JPH10321991A - Formation of wiring of circuit substrate - Google Patents

Formation of wiring of circuit substrate

Info

Publication number
JPH10321991A
JPH10321991A JP13116397A JP13116397A JPH10321991A JP H10321991 A JPH10321991 A JP H10321991A JP 13116397 A JP13116397 A JP 13116397A JP 13116397 A JP13116397 A JP 13116397A JP H10321991 A JPH10321991 A JP H10321991A
Authority
JP
Japan
Prior art keywords
wiring
metal
substrate
fluid
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13116397A
Other languages
Japanese (ja)
Other versions
JP3929108B2 (en
Inventor
Shinya Iijima
真也 飯島
Kishio Yokouchi
貴志男 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13116397A priority Critical patent/JP3929108B2/en
Publication of JPH10321991A publication Critical patent/JPH10321991A/en
Application granted granted Critical
Publication of JP3929108B2 publication Critical patent/JP3929108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of forming wiring of a circuit substrate which can prevent leaving of negative ions on the processed substrate by taking into consideration the environment so as not to allow generation of waste fluid. SOLUTION: A compound 1, including a metal which becomes a raw material of wiring to be formed on a circuit substrate, is dissolved into a solvent 11 under a super-critical condition to form a fluid 22, a processing substrate 31 on which a wiring is to be formed is soaked into this fluid, and the relevant metallic film is precipitated at the surface of the substrate 31 to form a wiring. A metal dissolved in the solvent is reduced by impressing the electric field to the fluid 22 to which a metallic compound is dissolved in the solvent under supper-critical condition, and thereby a film of the relevant metal can be precipitated at the surface of the substrate 31.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回路基板の配線形
成方法に関する。
The present invention relates to a method for forming wiring on a circuit board.

【0002】[0002]

【従来の技術】コンピュータなどの電子機器を対象とし
た回路基板には、ガラスエポキシ基板上に配線をパター
ニングした簡単なプリント基板から、大型コンピュータ
用に高密度配線が可能な薄膜多層回路基板に至るまでい
くつかの種類がある。しかし、どの回路基板の配線形成
プロセスにも、コスト面や設備の簡便さといった点か
ら、配線形成プロセスには大抵メッキ工程が含まれる。
2. Description of the Related Art Circuit boards for electronic devices such as computers range from simple printed circuit boards in which wiring is patterned on a glass epoxy board to thin-film multilayer circuit boards capable of high-density wiring for large computers. There are several types up to. However, the wiring forming process of any circuit board usually includes a plating step in terms of cost and simplicity of equipment.

【0003】このメッキ工程は、目的とする金属イオン
を含んだ電解液を電気分解し、陰極となる基板上に金属
を析出させる方法であるが、電気分解中に、電解液が絶
縁膜と形成された配線の間に入り込み、そのまま陰イオ
ンが残留してしまい、ショートの原因につながったりす
ることがある。また、電解液を洗い流す洗浄工程が必要
であったり、大抵の電解液は有毒であることから、電気
分解後に残った電解液を廃液として処理しなければなら
ないといった欠点がある。特に、近年では、環境に配慮
する気運の高まりから廃液がでないような配線形成プロ
セスが求められている。
The plating step is a method in which an electrolytic solution containing a target metal ion is electrolyzed to deposit a metal on a substrate serving as a cathode. During the electrolysis, the electrolytic solution forms an insulating film. In some cases, the ions enter between the wirings, and the anions remain as they are, which may cause a short circuit. Further, there is a disadvantage that a washing step for washing away the electrolyte is required, and most of the electrolytes are toxic, so that the electrolyte remaining after the electrolysis must be treated as a waste liquid. In particular, in recent years, there has been a demand for a wiring forming process in which waste liquid is not generated due to a growing tendency to consider the environment.

【0004】[0004]

【発明が解決しようとする課題】本発明は、これらの諸
問題を解決して、陰イオンの残留を防ぎ、廃液を出さな
い環境に配慮した回路基板の配線形成方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and to provide an environment-friendly wiring forming method for a circuit board which prevents anion from remaining and generates no waste liquid. I do.

【0005】[0005]

【課題を解決するための手段】本発明による回路基板の
配線形成方法は、回路基板上に形成しようとする配線の
材料となる金属を含む化合物を超臨界状態の溶媒に溶解
して溶液を作り、この溶液に配線を形成すべき処理基板
を入れ、基板表面に当該金属の膜を析出させて配線を形
成することを特徴とする。
A method for forming wiring on a circuit board according to the present invention comprises dissolving a metal-containing compound as a material for wiring to be formed on the circuit board in a solvent in a supercritical state to form a solution. The method is characterized in that a processing substrate on which a wiring is to be formed is put into this solution, and a film of the metal is deposited on the surface of the substrate to form a wiring.

【0006】本発明の好ましい態様によれば、超臨界状
態の溶媒に金属化合物を溶解した溶液に電界を印加し
て、溶解している金属を還元し、基板表面に当該金属の
膜を析出させる。
According to a preferred embodiment of the present invention, an electric field is applied to a solution in which a metal compound is dissolved in a solvent in a supercritical state to reduce the dissolved metal and deposit a film of the metal on the substrate surface. .

【0007】[0007]

【発明の実施の形態】本発明では、配線形成材料となる
金属を含む化合物を、この金属化合物が溶解可能な超臨
界状態の溶媒、すなわち超臨界流体に溶解させて使用す
る。例えば、配線形成材料が銅である場合には、適当な
超臨界流体に、銅を含む化合物を溶解させることができ
る。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a compound containing a metal as a wiring forming material is used by dissolving it in a solvent in a supercritical state in which the metal compound can be dissolved, that is, a supercritical fluid. For example, when the wiring forming material is copper, a compound containing copper can be dissolved in an appropriate supercritical fluid.

【0008】本発明で溶媒として用いる超臨界流体と
は、臨界温度及び臨界圧力を超えた状態にある流体のこ
とである。また、ここで用いる超臨界流体は、環境への
影響を小さくするため、毒性、腐食性がなく、化学的に
安定な物質であることが望ましい。また、設備のコスト
を軽減できるよう室温に近い臨界温度を有する物質であ
ることも好ましい。具体的には、臨界温度が0〜50℃
の間にあるものが好ましい。このような条件に当てはま
る超臨界流体の代表例は、二酸化炭素であり、その臨界
温度は31.1℃、臨界圧力は72.8気圧である。本
発明で使用可能な超臨界流体としては、このほかに例え
ばエタン(C2 6 )、アンモニア(NH 3 )、一酸化
二窒素(N2 O)等を上げることができる。
The supercritical fluid used as a solvent in the present invention
Is a fluid that is above the critical temperature and critical pressure.
And Also, the supercritical fluid used here is environmentally friendly.
Non-toxic, non-corrosive and chemically resistant
Desirably, it is a stable substance. Also the cost of equipment
Substances with a critical temperature close to room temperature to reduce
Is also preferred. Specifically, the critical temperature is 0 to 50 ° C.
Those in between are preferred. These conditions apply
A typical example of a supercritical fluid is carbon dioxide, whose critical
The temperature is 31.1 ° C. and the critical pressure is 72.8 atm. Book
Other supercritical fluids that can be used in the invention include
Ethane (CTwoH6), Ammonia (NH Three),monoxide
Dinitrogen (NTwoO) and the like.

【0009】配線材料の金属を含む金属化合物は、超臨
界流体に溶解可能であればどのようなものでもよい。一
例として、超臨界流体として二酸化炭素を利用し、そし
て回路基板上に銅配線を形成しようとする場合には、金
属化合物として炭酸銅を好ましく用いることができる。
The metal compound containing a metal as a wiring material may be any compound as long as it can be dissolved in a supercritical fluid. As an example, when carbon dioxide is used as a supercritical fluid and copper wiring is to be formed on a circuit board, copper carbonate can be preferably used as a metal compound.

【0010】先に述べたように、本発明の配線形成方法
では臨界温度及び臨界圧力を超えた状態にある超臨界流
体を使用することから、配線形成は用いる超臨界流体の
臨界温度、臨界圧力以上に保たれた密閉高圧容器内で行
う。そして、超臨界状態にある流体(溶媒)中へ、配線
に用いる金属を含んだ金属化合物を溶解させる。次に、
この金属化合物の溶解した超臨界流体中に配線を形成す
べき処理基板を入れて、その表面に当該金属を析出させ
て配線膜を形成させる。
As described above, in the wiring forming method of the present invention, a supercritical fluid in a state exceeding the critical temperature and critical pressure is used. This is performed in a sealed high-pressure vessel maintained as described above. Then, a metal compound containing a metal used for wiring is dissolved in a fluid (solvent) in a supercritical state. next,
A processing substrate on which a wiring is to be formed is placed in a supercritical fluid in which the metal compound is dissolved, and the metal is deposited on the surface thereof to form a wiring film.

【0011】超臨界流体中での金属の析出は、電気分解
を利用することができる。
[0011] Metal deposition in a supercritical fluid can utilize electrolysis.

【0012】電気分解では、金属化合物が溶解しそして
処理基板の入った超臨界流体に電界を印加することで、
基板表面に金属膜を析出させることができる。具体的に
は、金属化合物は超臨界流体に溶解すると陽イオンにな
るため、その超臨界流体中に浸漬した処理基板を陰極と
して電界をかけ、溶解金属イオンを還元することにより
基板上に析出させ、配線膜を形成させる。この場合、配
線材料と同じ金属製の電極を陽極として使用する。配線
膜の形成が終了したら、超臨界流体を常温・常圧に戻
す。すなわち、超臨界流体の入った密閉高圧容器の圧力
を臨界圧力以下(大気圧)まで減圧するとともに、流体
を超臨界条件に保持するため高温が使用されていた場合
には流体温度を室温まで低下させる。この工程により、
超臨界流体は気化し、そして気化した流体を容器から排
出して、配線形成が完了する。
In electrolysis, a metal compound is dissolved and an electric field is applied to a supercritical fluid containing a processing substrate.
A metal film can be deposited on the substrate surface. Specifically, since a metal compound becomes a cation when dissolved in a supercritical fluid, an electric field is applied using the treated substrate immersed in the supercritical fluid as a cathode, and the dissolved metal ion is reduced and deposited on the substrate. Then, a wiring film is formed. In this case, an electrode made of the same metal as the wiring material is used as the anode. When the formation of the wiring film is completed, the supercritical fluid is returned to normal temperature and normal pressure. In other words, the pressure of the sealed high-pressure vessel containing the supercritical fluid is reduced to below the critical pressure (atmospheric pressure), and if a high temperature is used to maintain the fluid at supercritical conditions, the fluid temperature is reduced to room temperature. Let it. By this process,
The supercritical fluid is vaporized, and the vaporized fluid is discharged from the container to complete the wiring formation.

【0013】このように、溶媒となる超臨界流体は減圧
工程によってすべて気化し、容器から排出されてしまう
ため、配線膜形成後に陰イオンが残留することがなく、
また配線形成を終えた基板の洗浄工程を省くことができ
る。その上、超臨界流体として有毒性や腐食性がないも
のを使用することから、特別な処理設備等の必要がな
く、更にメッキプロセスのような廃液も発生しないこと
から、環境への影響をなくすことができる。
As described above, since the supercritical fluid serving as a solvent is completely vaporized in the depressurizing step and discharged from the container, no anions remain after the wiring film is formed.
Further, the step of cleaning the substrate after the formation of the wiring can be omitted. In addition, the use of non-toxic and non-corrosive supercritical fluids eliminates the need for special treatment equipment and eliminates wastewater from the plating process, thus eliminating the impact on the environment. be able to.

【0014】本発明の方法は、基板上に配線パターンを
形成した簡単なプリント回路基板から、大型コンピュー
タ等に使用される高密度配線を備えた多層回路基板に至
るまでの、幅広い範囲の回路基板に、効率よく且つ環境
への影響を懸念することなく配線を形成するのを可能に
する。また、本発明の方法により配線を形成した各種回
路基板は、そうした基板が組み込まれる種々の電子装置
において使用可能である。
The method of the present invention covers a wide range of circuit boards from a simple printed circuit board having a wiring pattern formed on the board to a multilayer circuit board having high-density wiring used in a large computer or the like. In addition, it is possible to efficiently form a wiring without worrying about the influence on the environment. Various circuit boards on which wiring is formed by the method of the present invention can be used in various electronic devices in which such boards are incorporated.

【0015】[0015]

【実施例】次に、実施例により本発明を更に詳しく説明
する。言うまでもなく、本発明はこの実施例に限定され
るものではない。
Next, the present invention will be described in more detail by way of examples. Of course, the invention is not limited to this embodiment.

【0016】この例では、超臨界流体として二酸化炭素
(CO2 )を用いた。CO2 の臨界温度は31.1℃、
臨界圧力は72.8気圧である。金属化合物には炭酸銅
(CuCO3 ・Cu(OH)2 )を用い、Cu配線の形
成を試みた。炭酸銅の超臨界CO2 への溶解度を上げる
ため、処理時の環境は40℃、90気圧とした。
In this example, carbon dioxide (CO 2 ) was used as a supercritical fluid. The critical temperature of CO 2 is 31.1 ° C,
The critical pressure is 72.8 atm. An attempt was made to form a Cu wiring by using copper carbonate (CuCO 3 .Cu (OH) 2 ) as a metal compound. In order to increase the solubility of copper carbonate in supercritical CO 2 , the environment during the treatment was 40 ° C. and 90 atm.

【0017】まず、図1に示したように、三つの高圧容
器10、20、30内に、あらかじめそれぞれ超臨界状
態の二酸化炭素11、炭酸銅粉末21、そして陰極とな
る配線形成用ガラスエポキシ基板31と陽極となる銅電
極32を入れた。配線形成用ガラスエポキシ基板31の
表面には、メッキ処理により配線膜を形成する場合に一
般的であるように前もって所定パターンの銅薄膜(厚さ
約0.5μm)を、スパッタリング法で形成しておい
た。
First, as shown in FIG. 1, carbon dioxide 11 in a supercritical state, copper carbonate powder 21, and a glass-epoxy substrate for forming a wiring serving as a cathode were previously placed in three high-pressure vessels 10, 20, 30 respectively. 31 and a copper electrode 32 serving as an anode were placed. On the surface of the wiring-forming glass epoxy substrate 31, a copper thin film (thickness: about 0.5 μm) having a predetermined pattern is formed in advance by a sputtering method as is common when a wiring film is formed by plating. Oita.

【0018】その後、各容器10、20、30内の温度
及び圧力をそれぞれ、CO2 を超臨界状態に保つのに十
分な条件にした。一つの容器から別の容器への超臨界流
体の移動は容器間の圧力差を利用し、管路41、42を
介して行ったが、上述のように、容器内の条件は基本的
に40℃、90気圧とした。
Thereafter, the temperature and pressure in each of the vessels 10, 20, and 30 were adjusted to conditions sufficient to keep CO 2 in a supercritical state. The transfer of the supercritical fluid from one container to another container was performed using the pressure difference between the containers via the pipes 41 and 42, but as described above, the conditions in the container were basically 40 ° C and 90 atm.

【0019】最初に、容器10内の超臨界二酸化炭素1
1を炭酸銅21の入った容器20に移動させ、超臨界C
2 に炭酸銅を溶解させて、炭酸銅溶液22を作った。
次に、この溶液22を基板31を陰極として配置した容
器31に移動させた。この陰極と銅製の陽極32との間
に電圧を印加して溶液に電界をかけ、超臨界CO2 中の
Cu2+を還元し、陰極である基板31上の配線形成部分
にCuを析出させた。このときに流した電流の電流密度
は3A/cm2 とし、通電時間は約10分とした。析出
終了後、基板31の入った容器30を管路43を解放す
ることで大気圧まで減圧し、超臨界CO2 を気化して大
気中へ放出した。大気圧に解放後の容器30内に残留物
は認められなかった。
First, the supercritical carbon dioxide 1 in the container 10
1 into a container 20 containing copper carbonate 21 and the supercritical C
Copper carbonate was dissolved in O 2 to form a copper carbonate solution 22.
Next, the solution 22 was moved to a container 31 in which the substrate 31 was arranged as a cathode. A voltage is applied between the cathode and the copper anode 32 to apply an electric field to the solution to reduce Cu 2+ in the supercritical CO 2 , thereby depositing Cu on the wiring forming portion on the substrate 31 serving as the cathode. Was. The current density of the current passed at this time was 3 A / cm 2 , and the energizing time was about 10 minutes. After the deposition was completed, the vessel 30 containing the substrate 31 was decompressed to atmospheric pressure by releasing the conduit 43, and the supercritical CO 2 was vaporized and released into the atmosphere. No residue was found in the container 30 after releasing to atmospheric pressure.

【0020】続いて、容器30から基板31を取り出
し、配線形成部分を顕微鏡観察したところ、厚さ約5μ
mのCu配線が形成されていた。また、陰イオンの残留
は認められなかった。
Subsequently, the substrate 31 was taken out of the container 30 and the portion where the wiring was formed was observed under a microscope.
Thus, m Cu wirings were formed. No anion remained.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
今まで配線形成をメッキによって行うために避けること
ができなかった、(1)配線と絶縁膜間に陰イオンが残
留する、(2)洗浄などの後工程の必要である、(3)
有毒な廃液が発生し、廃液処理が必要になるといった問
題を、超臨界流体を用いて配線形成を行うことによって
なくすことができるようになった。これは回路基板を製
造するにあたり、配線形成プロセスの簡潔化と短縮、環
境への影響の軽減という点で寄与するところが大きい。
As described above, according to the present invention,
Until now, it was unavoidable to perform the wiring formation by plating. (1) Anions remain between the wiring and the insulating film; (2) Post-process such as cleaning is required; (3)
The problem that toxic waste liquid is generated and the waste liquid needs to be treated can be eliminated by forming wiring using a supercritical fluid. This greatly contributes to the simplification and shortening of the wiring forming process and the reduction of the influence on the environment when manufacturing the circuit board.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を説明する図である。FIG. 1 is a diagram illustrating an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10、20、30…容器 11…超臨界CO2 21…炭酸銅 22…炭酸銅溶液 31…処理基板 32…陽極 41、42、43…管路10, 20, 30 ... container 11 ... supercritical CO 2 21 ... copper carbonate 22 ... copper carbonate solution 31 ... substrate 32 ... anode 41, 42, 43 ... conduit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 回路基板上に形成しようとする配線の材
料となる金属を含む化合物を超臨界状態の溶媒に溶解し
て溶液を作り、この溶液に配線を形成すべき処理基板を
入れ、基板表面に当該金属の膜を析出させて配線を形成
することを特徴とする回路基板の配線形成方法。
1. A solution containing a metal containing a metal to be formed on a circuit board as a material of a wiring is dissolved in a solvent in a supercritical state to form a solution. A method for forming wiring on a circuit board, comprising forming a wiring by depositing a film of the metal on the surface.
【請求項2】 前記溶媒として、室温付近に臨界温度を
有する流体を用いることを特徴とする、請求項1記載の
方法。
2. The method according to claim 1, wherein a fluid having a critical temperature near room temperature is used as the solvent.
【請求項3】 前記溶媒として、毒性及び腐食性がな
く、化学的に安定な流体を用いることを特徴とする、請
求項1又は2記載の方法。
3. The method according to claim 1, wherein a non-toxic and non-corrosive, chemically stable fluid is used as the solvent.
【請求項4】 前記溶液に電界を印加して、溶解してい
る金属を還元し、前記基板表面に当該金属の膜を析出さ
せることを特徴とする、請求項1から3までのいずれか
一つに記載の方法。
4. The method according to claim 1, wherein an electric field is applied to the solution to reduce the dissolved metal and deposit a film of the metal on the surface of the substrate. The method described in one.
【請求項5】 前記溶媒が二酸化炭素であり、前記化合
物が炭酸銅である、請求項1から4までのいずれか一つ
に記載の方法。
5. The method according to claim 1, wherein the solvent is carbon dioxide and the compound is copper carbonate.
【請求項6】 請求項1から5までのいずれか一つの方
法で形成した配線を備えていることを特徴とする回路基
板。
6. A circuit board comprising a wiring formed by any one of the methods according to claim 1.
【請求項7】 請求項1から5までのいずれか一つの方
法で形成した配線を備えた回路基板が組み込まれている
ことを特徴とする電子装置。
7. An electronic device comprising a circuit board provided with wiring formed by any one of the methods according to claim 1.
JP13116397A 1997-05-21 1997-05-21 Circuit board wiring formation method Expired - Fee Related JP3929108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13116397A JP3929108B2 (en) 1997-05-21 1997-05-21 Circuit board wiring formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13116397A JP3929108B2 (en) 1997-05-21 1997-05-21 Circuit board wiring formation method

Publications (2)

Publication Number Publication Date
JPH10321991A true JPH10321991A (en) 1998-12-04
JP3929108B2 JP3929108B2 (en) 2007-06-13

Family

ID=15051486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13116397A Expired - Fee Related JP3929108B2 (en) 1997-05-21 1997-05-21 Circuit board wiring formation method

Country Status (1)

Country Link
JP (1) JP3929108B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
WO2004081255A1 (en) * 2003-01-27 2004-09-23 Tokyo Electron Limited Semiconductor device
JP2007063598A (en) * 2005-08-30 2007-03-15 Tokyo Univ Of Agriculture & Technology Porous metallic thin film and production method therefor
JP2009249653A (en) * 2008-04-01 2009-10-29 Ses Co Ltd Electroplating method
JP2010202979A (en) * 2010-04-26 2010-09-16 Yoshida Hideo Plated article and plating method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
EP1314799A1 (en) * 2000-08-24 2003-05-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
US6793793B2 (en) 2000-08-24 2004-09-21 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
EP1314799A4 (en) * 2000-08-24 2007-03-07 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
WO2004081255A1 (en) * 2003-01-27 2004-09-23 Tokyo Electron Limited Semiconductor device
JP2007063598A (en) * 2005-08-30 2007-03-15 Tokyo Univ Of Agriculture & Technology Porous metallic thin film and production method therefor
JP2009249653A (en) * 2008-04-01 2009-10-29 Ses Co Ltd Electroplating method
JP2010202979A (en) * 2010-04-26 2010-09-16 Yoshida Hideo Plated article and plating method

Also Published As

Publication number Publication date
JP3929108B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
US8784952B2 (en) Method of forming a conductive image on a non-conductive surface
JPS6190492A (en) Manufacture of copper through hole printed circuit board
CN104651840A (en) Etching composition and method for producing printed-wiring board using the same
CN101690429B (en) Process for producing printed wiring board and printed wiring board produced by the production process
JP4409558B2 (en) Method for manufacturing printed circuit board with built-in thin film capacitor and printed circuit board manufactured thereby
JPH10321991A (en) Formation of wiring of circuit substrate
US6806034B1 (en) Method of forming a conductive pattern on dielectric substrates
CN101720567B (en) Process for producing printed wiring board and printed wiring board produced by the production process
JPS6257120B2 (en)
US5092967A (en) Process for forming printed circuits
US5595637A (en) Photoelectrochemical fabrication of electronic circuits
JPH03170680A (en) Direct metal covering of nonconductive supporting body
JP2871828B2 (en) Direct metallization of printed circuit boards
AU6532100A (en) Copper deposit process
JP2007288011A (en) Method for manufacturing polyimide wiring substrate
JPH07243085A (en) Production of metal-clad polyimide substrate
TWI432614B (en) Method and apparatus for forming a metal film
US20240102194A1 (en) Plating system and method thereof
CN101026928A (en) Copper foil for super fine pitch printed circuit board
TWI268128B (en) PCB ultra-thin circuit forming method
O’Keefe et al. Organically Deposited Metallic Films for Device Fabrication
JPH02129392A (en) Manufacture of a sheet having a metal structure part
JPH0779060A (en) Wiring pattern forming method and resist removing method
JPH041067B2 (en)
CN103403228A (en) Through-hole plating method and substrate manufactured using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070306

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees