JPH10321739A - Field effect transistor and manufacturing method therefor - Google Patents

Field effect transistor and manufacturing method therefor

Info

Publication number
JPH10321739A
JPH10321739A JP9231845A JP23184597A JPH10321739A JP H10321739 A JPH10321739 A JP H10321739A JP 9231845 A JP9231845 A JP 9231845A JP 23184597 A JP23184597 A JP 23184597A JP H10321739 A JPH10321739 A JP H10321739A
Authority
JP
Japan
Prior art keywords
film
silicon
silicon oxide
oxide film
ferroelectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9231845A
Other languages
Japanese (ja)
Other versions
JP3013166B2 (en
Inventor
Zon Son Yu
ゾン ソン ユ
Bo U Kim
ボ ウ キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JPH10321739A publication Critical patent/JPH10321739A/en
Application granted granted Critical
Publication of JP3013166B2 publication Critical patent/JP3013166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a reaction which is easily generated between materials of a gate dielectric film and a polycrystalline silicon source/drain, or a current leakage by forming a gate electrode of a field effect transistor to use a metal system and by making a gate dielectric film form into a ferroelectric thin film, which is a non-oxide system. SOLUTION: A thermal oxide film, a silicon nitride film and a silicon oxide film are formed in order on silicon oxide films 3a and 3b formed on a silicon substrate 1, and polycrystalline silicon films 4a and 4b are formed at a source/ drain region, where these films are made etching by evaporation and by chemical and mechanical grinding. Source/drain diffusion layers 6a and 6b are formed under the condition of diffusing phosphorus and arsenic which are contained in each polycrystalline silicon film 4a and 4b into the silicon substrate 1. Additionally, after silicon oxide films 5a and 5b have been formed on each polycrystalline silicon film 4a and 4b, a ferroelectric thin film 7 is formed by etching of a ferroelectric film, which is formed on the silicon nitride film and silicon oxide film, and a gate electrode 8 is laminated and formed thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、トランジスター
およびその製造方法に関し、特に、強誘電体をゲート誘
電膜として用いる電界効果トランジスターおよびその製
造方法に関する。
The present invention relates to a transistor and a method of manufacturing the same, and more particularly, to a field effect transistor using a ferroelectric as a gate dielectric film and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来の強誘電電界効果トランジスター
は、図2に示したように強誘電体薄膜(ferroelectric t
hin film) をゲート薄膜に用いて、この強誘電体薄膜の
磁発分極の方向による電界効果トランジスターのソース
/ドレーン間の抵抗の変化を検出することによって、メ
モリー素子に応用する方法が研究されてきた。
2. Description of the Related Art As shown in FIG. 2, a conventional ferroelectric field effect transistor has a ferroelectric thin film (ferroelectric thin film).
By using hin film) as the gate thin film and detecting the change in the resistance between the source and drain of the field effect transistor due to the direction of the magnetic polarization of the ferroelectric thin film, a method for application to a memory device has been studied. Was.

【0003】また、図2に示したように、DRAM(dynamic
random access memory)素子構造において、貯蔵容量器
の誘電膜に強誘電体を用いることによって再充電時間を
大変長くすることができる。
As shown in FIG. 2, a DRAM (dynamic
In a random access memory device structure, the use of a ferroelectric material for the dielectric film of the storage capacitor can greatly increase the recharge time.

【0004】これによって、SRAM(static random acces
s memory) と同一の機能をするだけでなく、読み書きの
回数が増え従来のEEPROM(electrically erasable progr
ammable read only memory) より優れた性能を発揮でき
る。
As a result, SRAM (static random acces)
It has the same function as a conventional EEPROM (electrically erasable progr.
ammable read only memory)

【0005】[0005]

【発明が解決しようとする課題】しかし、図1に示した
構造の電界効果トランジスターのソース/ドレーンを形
成するための不純物を活性化させることにおいて、現
在、広く用いられている工程では高温(850℃以上) の熱
処理が必要であるため、高温で強誘電性を失う強誘電薄
膜をゲート誘電膜として採用するのが不可能であった。
However, in activating impurities for forming the source / drain of the field effect transistor having the structure shown in FIG. (° C. or more), it has been impossible to employ a ferroelectric thin film that loses ferroelectricity at high temperatures as a gate dielectric film.

【0006】また、現在まで強誘電薄膜として知られて
いる大部分のものは、BaTiO3とPbTiO3、それから、PZT
とKNbO3 等のペロブスキー石(perovskite)型の酸化物で
ある。
[0006] Most of the ferroelectric thin films known to date are BaTiO 3 and PbTiO 3 , and PZT
It is a KNbO Perobusuki stone such as 3 (perovskite determined) type oxide.

【0007】従って、前記の酸化物をそのままゲート誘
電膜に利用すれば、 硅素界面に自然に酸化物が形成され
るので、 硅素の上では強誘電性を得るのが大変難しい。
Therefore, if the above-mentioned oxide is used as it is for the gate dielectric film, an oxide is naturally formed at the silicon interface, and it is very difficult to obtain ferroelectricity on silicon.

【0008】前記の理由のため、強誘電薄膜を形成した
後に高温工程が不要なトランジスター構造が必須であ
り、非酸化物系の強誘電薄膜が必要となった。
For the above reasons, a transistor structure that does not require a high-temperature step after forming a ferroelectric thin film is essential, and a non-oxide ferroelectric thin film is required.

【0009】さらに、前記非酸化物系の強誘電薄膜とし
ては、現在、BaMgF4等が開発され、薄膜化と性能改善を
図っている。
Further, as the non-oxide type ferroelectric thin film, BaMgF 4 or the like has been developed at present, and the thinning and the improvement of the performance are being attempted.

【0010】従って、強誘電薄膜を形成した後に、高温
工程を不要にできる電界効果トランジスター構造が要求
されている。
Therefore, there is a need for a field effect transistor structure that does not require a high temperature process after forming a ferroelectric thin film.

【0011】本発明は、前記の点に鑑みて成されたもの
であって、キャパシタのない記憶素子(capacitorless m
emory device) 、特に強誘電体の薄膜をゲート誘電膜と
して採用した非破壊性読み出し(non-destructive read-
out)形電界効果トランジスターおよびその製造方法を提
供することをその目的とする。
The present invention has been made in view of the above points, and has been made in consideration of the above circumstances, and is directed to a capacitorless storage element.
emory device), especially non-destructive read-out using a ferroelectric thin film as a gate dielectric film.
It is an object of the present invention to provide an out) field effect transistor and a method for manufacturing the same.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するた
め、本発明による電界効果トランジスターは、ゲート電
極が金属系で形成され、かつ、ゲート誘電膜が非酸化物
系である強誘電体薄膜でなることを特徴とする。
To achieve the above object, a field effect transistor according to the present invention is a ferroelectric thin film in which a gate electrode is formed of a metal and a gate dielectric film is a non-oxide type. It is characterized by becoming.

