JPH10321620A - Oxynitride film and its forming method - Google Patents

Oxynitride film and its forming method

Info

Publication number
JPH10321620A
JPH10321620A JP13059997A JP13059997A JPH10321620A JP H10321620 A JPH10321620 A JP H10321620A JP 13059997 A JP13059997 A JP 13059997A JP 13059997 A JP13059997 A JP 13059997A JP H10321620 A JPH10321620 A JP H10321620A
Authority
JP
Japan
Prior art keywords
oxide film
film
nitrogen
gas
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13059997A
Other languages
Japanese (ja)
Other versions
JP3221602B2 (en
Inventor
Yoji Saito
洋司 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP13059997A priority Critical patent/JP3221602B2/en
Publication of JPH10321620A publication Critical patent/JPH10321620A/en
Application granted granted Critical
Publication of JP3221602B2 publication Critical patent/JP3221602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the electrical properties of an oxynitride film and the barrier quality of its impurity, by forming an oxide film on a substrate, and by fluorinating thereafter the surface of the oxide film through a fluoride, and further, by nitrifying thereafter the surface of the resultant film through a nitrogen compound. SOLUTION: After growing an oxide film on a silicon substrate 1, the silicon substrate 1 is attached to a substrate holder in a reaction chamber 2. Then, passing an argon gas through a quartz tube 3, it is introduced into the reaction chamber 2. In the course thereof, the plasma of the argon gas is generated through a microwave power in a resonator 4. Also, an F2 gas diluted by a helium gas is introduced into the reaction chamber 2 from an introduction tube provided between the reaction chamber 2 and the resonator 4. After completing a fluorinating, interrupting the introductions of the gases and holding the silicon substrate 1 at a predetermined temperature, a nitrogen gas is introduced into the quartz tube 3 inserted of the argon gas to nitride the silicon substrate 1 by generating the plasma of the nitrogen gas through the microwave power. Thereby, the electrical properties of an oxynitride film and the barrier quality of its impurity can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LSI、TFT等
の半導体集積回路の製造において、有用な絶縁膜である
窒化酸化膜を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a nitrided oxide film which is a useful insulating film in the manufacture of semiconductor integrated circuits such as LSIs and TFTs.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】近
年、集積回路の高密度化に伴いゲート酸化膜(シリコン
酸化膜)の薄膜化が進んでいるが、薄膜化に伴いゲート
電極から基板チャネル領域への不純物の突き抜けやホッ
トキャリア耐性劣化が問題となっている。また、シリコ
ン窒化酸化膜がシリコン酸化膜に替わるゲート絶縁膜と
して期待されている。さらに、絶縁破壊電荷やホットキ
ャリア耐性などの電気的特性の改善には、界面に多く存
在する窒素に起因し、シリコンゲート電極からの不純物
拡散防止には、ゲート酸化膜表面を窒化し、緻密構造に
することで防ぐことができる。現在、報告されている窒
化酸化膜の形成方法としては、NH3を用いたシリコ
ン酸化膜の光アシスト処理、プラズマアシスト処理、熱
処理による方法、ゲートポリシリコン膜への窒素のイ
オン注入後、熱処理しシリコン酸化膜に窒素を導入する
方法、亜酸化窒素ガスを用いてシリコン基板を電気炉
やランプ加熱し直接窒化酸化膜を形成する方法、等があ
る。ところが、法では10原子%以上の窒素が導入で
きるという利点もあるが、同時に水素も混入し電子トラ
ップを形成すること、またその除去には高温処理を行わ
なければならないこと、法は欠陥回復のため高温熱処
理が必要なことや表面の窒素の導入ができず不純物のバ
リア性が不十分であること、法は窒素の含有量が少な
く電気的特性の改善及び不純物のバリア性が不十分であ
ること、等の問題がある。
2. Description of the Related Art In recent years, gate oxide films (silicon oxide films) have become thinner with the increase in the density of integrated circuits. There is a problem of penetration of impurities into the semiconductor and deterioration of hot carrier resistance. In addition, a silicon oxynitride film is expected as a gate insulating film replacing a silicon oxide film. Furthermore, the improvement of electrical characteristics such as dielectric breakdown charge and hot carrier resistance is due to the nitrogen present at the interface. To prevent impurity diffusion from the silicon gate electrode, the surface of the gate oxide film is nitrided to achieve a dense structure. Can be prevented. At present, methods of forming a nitrided oxide film include a light assisted process, a plasma assisted process, and a heat treatment of a silicon oxide film using NH 3 , and a heat treatment after ion implantation of nitrogen into a gate polysilicon film. There are a method in which nitrogen is introduced into a silicon oxide film, a method in which a silicon substrate is heated with an electric furnace or a lamp using a nitrous oxide gas, and a nitrided oxide film is directly formed. However, the method has an advantage that nitrogen of 10 atomic% or more can be introduced. However, at the same time, hydrogen is also mixed in to form an electron trap, a high-temperature treatment must be performed for its removal, and the method has a problem of defect recovery. Therefore, high-temperature heat treatment is required, nitrogen cannot be introduced into the surface, and the barrier properties of impurities are insufficient, and the method has a low nitrogen content, improves electrical characteristics, and has insufficient barrier properties of impurities. Problems.

【0003】また、窒化酸化膜はキャパシタや層間絶縁
膜への応用も検討されており、上記法やCVD法に
よる形成方法が提案されている。法の問題については
既に述べたが、法については界面特性が他法に比べて
劣るという問題がある。
Further, application of a nitrided oxide film to a capacitor or an interlayer insulating film has been studied, and the above-described method and a method of forming the film by a CVD method have been proposed. Although the problem of the method has already been described, the method has a problem that the interface characteristics are inferior to other methods.

【0004】[0004]

【課題を解決するための具体的手段】本発明者は、鋭意
検討の結果、酸化膜をフッ化物で表面処理したのち窒化
することにより表面から特定の深さまで窒化する方法を
見いだし本発明に到達した。
As a result of intensive studies, the present inventor has found a method of nitriding to a specific depth from the surface by subjecting an oxide film to surface treatment with a fluoride and then nitriding, and arrived at the present invention. did.

【0005】すなわち本発明は、酸化膜を形成後、酸化
膜表面をフッ化物でフッ化処理した後、窒素化合物で窒
化処理することを特徴とする窒化酸化膜の形成方法を提
供するものである。
That is, the present invention provides a method for forming a nitrided oxide film, comprising forming an oxide film, fluorinating the oxide film surface with a fluoride, and nitriding with a nitrogen compound. .

【0006】本発明において用いられる酸化膜として
は、シリコン酸化膜、酸化タンタル膜等が挙げられる本
発明は、上記酸化膜を形成後、まず酸化膜表面をフッ化
物でフッ化処理をする。使用するフッ化物は、フッ素、
フッ化水素、フッ化水素酸、フッ化塩素、フッ化臭素、
フッ化沃素、フッ化キセノン、フッ化クリプトン、フッ
化窒素、フッ化イオウ、フッ化炭素、フッ化酸素の一
種、あるいはこれらの混合物である。
Examples of the oxide film used in the present invention include a silicon oxide film and a tantalum oxide film. In the present invention, after forming the above oxide film, first, the surface of the oxide film is fluorinated with a fluoride. The fluoride used is fluorine,
Hydrogen fluoride, hydrofluoric acid, chlorine fluoride, bromine fluoride,
One of iodine fluoride, xenon fluoride, krypton fluoride, nitrogen fluoride, sulfur fluoride, carbon fluoride, and oxygen fluoride, or a mixture thereof.

【0007】フッ素化処理する方法として、酸化膜表面
にフッ化物を接触させるだけでよい。フッ化物が、ガ
ス、液体どちらでも、酸化膜の表面状態を悪化させない
範囲ならば温度条件、圧力条件、濃度条件等は、特に限
定されない。また、光、プラズマ,熱などの励起手法を
用いた場合、酸化膜の表面状態を悪化させない条件なら
ば何れを選択しても良い。
As a method of performing the fluorination treatment, it is only necessary to bring a fluoride into contact with the oxide film surface. The temperature conditions, pressure conditions, concentration conditions, and the like are not particularly limited as long as the fluoride does not deteriorate the surface state of the oxide film in either gas or liquid. In addition, when an excitation method such as light, plasma, or heat is used, any method may be used as long as it does not deteriorate the surface state of the oxide film.

【0008】次に、フッ化処理された酸化膜を窒化処理
する。使用する窒素化合物としては、N2、NH3、ヒド
ラジン等が挙げられる。また窒化処理の方法は、光、プ
ラズマ、熱などの励起手法を用いる。酸化膜の表面状態
を悪化させない条件ならば何れの手法を選択しても良
く、温度、圧力、濃度等の条件は限定されず、膜中に導
入したい窒素濃度に応じて適時選択すればよい。さらに
好適な条件として、プラズマ法では、温度10〜100
0℃の範囲、圧力0.01〜10Torrの範囲で処理
することが好ましい。また、NH3などの水素を含有す
る化合物で処理しても最初のフッ化処理で行ったフッ素
の水素トラップ効果から膜中への水素の拡散は起きな
い。
Next, the fluorinated oxide film is nitrided. Examples of the nitrogen compound used include N 2 , NH 3 and hydrazine. As a method of the nitriding treatment, an excitation method such as light, plasma, or heat is used. Any method may be selected as long as it does not deteriorate the surface state of the oxide film, and conditions such as temperature, pressure, and concentration are not limited, and may be selected as appropriate according to the concentration of nitrogen to be introduced into the film. As more preferable conditions, in the plasma method, the temperature is 10 to 100.
Preferably, the treatment is performed at a temperature of 0 ° C. and a pressure of 0.01 to 10 Torr. Further, even if the film is treated with a compound containing hydrogen such as NH 3 , the diffusion of hydrogen into the film does not occur due to the hydrogen trapping effect of fluorine performed in the first fluorination treatment.

【0009】この方法により、表面から深さ方向へ漸減
する濃度勾配を有し表面近傍の窒素濃度を高めた窒化酸
化膜を得ることができ、例えば、深さ0nmの窒素濃度
は2〜3原子%あるいはそれ以上とすることができる。
該窒化酸化膜は、不純物の拡散防止と電気的特性の改善
された窒化酸化膜である。
According to this method, a nitrided oxide film having a concentration gradient gradually decreasing from the surface in the depth direction and having an increased nitrogen concentration near the surface can be obtained. For example, a nitrogen concentration at a depth of 0 nm is 2 to 3 atoms. % Or more.
The nitrided oxide film is a nitrided oxide film in which diffusion of impurities is prevented and electrical characteristics are improved.

【0010】[0010]

【実施例】以下、実施例により本発明を詳細に説明する
が、本発明はかかる実施例に限定されるものではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0011】実施例1 シリコン基板上に酸化膜を10nm成長させた後、以下
の条件により励起フッ素で酸化膜の表面処理を行い、そ
の後窒化処理を行った。図1は、用いたリモートプラズ
マ装置の概略図である。
Example 1 After an oxide film was grown on a silicon substrate to a thickness of 10 nm, the oxide film was subjected to surface treatment with excited fluorine under the following conditions, followed by nitriding. FIG. 1 is a schematic diagram of the remote plasma device used.

【0012】まず酸化膜を10nm成長させたシリコン
基板1を反応室2内の基板ホルダーに取り付け、次いで
石英管3にアルゴンガス(300SCCM)を通しなが
ら反応室2に導入する。その途中の共振器4においてマ
イクロ波電力60Wで、アルゴンガスのプラズマを発生
させた。また、反応室2と共振器4との間の導入管から
ヘリウムガス希釈F2ガス(88.5SCCM)を導入
した。ここで、F2ガス分圧0.01Torrで処理時間
は2分である。このフッ化処理が終了後、F2ガスの導
入を止め、基板を550℃に保持し、アルゴンガスの代
わりに窒素(600SCCM)を導入し、マイクロ波電
力80Wで、プラズマを発生させ、全圧1Torr、処
理時間60分で窒化処理を終了させた。
First, a silicon substrate 1 on which an oxide film is grown to a thickness of 10 nm is mounted on a substrate holder in a reaction chamber 2 and then introduced into the reaction chamber 2 while passing argon gas (300 SCCM) through a quartz tube 3. In the middle of the resonator 4, plasma of argon gas was generated with microwave power of 60W. Further, helium gas-diluted F 2 gas (88.5 SCCM) was introduced from an introduction pipe between the reaction chamber 2 and the resonator 4. Here, F 2 gas partial pressure 0.01Torr processing time is 2 minutes. After completion of the fluoridation treatment, introduction of F 2 gas was stopped, the substrate was kept at 550 ° C., nitrogen (600 SCCM) was introduced instead of argon gas, plasma was generated with microwave power of 80 W, and total pressure was increased. The nitriding treatment was completed at 1 Torr for 60 minutes.

【0013】励起フッ化処理後及び窒化処理後の試料中
のF及びNの深さ方向の分布を図2に示した。膜中のF
及びNの濃度は、X線光電子分光分析装置で測定した。
縦軸は、F及びNの原子%濃度を示す。図2より深さ0
nmの濃度は約2.8原子%であり、深さ1.5nmの
濃度は約0.4原子%となり、表面から膜の内部の浅い
層にNが高濃度に導入されていることが分かる。膜の特
性として、絶縁破壊電気特性および硼素拡散に対するバ
リア性を測定した。絶縁破壊電気特性は、8C/cm2
(シリコン酸化膜の場合5C/cm2程度)で、またバ
リア性は、BF2+イオンを注入後、しきい値電圧の変動
を調べた結果0.1V以下であり、膜の電気的特性及び
硼素拡散に対するバリア性が著しく改善された。
FIG. 2 shows the distribution of F and N in the depth direction in the sample after the excitation fluorination treatment and the nitridation treatment. F in the film
And N concentrations were measured with an X-ray photoelectron spectrometer.
The vertical axis indicates the atomic% concentrations of F and N. 0 depth from FIG.
The concentration of nm is about 2.8 atomic%, the concentration of 1.5 nm at a depth of about 0.4 atomic%, and it can be seen that N is introduced at a high concentration from the surface to a shallow layer inside the film. . As characteristics of the film, electric breakdown characteristics and barrier properties against boron diffusion were measured. Electrical breakdown electrical properties are 8 C / cm 2
(About 5 C / cm 2 in the case of a silicon oxide film), and the barrier property was 0.1 V or less as a result of examining the change in threshold voltage after implanting BF 2+ ions. The barrier properties against boron diffusion were significantly improved.

【0014】実施例2.実施例1と同様に酸化膜を成長
させた後、励起させないフッ素で酸化膜の表面処理を行
い、その後窒化処理を行った。 [フッ素処理条件]全圧:1Torr、F2分圧0.01
Torr(キャリアガス Ar+He) [窒化処理条件] 全圧:1Torr、処理時間:60分、窒素流量:60
0SCCM、基板温度:550℃、マイクロ波電力:8
0W 窒化処理後の試料中のNの深さ方向の分布を図3に示し
た。膜中のNの濃度は、X線光電子分光分析装置で測定
した。縦軸は、Nの原子%濃度を示す。この図3より深
さ0nmの濃度は約2.7原子%であり、深さ2.5n
mまでほぼ直線状に減少しており、表面から膜の内部の
浅い層にNが高濃度に導入されていることが分かる。実
施例1と同様に膜の絶縁破壊電気特性および硼素拡散に
対するバリア性を測定した結果、電気的特性及び硼素拡
散に対するバリア性が著しく改善された。
Embodiment 2 FIG. After an oxide film was grown in the same manner as in Example 1, the oxide film was subjected to a surface treatment with non-excited fluorine, followed by a nitriding treatment. [Fluorine treatment conditions] Total pressure: 1 Torr, F 2 partial pressure 0.01
Torr (Carrier gas Ar + He) [Nitriding conditions] Total pressure: 1 Torr, Processing time: 60 minutes, Nitrogen flow rate: 60
0SCCM, substrate temperature: 550 ° C, microwave power: 8
FIG. 3 shows the distribution of N in the depth direction in the sample after the 0W nitriding treatment. The concentration of N in the film was measured with an X-ray photoelectron spectrometer. The vertical axis indicates the atomic% concentration of N. From FIG. 3, the concentration at the depth of 0 nm is about 2.7 atomic%, and the density at the depth of 2.5 n
m, and it is understood that N is introduced at a high concentration from the surface to a shallow layer inside the film. The electrical properties of the film and the barrier properties against boron diffusion were measured in the same manner as in Example 1. As a result, the electrical properties and the barrier properties against boron diffusion were significantly improved.

【0015】実施例3−1〜19−3 実施例1と同様な操作でシリコン酸化膜を成膜し、フッ
化処理方法、窒化処理方法を変えてシリコン窒化酸化膜
(SiON)の成膜を行った膜質の評価結果とシリコン
ウエハ上に五酸化タンタル膜を成膜した試料をフッ化処
理、窒化処理を行った膜質の評価結果を表1〜表2に示
した。フッ化処理の励起方法は、プラズマ処理により実
施した。また、窒化処理は、マイクロ波電力80Wでプ
ラズマ処理した。膜中のNの濃度は、X線光電子分光分
析装置で測定した。表面から膜の内部の浅い層のみにN
が導入されていた。実施例1と同様に膜の絶縁破壊電気
特性および硼素拡散に対するバリア性を測定した結果、
電気的特性及び硼素拡散に対するバリア性が著しく改善
された。
Embodiments 3-1 to 19-3 A silicon oxide film is formed by the same operation as in Embodiment 1, and a silicon oxynitride film (SiON) is formed by changing the fluoridation method and the nitriding method. Tables 1 and 2 show the results of the evaluation of the film quality and the results of the evaluation of the film quality obtained by subjecting a sample having a tantalum pentoxide film formed on a silicon wafer to a fluorination treatment and a nitriding treatment. The fluoridation treatment was excited by a plasma treatment. The nitriding was performed by plasma processing at a microwave power of 80 W. The concentration of N in the film was measured with an X-ray photoelectron spectrometer. N only in the shallow layer inside the film from the surface
Had been introduced. As a result of measuring the electric breakdown characteristics of the film and the barrier property against boron diffusion in the same manner as in Example 1,
The electrical properties and the barrier properties against boron diffusion were significantly improved.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】実施例20 シリコンウエハ上にシリコン酸化膜を成長させた後、試
料を希フッ化水素酸水溶液(水:HF=50:1)に浸
漬してフッ化処理を行った。さらにその後、実施例2と
同様の条件で窒化処理を行い、実施例1と同様に膜の絶
縁破壊電気特性および硼素拡散に対するバリア性を測定
した結果、電気的特性及び硼素拡散に対するバリア性が
著しく改善された。
Example 20 After a silicon oxide film was grown on a silicon wafer, the sample was immersed in a dilute aqueous hydrofluoric acid solution (water: HF = 50: 1) to perform a fluorination treatment. Further, after that, a nitriding treatment was performed under the same conditions as in Example 2, and the electrical breakdown characteristics and the barrier property against boron diffusion of the film were measured in the same manner as in Example 1. Improved.

【0019】実施例21 シリコンウエハ上に酸化タンタル膜を成長させた後、試
料を希フッ化水素酸水溶液(水:HF=50:1)に浸
漬してフッ化処理を行った。さらにその後、実施例2と
同様の条件で窒化処理を行い、実施例1と同様に膜の絶
縁破壊電気特性および硼素拡散に対するバリア性を測定
した結果、電気的特性及び硼素拡散に対するバリア性が
著しく改善された。
Example 21 After a tantalum oxide film was grown on a silicon wafer, the sample was immersed in a dilute aqueous hydrofluoric acid solution (water: HF = 50: 1) to perform a fluorination treatment. Further, after that, a nitriding treatment was performed under the same conditions as in Example 2, and the electrical breakdown characteristics and the barrier property against boron diffusion of the film were measured in the same manner as in Example 1. Improved.

【0020】比較例1.シリコン基板上に酸化膜を10
nm成長させた後、フッ化処理をせずにリモートプラズ
マ法により窒化酸化処理を行った。 [酸化窒化条件] 全圧:1Torr、流量比(N2:O2)=200SCC
M:1SCCM、処理時間:90分、マイクロ波電力:
150W、温度:550℃、650℃、750℃、85
0℃ 膜中のNの濃度は、X線光電子分光分析装置で測定し
た。上記処理条件で実施した結果、750℃、850℃
では窒素の導入が認められるが650℃以下の温度では
窒素はほとんど観測できなかった。また、膜表面には窒
素はほとんど導入することができず、硼素のバリア性も
劣っていた。また、膜厚が初期膜厚と比較して増加して
いることを確認した。
Comparative Example 1 Oxide film on silicon substrate
After the growth of nm, a nitridation oxidation treatment was performed by a remote plasma method without performing the fluoridation treatment. [Oxynitriding conditions] Total pressure: 1 Torr, flow rate ratio (N 2 : O 2 ) = 200 SCC
M: 1 SCCM, processing time: 90 minutes, microwave power:
150W, temperature: 550 ° C, 650 ° C, 750 ° C, 85
The concentration of N in the 0 ° C. film was measured with an X-ray photoelectron spectrometer. 750 ° C, 850 ° C
In this case, introduction of nitrogen was recognized, but nitrogen could hardly be observed at a temperature of 650 ° C. or less. Further, almost no nitrogen could be introduced into the film surface, and the barrier property of boron was poor. Further, it was confirmed that the film thickness was increased as compared with the initial film thickness.

【0021】比較例2.シリコン基板上に酸化膜を10
nm成長させた後、フッ化処理をせずにリモートプラズ
マ法により窒化処理を行った。 [窒化条件] 全圧:1Torr、流量(N2):200SCCM、処
理時間:90分、マイクロ波電力:150W、温度:8
50℃ 膜中のNの濃度は、X線光電子分光分析装置で測定し
た。上記処理条件で実施した結果、深さ方向の窒素の導
入量が少なく、また表面には窒素が導入されていなかっ
た。
Comparative Example 2 Oxide film on silicon substrate
After the growth of nm, a nitriding treatment was performed by a remote plasma method without performing the fluoridation treatment. [Nitriding conditions] Total pressure: 1 Torr, flow rate (N 2 ): 200 SCCM, processing time: 90 minutes, microwave power: 150 W, temperature: 8
50 ° C. The concentration of N in the film was measured with an X-ray photoelectron spectrometer. As a result of performing under the above processing conditions, the amount of nitrogen introduced in the depth direction was small, and nitrogen was not introduced into the surface.

【0022】[0022]

【発明の効果】本発明の方法により、表面近傍に窒素濃
度を高めた窒化酸化膜を得ることができ、不純物の拡散
防止と電気的特性の改善された窒化酸化膜を製造できる
ものである。
According to the method of the present invention, it is possible to obtain a nitrided oxide film having an increased nitrogen concentration near the surface, and to manufacture a nitrided oxide film in which diffusion of impurities is prevented and electrical characteristics are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いたリモートプラズマ装置の概略図
である。
FIG. 1 is a schematic diagram of a remote plasma device used in the present invention.

【図2】実施例1における励起フッ素処理後及び窒化処
理後の試料中のF及びNの深さ方向と濃度の関係を示
す。
FIG. 2 shows the relationship between the depth direction and the concentration of F and N in a sample after excitation fluorine treatment and after nitriding treatment in Example 1.

【図3】実施例2における窒化処理後の試料中のNの深
さ方向と濃度の関係を示す。
FIG. 3 shows the relationship between the depth direction and the concentration of N in a sample after nitriding in Example 2.

【符号の説明】[Explanation of symbols]

1.基板 2.反応室 3.石英管 4.共振器 1. Substrate 2. Reaction chamber 3. Quartz tube 4. Resonator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面から深さ方向へ漸減する濃度勾配を
有し表面近傍の窒素濃度を高めた窒化酸化膜。
1. A nitrided oxide film having a concentration gradient gradually decreasing from a surface to a depth direction and having an increased nitrogen concentration near the surface.
【請求項2】 フッ素を含有し、表面から深さ方向へ漸
減する濃度勾配を有し表面近傍の窒素濃度を高めた窒化
酸化膜。
2. A nitrided oxide film containing fluorine, having a concentration gradient gradually decreasing from the surface in the depth direction and having an increased nitrogen concentration near the surface.
【請求項3】 酸化膜表面をフッ化物でフッ化処理した
後、窒素化合物で窒化処理することを特徴とする請求項
1または2記載の窒化酸化膜の形成方法。
3. The method for forming a nitrided oxide film according to claim 1, wherein the surface of the oxide film is fluorinated with a fluoride and then nitrided with a nitrogen compound.
JP13059997A 1997-05-21 1997-05-21 Method for forming nitrided oxide film Expired - Fee Related JP3221602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13059997A JP3221602B2 (en) 1997-05-21 1997-05-21 Method for forming nitrided oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13059997A JP3221602B2 (en) 1997-05-21 1997-05-21 Method for forming nitrided oxide film

Publications (2)

Publication Number Publication Date
JPH10321620A true JPH10321620A (en) 1998-12-04
JP3221602B2 JP3221602B2 (en) 2001-10-22

Family

ID=15038072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13059997A Expired - Fee Related JP3221602B2 (en) 1997-05-21 1997-05-21 Method for forming nitrided oxide film

Country Status (1)

Country Link
JP (1) JP3221602B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030037583A (en) * 2001-11-06 2003-05-14 삼성전자주식회사 Method and apparatus for forming silicon nitride
JP2010505281A (en) * 2006-09-26 2010-02-18 アプライド マテリアルズ インコーポレイテッド Fluorine plasma treatment for high-K gate stacks for defect passivation
JP2011103481A (en) * 2011-01-13 2011-05-26 Seiko Epson Corp Method for manufacturing semiconductor device
JP2013168397A (en) * 2012-02-14 2013-08-29 Ricoh Co Ltd Liquid droplet discharge head, method for forming liquid droplet discharge dead, and inkjet recording device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030037583A (en) * 2001-11-06 2003-05-14 삼성전자주식회사 Method and apparatus for forming silicon nitride
JP2010505281A (en) * 2006-09-26 2010-02-18 アプライド マテリアルズ インコーポレイテッド Fluorine plasma treatment for high-K gate stacks for defect passivation
JP2011103481A (en) * 2011-01-13 2011-05-26 Seiko Epson Corp Method for manufacturing semiconductor device
JP2013168397A (en) * 2012-02-14 2013-08-29 Ricoh Co Ltd Liquid droplet discharge head, method for forming liquid droplet discharge dead, and inkjet recording device

Also Published As

Publication number Publication date
JP3221602B2 (en) 2001-10-22

Similar Documents

Publication Publication Date Title
KR100391840B1 (en) Method and apparatus for forming an insulating film on the surface of a semiconductor substrate
JP3937892B2 (en) Thin film forming method and semiconductor device manufacturing method
US7964514B2 (en) Multiple nitrogen plasma treatments for thin SiON dielectrics
US4923828A (en) Gaseous cleaning method for silicon devices
JP5105627B2 (en) Formation of silicon oxynitride gate dielectric using multiple annealing steps
JP4895803B2 (en) Dielectric film and gate stack forming method, and dielectric film processing method
US20010006843A1 (en) Method for forming a gate insulating film for semiconductor devices
US7923360B2 (en) Method of forming dielectric films
JP2009545895A (en) Improvement of CMOSSiON gate dielectric performance by formation of double plasma nitride containing rare gas
JP2004343031A (en) Dielectric film, formation method thereof, semiconductor device using dielectric film, and manufacturing method thereof
JP2004343031A5 (en)
TW200406024A (en) Manufacture method of semiconductor device with gate insulating films of different thickness
JP3746478B2 (en) Manufacturing method of semiconductor device
JP3399413B2 (en) Oxynitride film and method for forming the same
US5880031A (en) Method for vapor phase wafer cleaning
JP3221602B2 (en) Method for forming nitrided oxide film
JP2005539367A (en) Semiconductor-based UV-enhanced oxynitridation
US6740941B2 (en) Semiconductor device including a gate insulating film made of high-dielectric-constant material
JP2002510437A (en) Method of nitriding gate oxide layer of semiconductor device and resulting device
JP3533377B2 (en) Method of forming oxide film on semiconductor substrate surface and method of manufacturing semiconductor device
JP2660243B2 (en) Semiconductor device manufacturing method
JPH0823095A (en) Semiconductor device and production process thereof
JP2002064097A (en) Manufacturing method of semiconductor device
JP3153154B2 (en) Method of forming silicon oxide film
JP2004214305A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees