
白金、パラジウム、ルテニウムより選ばれた金属イオン
でイオン交換又は化学メッキにより金属イオンを担持さ
せ、ついでチタン塩溶液より加水分解させた酸化チタン
と結合させることを特徴とする鱗片状を成す光触媒の製
造方法。
3. The method according to claim 3, wherein the non-swellable mica powder is exchanged with sodium ions for its interlayer ions with tetraphenyl sodium boron to coordinate water molecules between the crystal layers.
It is cleaved by heating to form scale fine powder, which contains potassium, silver, gold,
Production of a scaly photocatalyst characterized by supporting metal ions by ion exchange or chemical plating with metal ions selected from platinum, palladium, and ruthenium, and then combining with titanium oxide hydrolyzed from a titanium salt solution. Method.
JP9150044A 1997-05-23 1997-05-23 Photocatalyst and its production Pending JPH10323566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9150044A JPH10323566A (en) 1997-05-23 1997-05-23 Photocatalyst and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9150044A JPH10323566A (en) 1997-05-23 1997-05-23 Photocatalyst and its production

Publications (1)

Publication Number Publication Date
JPH10323566A true JPH10323566A (en) 1998-12-08

Family

ID=15488287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9150044A Pending JPH10323566A (en) 1997-05-23 1997-05-23 Photocatalyst and its production

Country Status (1)

Country Link
JP (1) JPH10323566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043924A (en) * 2002-07-15 2004-02-12 Nisshin Steel Co Ltd Metal of excellent photocatalytic activity, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043924A (en) * 2002-07-15 2004-02-12 Nisshin Steel Co Ltd Metal of excellent photocatalytic activity, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Bagheri et al. Progress on mesoporous titanium dioxide: synthesis, modification and applications
Li et al. Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials
Bao et al. Hierarchical flower-like hollow SiO2@ TiO2 spheres with enhanced thermal insulation and ultraviolet resistance performances for building coating
Yang et al. Ribbon-and boardlike nanostructures of nickel hydroxide: synthesis, characterization, and electrochemical properties
TW567103B (en) Copper powder for use in conductive paste having excellent anti oxidization property and process
CN101189186B (en) Inorganic material that has metal nanoparticles that are trapped in a mesostructured matrix
JPH082928A (en) Inorganic compound containing composite material
JP2003252609A (en) Nanomaterial of composite metal oxide
USH1447H (en) Coated silica shells
CN108889959B (en) rGO/Cu composite material and preparation method thereof
JP2002515823A (en) Highly dispersed and / or homogeneous compositions, materials and coatings made therefrom, and methods of making the same
JP2005068001A (en) Fibrous titanium oxide particle, production method therefor, and application of the particle
JP3870596B2 (en) Chlorine production method
KR20130054062A (en) A method for preparing matal-graphene nanocomposites from graphite
Sigwadi et al. The synthesis, characterization and electrochemical study of zirconia oxide nanoparticles for fuel cell application
Wang et al. Fabrication of core–shell structured TiO2@ Sb–SnO2 with improved electroconductivity
JP2019160705A (en) Fuel cell electrode catalyst
Walsh et al. Synthesis of novel composite materials via the deposition of precious metals onto protonated titanate (TiO2) nanotubes
Jassal et al. A rational assembly of paradodecatungstate anions from clusters to morphology-controlled nanomaterials
CN109486248A (en) A kind of preparation method of graphene dopen Nano oxide coating liquid and film
JPH10323567A (en) Photocatalyst and its production
JPH10323569A (en) Photocatalytic ceramic material and its production
JPH10323566A (en) Photocatalyst and its production
Khamova et al. Hydroxyapatite/Anatase Photocatalytic Core–Shell Composite Prepared by Sol‒Gel Processing
Egerton The modification of fine powders by inorganic coatings