【0013】また、強誘電薄膜をゲート誘電膜として採
用した非破壊性読出(NDRO)- 形トランジスターを製造す
る方法において、硅素基板(1) に硅素酸化膜(3a, 3b)に
よって隔離領域を形成する第1段階と、前記基板(1) 上
に熱酸化膜、あるいは化学気相蒸着板(CVD) 上に硅素酸
化膜(9) を形成した後、低圧化学気相蒸着(LPCVD) によ
って硅素窒化膜(10)と化学気相蒸着(CVD) によって硅素
酸化膜(11)とを順次形成する第2段階と、前記硅素酸化
膜(11)の上に感光膜を形成した後、ソース/ドレーンマ
スク作業を行ないソース/ドレーン領域のみ感光膜を除
去する第3段階と、前記感光膜が除去されたソース/ド
レーン領域の硅素酸化膜(11)と硅素窒化膜(10)と硅素酸
化膜(9) を反応性イオンエッチング(RIE) によって順次
エッチングする第4段階と、前記第3段階におけるエッ
チングによって残りの感光膜(12a,12b, 12c) を除去し
た後、低圧化学蒸気蒸着(LPCVD) によって多結晶硅素膜
(4)を形成する第5段階と、前記多結晶硅素膜(13)を前
記硅素酸化膜(11a, 11b, 11c)が露出されるまで平坦に
する第6段階と、前記ソース/ドレーン領域に形成され
た多結晶硅素膜(4a, 4b)にP とAsとをイオン注入して熱
酸化し、硅素酸化膜(14a, 14b)を形成する第7段階と、
燐酸溶液を用いて前記残りの硅素窒化膜(10a, 10b, 10
c) を除去した後、弗酸溶液を用いて前記硅素酸化膜(9)
を除去する第8段階と、酸化物系強誘電体と、又は酸
化膜と強誘電体薄膜との2層構造、あるいは硅素と反応
して酸化物を形成しない非酸化物系強誘電薄膜(15)をゲ
ート絶縁膜として形成する第9段階と、前記の強誘電薄
膜(15)上にPVD とか有機金属化学による蒸気蒸着(MOCV
D) を用いて金属を蒸着した後、ゲートマスク作業を行
なって感光膜をゲート領域に残した後、反応性イオンエ
ッチング(RIE) 、あるいは湿式エッチングによって前記
金属と強誘電薄膜(15)とをエッチングして、ゲート誘電
膜(7) とゲート電極(8) とを形成する第10段階と、コン
タクトの形成と金属配線の形成工程によりソース電極(1
7a) とドレーン電極(17b) とを形成する第11段階とから
なることを特徴とする。
In a method of manufacturing a non-destructive read-out (NDRO) transistor employing a ferroelectric thin film as a gate dielectric film, an isolated region is formed on a silicon substrate (1) by silicon oxide films (3a, 3b). The first step is to form a thermal oxide film on the substrate (1) or a silicon oxide film (9) on a chemical vapor deposition (CVD) plate, and then silicon nitride by low pressure chemical vapor deposition (LPCVD). A second step of sequentially forming a film 10 and a silicon oxide film 11 by chemical vapor deposition (CVD); forming a photosensitive film on the silicon oxide film 11; A third step of removing the photosensitive film only in the source / drain region by performing the operation, and a silicon oxide film (11), a silicon nitride film (10) and a silicon oxide film (9) in the source / drain region where the photosensitive film has been removed. Are sequentially etched by reactive ion etching (RIE), and the third step is That after removal of the remaining photosensitive layer (12a, 12b, 12c) by etching, the polycrystalline silicon film by a low pressure chemical vapor deposition (LPCVD)
A fifth step of forming (4); a sixth step of flattening the polycrystalline silicon film (13) until the silicon oxide films (11a, 11b, 11c) are exposed; A seventh step of ion-implanting P and As into the formed polycrystalline silicon films (4a, 4b) and thermally oxidizing them to form silicon oxide films (14a, 14b);
The remaining silicon nitride film (10a, 10b, 10
After removing c), the silicon oxide film (9) is
And a non-oxide ferroelectric thin film (15) which does not form an oxide by reacting with silicon, or a two-layer structure of an oxide ferroelectric, or an oxide film and a ferroelectric thin film, or ) As a gate insulating film, and vapor deposition (MOCV) by PVD or organometallic chemistry on the ferroelectric thin film (15).
After the metal is deposited using D), a gate mask operation is performed to leave the photosensitive film in the gate region, and then the metal and the ferroelectric thin film (15) are subjected to reactive ion etching (RIE) or wet etching. Etching to form a gate dielectric film (7) and a gate electrode (8); and forming a source electrode (1) by forming a contact and forming a metal wiring.
7a) and an eleventh step of forming a drain electrode (17b).

【0014】更に、基板(1) に隔離領域のために形成さ
れた硅素酸化膜(3a, 3b)と、前記硅素酸化膜上に順次形
成される熱酸化膜、あるいは化学気相蒸着(CVD) による
酸化膜(9) と硅素窒化膜(10)、および化学気相蒸着(CV
D) による硅素酸化膜(11)と、前記化学気相蒸着による
酸化膜(9) と硅素窒化膜(10)と化学気相蒸着による硅素
酸化膜(11)とが、エッチングされたソース/ドレーン領
域に蒸着と化学機械的研磨(CMP) とによって形成された
多結晶硅素膜(4a, 4b)と、前記多結晶硅素膜(4a, 4b)を
熱酸化させて形成された硅素酸化膜(14a, 14b)と、前記
熱酸化によって前記多結晶硅素膜(4a, 4b)に含まれたリ
ンと砒素とが前記基板(1) 内に拡散しながら形成された
ソース/ドレーン拡散層(6a, 6b)と、前記硅素窒化膜(1
0)と硅素酸化膜(9) とを除去する時、薄い厚さに形成さ
れる硅素酸化膜(5a, 5b)と、前記硅素窒化膜(10)と硅素
酸化膜(9) との上にゲート電極を絶縁させるために形成
された強誘電薄膜(15)と、前記強誘電薄膜(15)がエッチ
ングされて形成された強誘電薄膜(7) と、この上に形成
されたゲート電極(8) からなることを特徴とする。
Further, a silicon oxide film (3a, 3b) formed for the isolation region on the substrate (1), a thermal oxide film sequentially formed on the silicon oxide film, or a chemical vapor deposition (CVD) Oxide film (9) and silicon nitride film (10), and chemical vapor deposition (CV
D), a silicon oxide film (11) formed by chemical vapor deposition, a silicon nitride film (10), and a silicon oxide film (11) formed by chemical vapor deposition. A polycrystalline silicon film (4a, 4b) formed in the region by vapor deposition and chemical mechanical polishing (CMP), and a silicon oxide film (14a) formed by thermally oxidizing the polycrystalline silicon film (4a, 4b). , 14b) and source / drain diffusion layers (6a, 6b) formed by diffusing phosphorus and arsenic contained in the polycrystalline silicon films (4a, 4b) into the substrate (1) by the thermal oxidation. ) And the silicon nitride film (1
When the silicon oxide film (9) and the silicon oxide film (9) are removed, the silicon oxide film (5a, 5b) formed to a small thickness and the silicon nitride film (10) and the silicon oxide film (9) are removed. A ferroelectric thin film (15) formed to insulate the gate electrode, a ferroelectric thin film (7) formed by etching the ferroelectric thin film (15), and a gate electrode (8 ).

【0015】[0015]

【発明の実施の形態】以下、添附された図面を参照して
本発明の実施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0016】図1及び図2は、従来の強誘電体メモリー
素子の等価回路図であって、図1は、強誘電体薄膜をゲ
ート誘電膜として用いて、この強誘電体薄膜の磁発分極
の方向により、電界効果トランジスターのソース/ドレ
ーン間の抵抗の変化を検出することによってメモリー素
子に応用する方法が研究されている。
FIGS. 1 and 2 are equivalent circuit diagrams of a conventional ferroelectric memory device. FIG. 1 shows a ferroelectric thin film used as a gate dielectric film and the magnetic polarization of the ferroelectric thin film. A method of detecting a change in resistance between a source and a drain of a field effect transistor according to the direction of the field effect transistor and applying the method to a memory device has been studied.

【0017】さらに、図2は、DRAM(dynamic random ac
cess memory)素子構造において、貯蔵容量器の誘電膜を
強誘電体にすることによって、再充電時間を非常に長く
してSRAM(static random access memory) と同一のアク
セス機能を有するだけでなく、読み書きの回数が増え
て、従来のEEPROMより優れた性能を発揮することができ
る。
FIG. 2 shows a DRAM (dynamic random ac).
In the device structure, the dielectric film of the storage capacitor is made of a ferroelectric material, so that the recharge time is very long and not only has the same access function as SRAM (static random access memory), but also the read / write The number of times is increased, and the performance superior to the conventional EEPROM can be exhibited.

【0018】しかしながら、前記図1の構造で、電界効
果トランジスターソース/ドレーンの形成のために不純
物を活性化させることにおいて、現在広く用いられてい
る工程では高温(850℃以上) の熱処理が必要であるた
め、高温で強誘電性を失う強誘電薄膜をゲート誘電膜と
して採用するのが不可能であった。
However, in the structure of FIG. 1 described above, in activating impurities for forming a source / drain of a field effect transistor, a heat treatment at a high temperature (850 ° C. or higher) is required in a process widely used at present. For this reason, it has been impossible to employ a ferroelectric thin film that loses ferroelectricity at high temperatures as a gate dielectric film.

【0019】また、現在まで強誘電薄膜として知られて
いた大部分はBaTiO3とPbTiO3とPZTとKNbO3 とのペロブ
スキー石(perovskite)型の酸化物である。
Most of the ferroelectric thin films known to date are perovskite oxides of BaTiO 3 , PbTiO 3 , PZT and KNbO 3 .

【0020】前記の酸化物をそのままゲート誘電膜とし
て利用すれば、硅素界面に自然酸化物が形成されるた
め、硅素の上では強誘電性を得るのが大変難しいのであ
る。
If the above-mentioned oxide is used as it is as a gate dielectric film, a natural oxide is formed at the silicon interface, and it is very difficult to obtain ferroelectricity on silicon.

【0021】前記の理由で、強誘電薄膜を形成した後、
高温工程が不要となるトランジスター構造が必須的であ
り、非酸化物系強誘電薄膜が必要となる。
For the above reason, after forming the ferroelectric thin film,
A transistor structure that does not require a high-temperature process is essential, and a non-oxide ferroelectric thin film is required.

【0022】前記によって非酸化物系の強誘電薄膜は、
現在BaMgF4等が開発されて薄膜化と性能改善とを図って
いる。
As described above, the non-oxide type ferroelectric thin film is
At present, BaMgF 4 and the like have been developed to reduce the thickness and improve the performance.

【0023】従って、強誘電薄膜を形成した後、高温工
程が必要でない電界効果トランジスターの構造が要求さ
れている。
Accordingly, there is a need for a structure of a field effect transistor that does not require a high temperature process after forming a ferroelectric thin film.

【0024】図3は、本発明による強誘電トランジスタ
ーの設計図である。
FIG. 3 is a design diagram of a ferroelectric transistor according to the present invention.

【0025】前記構造は多結晶硅素(又は、ポリサイ
ド)(4a, 4b)をソース/ドレーンとした電界効果トラン
ジスターの設計図を示したものである。
The above structure is a design drawing of a field effect transistor using polycrystalline silicon (or polycide) (4a, 4b) as a source / drain.

【0026】図4は、本発明による強誘電体トランジス
ターの断面図であって、前記図3の構造をA−A′線に
沿う断面を示したものである。
FIG. 4 is a cross-sectional view of the ferroelectric transistor according to the present invention, and shows a cross section of the structure of FIG. 3 taken along the line AA '.

【0027】図4に示したように、トランジスター間の
隔離は溝形の硅素酸化膜(3a, 3b)によってなされ、ソー
ス/ドレーン拡散層(source/drain diffusion layer)(6
a, 6b)の形成は、多結晶硅素(又は、ポリサイド)(4a,
4b)に含まれたリン(P) と砒素(As)不純物が硅素基板
(1) に拡散しながら、各々n-とn+拡散層を形成すること
から成る。
As shown in FIG. 4, the isolation between the transistors is provided by groove-shaped silicon oxide films (3a, 3b) and a source / drain diffusion layer (6).
The formation of a, 6b) is based on polycrystalline silicon (or polycide) (4a,
4b) contains phosphorus (P) and arsenic (As) impurities
(1) while forming n and n + diffusion layers, respectively.

【0028】また、ゲート誘電膜(7) は強誘電体化さ
れ、ゲート誘電膜(7) と多結晶硅素(又は、ポリサイ
ド)のソース/ドレーン(4a, 4b)は硅素酸化膜(5a, 5b)
によって遮蔽され、二つの材料の間に生じ易い反応や電
流漏洩を抑制する。
The gate dielectric film 7 is made ferroelectric, and the gate dielectric film 7 and the polycrystalline silicon (or polycide) source / drain 4a, 4b are formed of silicon oxide films 5a, 5b. )
To prevent reactions and current leakage that easily occur between the two materials.

【0029】さらに、前記金属ゲート電極(metal gate
electrode)(8) は、金属酸化膜半導体(Metal-Oxide Sem
iconductor;MOS)トランジスターで一般に多く用いられ
る多結晶硅素でなく金属から成る。
Further, the metal gate electrode (metal gate electrode)
electrode) (8) is a metal-oxide semiconductor (Metal-Oxide Sem
It is made of metal instead of polycrystalline silicon, which is generally used in an insulator (MOS) transistor.

【0030】次の図5〜図15は、本発明の強誘電体ト
ランジスターの製造工程を説明する断面図である。
Next, FIG. 5 to FIG. 15 are cross-sectional views illustrating the steps of manufacturing the ferroelectric transistor of the present invention.

【0031】前記の工程順序を見れば、まず図5は、硅
素基板(silicon substrate)(1)に硅素酸化膜(3a, 3b)に
よって隔離を形成したことを示したものである。
Referring to the above process sequence, FIG. 5 shows that the isolation is formed on the silicon substrate (1) by the silicon oxide films (3a, 3b).

【0032】前記の構造を見れば、P-形硅素基板(1) に
熱酸化、あるいは化学気相蒸着(chemical vapor deposi
tion;CVD)によって硅素酸化膜(3a, 3b)を形成した後、
活性マスク(active mask) 作業を行ない、隔離領域(iso
lation region)(3) (図3参照)の感光膜を除去する。
According to the above structure, thermal oxidation or chemical vapor deposition is performed on the P-type silicon substrate (1).
After forming silicon oxide films (3a, 3b) by
Active mask work is performed and the isolation area (iso
The photosensitive film of the lation region (3) (see FIG. 3) is removed.

【0033】前記感光膜(photoresist) の除去後、酸化
膜(3a, 3b)を有する硅素基板(1) とを反応性イオン・エ
ッチング(reactive ion etching ;RIE)によって溝を形
成した後、溝の表面を熱酸化して化学気相蒸着(CVD) に
よる硅素酸化膜によって溝を埋めこんだ後、逆−エッチ
(etch-back) とか化学−機械的研磨(chemical-mechanic
al polishing;CMP)によって表面を平坦にすれば、前記
図5のような構造が形成される。
After the removal of the photoresist film, a groove is formed by reactive ion etching (RIE) with the silicon substrate (1) having the oxide films (3a, 3b). After thermally oxidizing the surface and filling the groove with a silicon oxide film by chemical vapor deposition (CVD), reverse-etch
(etch-back) or chemical-mechanic polishing
If the surface is flattened by al polishing (CMP), the structure as shown in FIG. 5 is formed.

【0034】前記図6は前記図5の構造の上に熱酸化
膜、あるいは化学気相蒸着(CVD) による酸化膜(9) を形
成した後、低圧化学気相蒸着(low pressure ;LPCVD)に
よって硅素窒化膜(silicon nitride film)(10)と化学気
相蒸着(CVD) による硅素酸化膜(11)を順々に形成したこ
とを示したものである。
FIG. 6 shows that a thermal oxide film or an oxide film (9) formed by chemical vapor deposition (CVD) is formed on the structure of FIG. 5 and then formed by low pressure chemical vapor deposition (LPCVD). This shows that a silicon nitride film (10) and a silicon oxide film (11) formed by chemical vapor deposition (CVD) are sequentially formed.

【0035】前記硅素酸化膜(9) の厚さは10〜30nmであ
って、熱酸化は拡散炉(diffusion furnace) 中で 850℃
の温度と混合雰囲気(H2/O2) で15〜30分の間行われる。
The thickness of the silicon oxide film 9 is 10 to 30 nm, and thermal oxidation is performed at 850 ° C. in a diffusion furnace.
Performed for 15 to 30 minutes at a temperature a mixed atmosphere of (H 2 / O 2).

【0036】なお、前記硅素窒化膜(10)の厚さは20〜50
nmであって、低圧化学気相蒸着(LPCVD) 炉中で 825℃の
温度とSiH4/NH3/H2 雰囲気で窒化が行われる。
The silicon nitride film (10) has a thickness of 20 to 50.
nm in a low pressure chemical vapor deposition (LPCVD) furnace at a temperature of 825 ° C. and in a SiH 4 / NH 3 / H 2 atmosphere.

【0037】それから、前記硅素酸化膜(11)の厚さは20
0 〜400nm であって、化学気相蒸着(CVD) 炉中でSiH4/O
2 雰囲気で酸化が行われる。
Then, the thickness of the silicon oxide film (11) is 20
0-400 nm and SiH 4 / O in a chemical vapor deposition (CVD) furnace
Oxidation is performed in two atmospheres.

【0038】図7はソース/ドレーンマスク作業を行な
い、ソース/ドレーン領域の感光膜を除去したことを示
した図である。
FIG. 7 is a view showing that the source / drain mask operation has been performed and the photosensitive film in the source / drain regions has been removed.

【0039】これによってソース/ドレーン領域以外の
み感光膜(12a, 12b, 12c) が残ることになる。
As a result, the photosensitive film (12a, 12b, 12c) remains only in the region other than the source / drain regions.

【0040】次の図8は反応性イオンエッチング(react
ive ion etching ;RIE)によってソース/ドレーン領域
の硅素酸化膜(11)と硅素窒化膜(10)、更に硅素酸化膜
(9) とを順々にエッチングしたことを示した図である。
FIG. 8 shows a reactive ion etching (react ion etching).
by means of ive ion etching (RIE), a silicon oxide film (11), a silicon nitride film (10), and a silicon oxide film in the source / drain region.
(9) is a diagram showing that the steps (1) and (2) were etched in order.

【0041】前記の工程によってソース/ドレーンが形
成される硅素基板(1) が露出される。図9は、前記感光
膜(12a, 12b, 12c) を除去した後、低圧化学気相蒸着(L
PCVD) により多結晶硅素膜(13)を形成したことを示した
図であるが、多結晶硅素の代わりに非晶質硅素を蒸着し
てもかまわない。
The silicon substrate (1) on which the source / drain is formed is exposed by the above process. FIG. 9 shows that after removing the photosensitive films (12a, 12b, 12c), low pressure chemical vapor deposition (L
It is a figure showing that a polycrystalline silicon film (13) is formed by PCVD), but amorphous silicon may be deposited instead of polycrystalline silicon.

【0042】また、前記多結晶硅素膜(13)の厚さは前記
硅素酸化膜(11a, 11b, 11c)の高さより50〜100nm 程度
厚くする。
Further, the thickness of the polycrystalline silicon film (13) is set to be about 50 to 100 nm thicker than the height of the silicon oxide films (11a, 11b, 11c).

【0043】図10は、化学−機械的研磨(CMP) によっ
て前記多結晶硅素膜(13a,13b) を平坦とするために、前
記硅素酸化膜(11a, 11b, 11c) が露出されるまで研磨を
行なう。
FIG. 10 shows that the polycrystalline silicon films (13a, 13b) are polished by chemical-mechanical polishing (CMP) until the silicon oxide films (11a, 11b, 11c) are exposed. Perform

【0044】前記化学−機械的研磨(CMP) にはKOH 溶液
とシリカとを混合したスラリー(slurry)が用いられる。
For the chemical-mechanical polishing (CMP), a slurry obtained by mixing a KOH solution and silica is used.

【0045】前記過程において、多結晶硅素膜と硅素酸
化膜との研磨比は、20:1以上であるため、前記の硅素酸
化膜(11a, 11b, 11c) はほぼ研磨されない。
In the above process, since the polishing ratio between the polycrystalline silicon film and the silicon oxide film is 20: 1 or more, the silicon oxide films (11a, 11b, 11c) are hardly polished.

【0046】また、次の基板と反対の形のN-形不純物で
あるリン(P) と砒素(As)とをイオン注入することにおい
て、リンの線量(dose)は 5〜20×1012cm-2であり、エネ
ルギーは30〜50KeV とし、砒素の線量(dose)は 2〜6 ×
1015cm-2であり、エネルギーは20〜50KeV とする。
Further, in the ion implantation of phosphorus (P) and arsenic (As), which are N-type impurities in the opposite form to the next substrate, the dose of phosphorus is 5 to 20 × 10 12 cm. -2 , energy is 30-50 KeV, and arsenic dose is 2-6 x
It is 10 15 cm -2 and the energy is 20 to 50 KeV.

【0047】尚、リンと砒素のイオン−注入は前記図9
の段階で行なっても構わない。
The ion-implantation of phosphorus and arsenic was carried out in FIG.
It may be performed at the stage.

【0048】前記段階を実行した以後、多結晶硅素に金
属を蒸着した後で熱処理することによってポリサイド(p
olycide)を形成することもできる。
After performing the above steps, a metal is deposited on polycrystalline silicon and then heat-treated to form a polycide (p
olycide).

【0049】次に、図11は、ソース/ドレーン領域に
形成された多結晶硅素(4a,4b) を熱酸化して厚さ30〜50
nmの硅素酸化膜(14a, 14b)を形成したことを示した図で
あるが、チャンネル領域は硅素窒化膜(10b) によって熱
酸化されない。
Next, FIG. 11 shows that the polycrystalline silicon (4a, 4b) formed in the source / drain region is thermally oxidized to a thickness of 30 to 50.
FIG. 4B shows that a silicon oxide film (14a, 14b) of nm is formed, but the channel region is not thermally oxidized by the silicon nitride film (10b).

【0050】前記熱酸化は、850 ℃の高温炉中で混合雰
囲気(H2/02) で20〜60分間行われる。
[0050] The thermal oxidation is carried out 20 to 60 minutes in a mixed atmosphere in a high temperature furnace at 850 ℃ (H 2/0 2 ).

【0051】前記過程において、多結晶硅素(4a, 4b)内
に含まれたリンと砒素とが硅素基板(1) 内に拡散してソ
ース/ドレーン(6a, 6b)を形成する。
In the above process, phosphorus and arsenic contained in the polycrystalline silicon (4a, 4b) diffuse into the silicon substrate (1) to form the source / drain (6a, 6b).

【0052】また、リンは砒素よりもっと深く拡散して
n-層を形成し、砒素はリンより小さく拡散して高濃度の
n+層を形成する。
Also, phosphorus diffuses deeper than arsenic
form an n - layer where arsenic diffuses less than phosphorus and
Form an n + layer.

【0053】次の図12は、燐酸溶液を用いて前記の硅
素窒化膜(10a, 10b, 10c) を除去した後、弗酸溶液を用
いて前記硅素酸化膜(9a)を除去したことを示した図であ
る。
FIG. 12 shows that the silicon nitride film (10a, 10b, 10c) was removed using a phosphoric acid solution, and then the silicon oxide film (9a) was removed using a hydrofluoric acid solution. FIG.

【0054】この過程において、前記酸化膜(14a, 14b)
はわずかにエッチングされ、元の厚さより薄くなって硅
素酸化膜(5a, 5b)の厚さは20〜40nmとなる。
In this process, the oxide films (14a, 14b)
Is slightly etched and becomes thinner than the original thickness, and the thickness of the silicon oxide film (5a, 5b) becomes 20 to 40 nm.

【0055】前記硅素酸化膜(5a, 5b)は、強誘電薄膜が
多結晶硅素のソース/ドレーンと反応することと、ゲー
ト/ドレーンの重畳キャパシタンスが大きくなることと
を防止する役割を果たす。
The silicon oxide films (5a, 5b) serve to prevent the ferroelectric thin film from reacting with the polycrystalline silicon source / drain and to prevent the gate / drain superposition capacitance from increasing.

【0056】次の図13は、ゲート絶縁膜としてのゲー
ト誘電膜(15)を形成したことを示した図である。
FIG. 13 is a diagram showing that a gate dielectric film (15) as a gate insulating film has been formed.

【0057】前記のゲート誘電膜(15)としては、酸化物
系強誘電体と、酸化膜と強誘電体薄膜の2層構造、及び
硅素と反応して酸化物を形成しない非酸化物系強誘電薄
膜の中から採用する。
As the gate dielectric film (15), a two-layer structure of an oxide ferroelectric, an oxide film and a ferroelectric thin film, and a non-oxide ferroelectric which does not react with silicon to form an oxide. Adopt from dielectric thin film.

【0058】例えば、極超真空(ultra high vacuum;UH
V)化学気相蒸着(CVD) によりBaMgF4 を硅素基板上に蒸
着する。
For example, ultra high vacuum (UH)
V) BaMgF 4 is deposited on a silicon substrate by chemical vapor deposition (CVD).

【0059】次の図14は、ゲート誘電膜(7) とゲート
電極(8) とを形成したことを示した図である。
FIG. 14 is a view showing that a gate dielectric film (7) and a gate electrode (8) have been formed.

【0060】前記ゲート誘電膜(15)の上に物理的気相蒸
着法(physical vapor deposition)とか有機金属化学気
相蒸着(metal organic CVD;MOCVD)により金属(W、Al、
或はAl/TiW、Cu/TiN等の多層金属) を500 〜1000nmの厚
さで蒸着した後、ゲートマスク作業を行ない感光膜をゲ
ート領域に残した後、反応性イオンエッチング(RIE)、
又は湿式エッチングによって前記金属とゲート誘電膜(1
5)とをエッチングして、ゲート誘電膜(7) とゲート電極
(8) とを形成する。
Metals (W, Al, MO) are formed on the gate dielectric film 15 by physical vapor deposition or metal organic chemical vapor deposition (MOCVD).
Or a multilayer metal such as Al / TiW, Cu / TiN) with a thickness of 500 to 1000 nm, perform a gate mask operation, leave the photosensitive film in the gate region, and then perform reactive ion etching (RIE).
Alternatively, the metal and the gate dielectric film (1
5) and etch the gate dielectric (7) and gate electrode
(8) is formed.

【0061】図15は、コンタクトの形成と金属配線の
形成等、一般的な金属酸化膜半導体(MOS) 工程によりソ
ース電極(16a) とドレーン電極(16b) とを形成したこと
を示した図である。
FIG. 15 is a view showing that a source electrode (16a) and a drain electrode (16b) are formed by a general metal oxide semiconductor (MOS) process such as formation of a contact and formation of a metal wiring. is there.

【0062】[0062]

【発明の効果】上記で説明したように、電界効果トラン
ジスターおよびその製造方法は、多結晶硅素ソース/ド
レーンをFET(field-effect transistor)に当てはめ、ゲ
ート誘電膜と多結晶硅素ソース/ドレーンは硅素酸化膜
(silicon oxide film)により遮蔽されて二つの材料の間
に生じ易い反応や電流漏洩を抑制することによって、ト
ランジスターの電界効果を増加させることができる。
As described above, in the field effect transistor and the method of manufacturing the same, the polycrystalline silicon source / drain is applied to the FET (field-effect transistor), and the gate dielectric film and the polycrystalline silicon source / drain are made of silicon. Oxide film
The electric field effect of the transistor can be increased by suppressing reactions and current leakage that are likely to occur between the two materials and are blocked by (silicon oxide film).

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の強誘電体メモリー素子の等価回路図であ
る。
FIG. 1 is an equivalent circuit diagram of a conventional ferroelectric memory device.

【図2】従来の強誘電体メモリー素子の等価回路図であ
る。
FIG. 2 is an equivalent circuit diagram of a conventional ferroelectric memory element.

【図3】本発明による強誘電トランジスターの配置図で
ある。
FIG. 3 is a layout view of a ferroelectric transistor according to the present invention.

【図4】本発明による強誘電体トランジスターの断面図
である。
FIG. 4 is a cross-sectional view of a ferroelectric transistor according to the present invention.

【図5】本発明の強誘電体トランジスターの製造工程を
説明する断面図である。
FIG. 5 is a cross-sectional view illustrating a manufacturing process of the ferroelectric transistor of the present invention.

【図6】本発明の強誘電体トランジスターの製造工程を
説明する断面図である。
FIG. 6 is a cross-sectional view illustrating a manufacturing process of the ferroelectric transistor of the present invention.

【図7】本発明の強誘電体トランジスターの製造工程を
説明する断面図である。
FIG. 7 is a cross-sectional view explaining a manufacturing process of the ferroelectric transistor of the present invention.

【図8】本発明の強誘電体トランジスターの製造工程を
説明する断面図である。
FIG. 8 is a cross-sectional view illustrating a manufacturing process of the ferroelectric transistor of the present invention.

【図9】本発明の強誘電体トランジスターの製造工程を
説明する断面図である。
FIG. 9 is a cross-sectional view illustrating a manufacturing process of the ferroelectric transistor of the present invention.

【図10】本発明の強誘電体トランジスターの製造工程
を説明する断面図である。
FIG. 10 is a cross-sectional view illustrating a manufacturing process of the ferroelectric transistor of the present invention.

【図11】本発明の強誘電体トランジスターの製造工程
を説明する断面図である。
FIG. 11 is a cross-sectional view explaining a manufacturing process of the ferroelectric transistor of the present invention.

【図12】本発明の強誘電体トランジスターの製造工程
を説明する断面図である。
FIG. 12 is a cross-sectional view illustrating a manufacturing process of the ferroelectric transistor of the present invention.

【図13】本発明の強誘電体トランジスターの製造工程
を説明する断面図である。
FIG. 13 is a cross-sectional view illustrating a manufacturing process of the ferroelectric transistor of the present invention.

【図14】本発明の強誘電体トランジスターの製造工程
を説明する断面図である。
FIG. 14 is a cross-sectional view illustrating a manufacturing process of the ferroelectric transistor of the present invention.

【図15】本発明の強誘電体トランジスターの製造工程
を説明する断面図である。
FIG. 15 is a cross-sectional view illustrating a manufacturing process of the ferroelectric transistor of the present invention.

【符号の説明】[Explanation of symbols]

1 硅素基板 2 活性領域 3 隔離領域 3a、3b、3c、3d、5a、5b、5c、5d、5
e、5f、9、9a、11、11a、11b、11c、
14a、14b、16a、16b、16c 硅素酸化膜 4a、4b 多結晶硅素(又はポリサイド)のソース/
ドレーン 6a、6b ソース/ドレーン拡散層 7、15 ゲート誘電膜 8 金属ゲート電極 10、10a、10b、10c 硅素窒化膜 12a、12b 感光膜 13 多結晶硅素膜 17a、17b 金属電極
DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Active area 3 Isolation area 3a, 3b, 3c, 3d, 5a, 5b, 5c, 5d, 5
e, 5f, 9, 9a, 11, 11a, 11b, 11c,
14a, 14b, 16a, 16b, 16c Silicon oxide film 4a, 4b Polycrystalline silicon (or polycide) source /
Drain 6a, 6b Source / drain diffusion layer 7, 15 Gate dielectric film 8 Metal gate electrode 10, 10a, 10b, 10c Silicon nitride film 12a, 12b Photosensitive film 13 Polycrystalline silicon film 17a, 17b Metal electrode

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 強誘電薄膜をゲート誘電膜として採用し
た非破壊性読出(NDRO)- 形トランジスターを製造する方
法において、 硅素基板(1) に硅素酸化膜(3a, 3b)によって隔離領域を
形成する第1段階と、前記基板(1) 上に熱酸化膜、ある
いは化学気相蒸着板(CVD) 上に硅素酸化膜(9)を形成し
た後、低圧化学気相蒸着(LPCVD) によって硅素窒化膜(1
0)と化学気相蒸着(CVD) によって硅素酸化膜(11)とを順
次形成する第2段階と、 前記硅素酸化膜(11)の上に感光膜を形成した後、ソース
/ドレーンマスク作業を行ないソース/ドレーン領域の
み感光膜を除去する第3段階と、 前記感光膜が除去されたソース/ドレーン領域の硅素酸
化膜(11)と硅素窒化膜(10)と硅素酸化膜(9) を反応性イ
オンエッチング(RIE) によって順次エッチングする第4
段階と、 前記第3段階におけるエッチングによって残りの感光膜
(12a, 12b, 12c) を除去した後、低圧化学蒸気蒸着(LPC
VD) によって多結晶硅素膜(13)を形成する第5段階と、 前記多結晶硅素膜(4) を前記硅素酸化膜(11a, 11b, 11
c) が露出されるまで平坦にする第6段階と、 前記ソース/ドレーン領域に形成された多結晶硅素膜(4
a, 4b)にP とAsとをイオン注入して熱酸化し、硅素酸化
膜(14a, 14b)を形成する第7段階と、 燐酸溶液を用いて前記残りの硅素窒化膜(10a, 10b, 10
c) を除去した後、弗酸溶液を用いて前記硅素酸化膜(9)
を除去する第8段階と、 酸化物系強誘電体と、又は酸化膜と強誘電体薄膜との2
層構造、あるいは硅素と反応して酸化物を形成しない非
酸化物系強誘電薄膜(15)をゲート絶縁膜として形成する
第9段階と、 前記の強誘電薄膜(15)上にPVD とか有機金属化学による
蒸気蒸着(MOCVD) を用いて金属を蒸着した後、ゲートマ
スク作業を行なって感光膜をゲート領域に残した後、反
応性イオンエッチング(RIE) 、あるいは湿式エッチング
によって前記金属と強誘電薄膜(15)とをエッチングし
て、ゲート誘電膜(7) とゲート電極(8) とを形成する第
10段階と、 コンタクトの形成と金属配線の形成工程によりソース電
極(17a) とドレーン電極(17b) とを形成する第11段階と
からなることを特徴とする電界効果トランジスターの製
造方法。
A method of manufacturing a non-destructive read-out (NDRO) type transistor employing a ferroelectric thin film as a gate dielectric film, wherein an isolation region is formed on a silicon substrate (1) by silicon oxide films (3a, 3b). The first step is to form a thermal oxide film on the substrate (1) or a silicon oxide film (9) on a chemical vapor deposition plate (CVD), and then silicon nitride by low pressure chemical vapor deposition (LPCVD). Membrane (1
0) and a second step of sequentially forming a silicon oxide film (11) by chemical vapor deposition (CVD). After forming a photosensitive film on the silicon oxide film (11), a source / drain mask operation is performed. Performing a third step of removing the photosensitive film only in the source / drain region, and reacting the silicon oxide film (11), the silicon nitride film (10) and the silicon oxide film (9) in the source / drain region where the photosensitive film has been removed. 4th sequential etching by reactive ion etching (RIE)
And the remaining photosensitive film by the etching in the third step.
After removing (12a, 12b, 12c), low pressure chemical vapor deposition (LPC
VD) to form a polycrystalline silicon film (13), and to replace the polycrystalline silicon film (4) with the silicon oxide films (11a, 11b, 11).
c) flattening until the silicon is exposed, and a polycrystalline silicon film (4) formed in the source / drain regions.
a, 4b), P and As are ion-implanted and thermally oxidized to form a silicon oxide film (14a, 14b), and the remaining silicon nitride film (10a, 10b, Ten
After removing c), the silicon oxide film (9) is
An eighth step of removing oxides, an oxide-based ferroelectric, or an oxide film and a ferroelectric thin film.
A ninth step of forming a layer structure or a non-oxide ferroelectric thin film (15) that does not form an oxide by reacting with silicon as a gate insulating film; and forming a PVD or an organic metal on the ferroelectric thin film (15). After depositing a metal using chemical vapor deposition (MOCVD), perform a gate mask operation to leave the photosensitive film in the gate area, and then use reactive ion etching (RIE) or wet etching to etch the metal and ferroelectric thin film. (15) to form a gate dielectric film (7) and a gate electrode (8).
A method for manufacturing a field effect transistor, comprising: ten steps; and an eleventh step of forming a source electrode (17a) and a drain electrode (17b) by forming a contact and forming a metal wiring.
【請求項2】 前記第3段階は、活性マスク作業の後、
ソース/ドレーンマスク作業を行なうことを特徴とする
請求項1記載の電界効果トランジスターの製造方法。
2. The method according to claim 1, wherein the third step comprises:
2. The method according to claim 1, wherein a source / drain mask operation is performed.
【請求項3】 前記第5段階は、下部硅素酸化膜/硅素
窒化膜/上部硅素酸化膜の厚さをそれぞれ10〜30nmと20
〜50nmと200〜400nm とで形成することを特徴とする請
求項1記載の電界効果トランジスターの製造方法。
3. The fifth step is to reduce the thickness of the lower silicon oxide film / silicon nitride film / upper silicon oxide film to 10 to 30 nm and 20 nm, respectively.
2. The method according to claim 1, wherein the thickness of the field effect transistor is between 50 nm and 200 nm.
【請求項4】 前記第6段階は、多結晶硅素膜(4) を化
学機械的研磨(CMP)により平坦化させることを特徴とす
る請求項1記載の電界効果トランジスターの製造方法。
4. The method of claim 1, wherein in the sixth step, the polycrystalline silicon film (4) is planarized by chemical mechanical polishing (CMP).
【請求項5】 前記第7段階は、多結晶硅素膜(4a, 4b)
のソース/ドレーンのみを熱酸化によって硅素酸化膜(1
4a, 14b)を形成して、厚さが30〜50nmになるようにする
ことを特徴とする請求項1記載の電界効果トランジスタ
ーの製造方法。
5. The method according to claim 5, wherein the seventh step is a polycrystalline silicon film (4a, 4b).
Only the source / drain of the silicon oxide film (1
4. The method according to claim 1, wherein 4a, 14b) is formed to have a thickness of 30 to 50 nm.
【請求項6】 基板(1) に隔離領域のために形成された
硅素酸化膜(3a, 3b)と、 前記硅素酸化膜上に順次形成される熱酸化膜、あるいは
化学気相蒸着(CVD) による酸化膜(9) と硅素窒化膜(1
0)、および化学気相蒸着(CVD) による硅素酸化膜(11)と
前記化学気相蒸着による酸化膜(9) と硅素窒化膜(10)と
化学気相蒸着による硅素酸化膜(11)とが、エッチングさ
れたソース/ドレーン領域に蒸着と化学機械的研磨(CM
P) とによって形成された多結晶硅素膜(4a, 4b)と、 前記多結晶硅素膜(4a, 4b)を熱酸化させて形成された硅
素酸化膜(14a, 14b)と、前記熱酸化によって前記多結晶
硅素膜(4a, 4b)に含まれたリンと砒素とが前記基板(1)
内に拡散しながら形成されたソース/ドレーン拡散層(6
a, 6b)と、前記硅素窒化膜(10)と硅素酸化膜(9) とを除
去する時、薄い厚さに形成される硅素酸化膜(5a, 5b)
と、 前記硅素窒化膜(10)と硅素酸化膜(9) との上にゲート電
極を絶縁させるために形成された強誘電薄膜(15)と、 前記強誘電薄膜(15)がエッチングされて形成された強誘
電薄膜(7) と、この上に形成されたゲート電極(8) から
なることを特徴とする電界効果トランジスター。
6. A silicon oxide film (3a, 3b) formed for an isolation region on a substrate (1), a thermal oxide film sequentially formed on the silicon oxide film, or a chemical vapor deposition (CVD). Oxide film (9) and silicon nitride film (1
0), and a silicon oxide film (11) by chemical vapor deposition (CVD), an oxide film (9) by chemical vapor deposition, a silicon nitride film (10), and a silicon oxide film (11) by chemical vapor deposition. Is deposited and chemically mechanically polished (CM) on the etched source / drain regions.
P), a polycrystalline silicon film (4a, 4b), a silicon oxide film (14a, 14b) formed by thermally oxidizing the polycrystalline silicon film (4a, 4b), Phosphorus and arsenic contained in the polycrystalline silicon film (4a, 4b) correspond to the substrate (1).
A source / drain diffusion layer (6
a, 6b) and the silicon nitride film (10) and the silicon oxide film (9) are removed to form a thin silicon oxide film (5a, 5b).
A ferroelectric thin film (15) formed on the silicon nitride film (10) and the silicon oxide film (9) to insulate a gate electrode; and forming the ferroelectric thin film (15) by etching. A field-effect transistor comprising a ferroelectric thin film (7) formed thereon and a gate electrode (8) formed thereon.
【請求項7】 下部硅素酸化膜/硅素窒化膜/上部硅素
酸化膜とで成された多層絶縁膜を用いて、反応性イオン
エッチング(RIE) による損傷からチャンネル領域を保護
することを特徴とする請求項6記載の電界効果トランジ
スター。
7. A channel region is protected from damage by reactive ion etching (RIE) by using a multilayer insulating film composed of a lower silicon oxide film / silicon nitride film / upper silicon oxide film. A field effect transistor according to claim 6.
【請求項8】 ソース/ドレーン拡散層(6a, 6b)上のみ
について、チャンネル領域の硅素窒化膜/硅素酸化膜を
用いて厚い厚さに硅素酸化膜(5a, 5b, 5d, 5e)を形成
し、強誘電薄膜(7, 15) と反応することと、及びゲート
/ドレーン重畳キャパシタンスが大きくなることとを特
徴とする請求項6記載の電界効果トランジスター。
8. A thick silicon oxide film (5a, 5b, 5d, 5e) is formed only on the source / drain diffusion layers (6a, 6b) using a silicon nitride film / silicon oxide film in a channel region. 7. The field effect transistor according to claim 6, wherein the field effect transistor reacts with the ferroelectric thin film, and the gate / drain overlap capacitance is increased.
【請求項9】 前記強誘電薄膜(7, 15) は、酸化物系強
誘電体酸化膜と、強誘電体薄膜の2層構造、あるいはBa
MgF4等の非酸化物系である強誘電体薄膜からなることを
特徴とする請求項6記載の電界効果トランジスター。
9. The ferroelectric thin film (7, 15) has a two-layer structure of an oxide-based ferroelectric oxide film and a ferroelectric thin film, or
FET according to claim 6, characterized in that a ferroelectric thin film is MgF non-oxide such as 4.
【請求項10】 前記ゲート電極(8) は、 W、Al、金属
単体、あるいはAl/TiWとAl/TiNとCu/TiN等の金属系で形
成することを特徴とする請求項6記載の電界効果トラン
ジスター。
10. The electric field according to claim 6, wherein the gate electrode is formed of W, Al, a simple metal, or a metal system such as Al / TiW, Al / TiN, and Cu / TiN. Effect transistor.
JP9231845A 1996-08-21 1997-08-13 Field effect transistor and method of manufacturing the same Expired - Fee Related JP3013166B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1996P34661 1996-08-21
KR1019960034661A KR19980015364A (en) 1996-08-21 1996-08-21 Field effect transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10321739A true JPH10321739A (en) 1998-12-04
JP3013166B2 JP3013166B2 (en) 2000-02-28

Family

ID=19470265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9231845A Expired - Fee Related JP3013166B2 (en) 1996-08-21 1997-08-13 Field effect transistor and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP3013166B2 (en)
KR (1) KR19980015364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449687C (en) * 2005-03-21 2009-01-07 三星电子株式会社 Method of manufacturing patterned ferroelectric media

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851859B2 (en) 2006-11-01 2010-12-14 Samsung Electronics Co., Ltd. Single transistor memory device having source and drain insulating regions and method of fabricating the same
KR100801707B1 (en) 2006-12-13 2008-02-11 삼성전자주식회사 Floating-body memory and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449687C (en) * 2005-03-21 2009-01-07 三星电子株式会社 Method of manufacturing patterned ferroelectric media

Also Published As

Publication number Publication date
JP3013166B2 (en) 2000-02-28
KR19980015364A (en) 1998-05-25

Similar Documents

Publication Publication Date Title
US6278164B1 (en) Semiconductor device with gate insulator formed of high dielectric film
US6436777B1 (en) Semiconductor device and manufacturing method thereof
US7402857B2 (en) Flip FERAM cell and method to form same
US20040087100A1 (en) High-dielectric constant insulators for feol capacitors
JP3305627B2 (en) Semiconductor device and manufacturing method thereof
JP3600476B2 (en) Method for manufacturing semiconductor device
JPH0878533A (en) Semiconductor device and fabrication thereof
US6784473B2 (en) Semiconductor nonvolatile storage element and method of fabricating the same
US6077737A (en) Method for forming a DRAM having improved capacitor dielectric layers
US6228701B1 (en) Apparatus and method for minimizing diffusion in stacked capacitors formed on silicon plugs
US6136659A (en) Production process for a capacitor electrode formed of a platinum metal
JP3013166B2 (en) Field effect transistor and method of manufacturing the same
KR100247884B1 (en) Nonvolatile semiconductor memory utilizing polarization of ferroelectric material
JP2001053246A (en) Semiconductor device and manufacture thereof
JP2880039B2 (en) Method for manufacturing semiconductor device
KR100279794B1 (en) Method for fabricating semiconductor device
JPH03165557A (en) Semiconductor device provided with stacked capacitor cell
US20020072172A1 (en) Method of fabricating a storage node
JPH0888330A (en) Semiconductor device and manufacture thereof
JPH03102875A (en) Semiconductor device and manufacture thereof
JPH0637257A (en) Manufacture of semiconductor device
EP1150350A2 (en) Manufacturing a trench capacitor
JPH11330275A (en) Semiconductor device and its manufacture
CN116940123A (en) Ferroelectric memory and method for manufacturing the same
TW480606B (en) Method of fabricating a salicide of an embedded memory

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991102

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees