JPH1032012A - Phosphoric acid fuel cell and manufacture thereof - Google Patents
Phosphoric acid fuel cell and manufacture thereofInfo
- Publication number
- JPH1032012A JPH1032012A JP8183905A JP18390596A JPH1032012A JP H1032012 A JPH1032012 A JP H1032012A JP 8183905 A JP8183905 A JP 8183905A JP 18390596 A JP18390596 A JP 18390596A JP H1032012 A JPH1032012 A JP H1032012A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel gas
- fuel
- phosphoric acid
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、リン酸型燃料電
池の燃料電池積層体の構造およびその製造方法に係わ
り、特に反応ガスの通流路の構成およびその製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a fuel cell stack of a phosphoric acid type fuel cell and a method of manufacturing the same, and more particularly, to a structure of a reaction gas passage and a method of manufacturing the same.
【0002】[0002]
【従来の技術】リン酸型燃料電池においては、リン酸を
含んだマトリックスを燃料電極と空気電極とで挟んで単
セルを構成し、この単セルをガス不透過性材料よりなる
セパレート板と交互に積層して燃料電池積層体を形成
し、燃料電極に燃料ガスを、また空気電極に空気を供給
して、発電が行われる。2. Description of the Related Art In a phosphoric acid type fuel cell, a single cell is formed by sandwiching a matrix containing phosphoric acid between a fuel electrode and an air electrode, and the single cell is alternately arranged with a separate plate made of a gas impermeable material. To form a fuel cell stack, and a fuel gas is supplied to the fuel electrode and air is supplied to the air electrode to generate power.
【0003】図11は、従来より用いられているリン酸
型燃料電池の単セルの基本構成図で、左上の図は積層方
向より見た平面図、右上の図は空気出口側より見た側面
図、下の図は燃料ガス入口側より見た側面図である。図
に見られるように、方形平板状の単セル1は、リン酸を
含んだマトリックス4と、これを挟んで配された空気電
極2と燃料電極5よりなり、ガス不透過性材料よりなる
セパレート板7を介装して気密を保持して交互に積層す
ることにより燃料電池積層体が形成される。空気電極2
は、空気電極触媒層2aとこれを支持する多孔質体から
なるリブ付きの空気電極基材2bからなり、燃料電極5
は、燃料電極触媒層5aとこれを支持する多孔質体から
なるリブ付きの燃料電極基材5b、並びに補給用のリン
酸を保持する多孔質体からなるリザーバプレート5cよ
り構成されている。また、空気電極基材2bには、一方
の側面から相対する側面へと連通する複数の並列に配さ
れた同一断面形状をもつ空気通流溝3が備えられてお
り、燃料電極基材5bには、空気通流溝3の通流方向と
直交する方向に連通する複数の並列に配された同一断面
形状をもつ燃料ガス通流溝6が備えられている。[0003] Fig. 11 is a basic configuration diagram of a single cell of a phosphoric acid type fuel cell conventionally used. The upper left diagram is a plan view as viewed from the stacking direction, and the upper right diagram is a side view as viewed from the air outlet side. The figure and the lower figure are side views seen from the fuel gas inlet side. As shown in the figure, a single cell 1 in the form of a rectangular flat plate is composed of a matrix 4 containing phosphoric acid, an air electrode 2 and a fuel electrode 5 interposed therebetween, and a separate material made of a gas impermeable material. The fuel cell stack is formed by interposing the plates 7 and alternately stacking them while maintaining airtightness. Air electrode 2
Is composed of an air electrode catalyst layer 2a and a ribbed air electrode base material 2b made of a porous material supporting the air electrode catalyst layer 2a.
Is composed of a fuel electrode catalyst layer 5a, a fuel electrode base material 5b with a rib made of a porous material supporting the same, and a reservoir plate 5c made of a porous material holding phosphoric acid for replenishment. Further, the air electrode base 2b is provided with a plurality of air flow grooves 3 having the same cross-sectional shape, which are arranged in parallel and communicate with each other from one side to the opposite side. Is provided with a plurality of fuel gas flow grooves 6 arranged in parallel and having the same cross-sectional shape and communicating in a direction orthogonal to the flow direction of the air flow grooves 3.
【0004】したがって、本構成の燃料電池積層体の側
面より複数の空気通流溝3へ空気を、また複数の燃料ガ
ス通流溝6へ燃料ガスを分流して供給すると、それぞれ
空気電極基材2bおよび燃料電極基材5b中を透過して
空気電極触媒層2a、燃料電極触媒層5aへと到達し、
電気化学反応が生じて、外部に電気エネルギーが取り出
されることとなる。Accordingly, when air is supplied to the plurality of air flow grooves 3 and the fuel gas is separately supplied to the plurality of fuel gas flow grooves 6 from the side surface of the fuel cell stack of the present structure, the air electrode base material is provided. 2b and the fuel electrode base material 5b to reach the air electrode catalyst layer 2a and the fuel electrode catalyst layer 5a,
An electrochemical reaction occurs, and electric energy is extracted to the outside.
【0005】[0005]
【発明が解決しようとする課題】上記の発電反応は、空
気中の酸素と燃料ガス中の水素が反応して水と電子を生
成する反応である。したがって、空気通流溝3へ送られ
た空気は面内で酸素を消費して排出されるので、入口部
に比べ出口部の酸素濃度が低くなる。また同様に燃料ガ
ス通流溝6へ送られた燃料ガスも面内で水素を消費する
ので出口部の水素濃度は大幅に低下する。さらに、空気
通流溝3へ送られた空気の酸素消費量は自身の酸素濃度
のみならず燃料ガスの水素量によって変化し、水素量が
多い部分では消費量が大きくなり、水素量の少ない部分
では酸素消費量も少なくなる。同様に、燃料ガス通流溝
6へ送られた燃料ガスの水素消費量も、酸素量の多い部
分では消費量が大きくなり、酸素量の少ない部分では水
素消費量も少なくなる。The above-mentioned power generation reaction is a reaction in which oxygen in air reacts with hydrogen in fuel gas to generate water and electrons. Therefore, since the air sent to the air flow groove 3 consumes oxygen in the plane and is discharged, the oxygen concentration at the outlet is lower than that at the inlet. Similarly, the fuel gas sent to the fuel gas flow groove 6 also consumes hydrogen in the plane, so that the hydrogen concentration at the outlet portion is greatly reduced. Furthermore, the oxygen consumption of the air sent to the air flow groove 3 varies not only with its own oxygen concentration but also with the amount of hydrogen in the fuel gas. Then the oxygen consumption is also reduced. Similarly, the hydrogen consumption of the fuel gas sent to the fuel gas flow groove 6 is large in the portion with a large amount of oxygen, and is small in the portion with a small amount of oxygen.
【0006】したがって、図11のごとく複数の空気通
流溝3へ空気を分流して供給し、複数の燃料ガス通流溝
6へ燃料ガスを分流して供給する構成においては、それ
ぞれの空気通流溝3へ供給される空気中の酸素量が同一
であるにもかかわらず、燃料ガスの上流側に配された空
気通流溝3の入口近傍で多量に酸素が消費されるので、
下流側の酸素濃度が大幅に低下し酸素量が不足し、カー
ボン材よりなる構成部材が腐食する危険性が生じる。同
様に、空気の上流側に配された燃料ガス通流溝6におい
ても入口近傍で多量に酸素が消費されるので、下流側の
水素濃度が大幅に低下し水素量が不足し、構成部材が腐
食する事態が生じ、安定した運転を持続することが困難
となる。Accordingly, as shown in FIG. 11, in a configuration in which air is divided and supplied to the plurality of air flow grooves 3 and fuel gas is divided and supplied to the plurality of fuel gas flow grooves 6, each air flow groove is provided. Although the amount of oxygen in the air supplied to the flow groove 3 is the same, a large amount of oxygen is consumed near the inlet of the air flow groove 3 arranged on the upstream side of the fuel gas.
The oxygen concentration on the downstream side is greatly reduced, the amount of oxygen is insufficient, and there is a risk that the constituent members made of the carbon material are corroded. Similarly, a large amount of oxygen is consumed in the vicinity of the inlet also in the fuel gas flow groove 6 arranged on the upstream side of the air, so that the concentration of hydrogen on the downstream side is significantly reduced, the amount of hydrogen is insufficient, and the constituent members are reduced. Corrosion occurs, making it difficult to maintain stable operation.
【0007】本発明の目的は、上記のごとき従来技術の
難点を解消し、通流する燃料ガス中の水素量、あるいは
通流する空気中の酸素量の分布を改良して、長期にわた
り安定して運転できるリン酸型燃料電池の構成、および
その製造方法を提供することにある。An object of the present invention is to solve the above-mentioned disadvantages of the prior art and to improve the distribution of the amount of hydrogen in the flowing fuel gas or the amount of oxygen in the flowing air so as to be stable for a long time. It is an object of the present invention to provide a configuration of a phosphoric acid type fuel cell which can be operated in a vacuum and a method for manufacturing the same.
【0008】[0008]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、リン酸を含んだマトリックス
とこれを挟持する燃料電極と空気電極を備えた方形平板
状の単セルを、ガス不透過性のセパレート板を介装し、
複数層積層して燃料電池積層体を構成し、燃料電極ある
いはセパレート板に側面より相対する側面へと連通して
並列に設けられた複数の燃料ガス通流路に燃料ガスを通
流し、空気電極あるいはセパレート板に側面より相対す
る側面へと前記燃料ガス通流路に直交して連通して並列
に設けられた複数の空気通流路に空気を通流して、電気
化学反応により発電するリン酸型燃料電池において、 (1)上記の複数の燃料ガス通流路を、流路の幅が略同
一で、流路の深さが空気入口側ほど深く、空気出口側ほ
ど浅い複数の通流路より構成するか、あるいは上記の複
数の空気通流路を、流路の幅が略同一で、流路の深さが
燃料ガス入口側ほど深く、燃料ガス出口側ほど浅い通流
路より構成することとする。In order to achieve the above object, according to the present invention, a rectangular flat plate-shaped single cell having a phosphoric acid-containing matrix and a fuel electrode and an air electrode sandwiching the matrix is provided. A gas impermeable separate plate is interposed,
A fuel cell stack is formed by stacking a plurality of layers, and the fuel gas flows through a plurality of fuel gas passages provided in parallel with the fuel electrode or the separate plate in communication with the side surface opposite to the side surface, and the air electrode Alternatively, phosphoric acid generates electric power by an electrochemical reaction by flowing air through a plurality of air passages provided in parallel with the fuel gas passages in a direction perpendicular to the fuel gas passages to a side surface opposite to the side surface of the separate plate. (1) The plurality of fuel gas passages having the same width, the passage having a depth substantially closer to the air inlet side, and being shallower toward the air outlet side. Alternatively, the plurality of air passages are constituted by passages having substantially the same width, the depth of the passage being closer to the fuel gas inlet side, and being shallower toward the fuel gas outlet side. It shall be.
【0009】(2)あるいは、上記の複数の燃料ガス通
流路を、流路の幅が略同一で、流路の深さが空気入口側
ほど深く、空気出口側ほど浅い複数の通流路より構成
し、かつ、上記の複数の空気通流路を、流路の幅が略同
一で、流路の深さが燃料ガス入口側ほど深く、燃料ガス
出口側ほど浅い通流路より構成することとする。 (3)また(1)のリン酸型燃料電池で、複数の燃料ガ
ス通流路を、流路の幅が略同一で、流路の深さが空気入
口側ほど深く、空気出口側ほど浅い複数の通流路より構
成したものにおいて、燃料ガス通流路を備えた構成部材
を、空気入口側ほど厚く、空気出口側ほど薄い部材より
形成し、かつ空気通流路を備えた構成部材を、空気入口
側ほど薄く、空気出口側ほど厚い部材より形成し、かつ
二つの構成部材の厚みの和が面内で略同一となるよう形
成することとする。(2) Alternatively, the plurality of fuel gas passages may have the same width, the depth of the passage being closer to the air inlet side, and shallower toward the air outlet side. And the plurality of air passages are formed of passages having substantially the same width, the depth of the passage being closer to the fuel gas inlet side, and shallower to the fuel gas outlet side. It shall be. (3) In the phosphoric acid type fuel cell according to (1), the plurality of fuel gas passages have substantially the same width, and the depth of the passage is deeper on the air inlet side and shallower on the air outlet side. In the structure composed of a plurality of flow paths, the constituent member provided with the fuel gas flow path is formed from a member that is thicker on the air inlet side and thinner on the air outlet side, and the constituent member provided with the air flow path. It is formed from a member that is thinner on the air inlet side and thicker on the air outlet side, and is formed such that the sum of the thicknesses of the two constituent members is substantially the same in the plane.
【0010】(4)また(1)のリン酸型燃料電池で、
複数の空気通流路が、流路の幅が略同一で、流路の深さ
が燃料ガス入口側ほど深く、燃料ガス出口側ほど浅い通
流路よりなるものにおいて、空気通流路を備えた構成部
材を、燃料ガス入口側ほど厚く、燃料ガス出口側ほど薄
い部材より形成し、かつ燃料ガス通流路を備えた構成部
材を、燃料ガス入口側ほど薄く、燃料ガス出口側ほど厚
い部材より形成し、かつ二つの構成部材の厚みの和が面
内で略同一となるよう形成することとする。(4) The phosphoric acid type fuel cell of (1),
A plurality of air passages, the width of the passage is substantially the same, the depth of the passage is closer to the fuel gas inlet side, the shallower passage closer to the fuel gas outlet side, the air passage is provided with an air passage A member that is thicker on the fuel gas inlet side and thinner on the fuel gas outlet side, and a member provided with a fuel gas passage is thinner on the fuel gas inlet side and thicker on the fuel gas outlet side. And the thicknesses of the two components are made substantially the same in the plane.
【0011】(5)上記の(1)〜(4)のリン酸型燃
料電池において、異なった深さを有する複数の通流路よ
りなる燃料ガス通流路、あるいは空気通流路が、類似の
流路断面形状を備え、かつ複数の通流路の最深部がいず
れも同一平面上に位置するよう形成することとする。 (6)上記の(5)のごとく構成したリン酸型燃料電池
において、異なった深さを有する複数の通流路よりなる
燃料ガス通流路、あるいは空気通流路を、多連の回転刃
を備えた加工機を用い、回転刃の回転軸中心と被加工部
材を搭載するワークテーブルの上面との角度を所定値に
設定し、回転刃を平衡移動させて加工して、形成するこ
ととする。(5) In the phosphoric acid type fuel cell of the above (1) to (4), the fuel gas passage or the air passage composed of a plurality of passages having different depths is similar. And the deepest portions of the plurality of flow channels are all located on the same plane. (6) In the phosphoric acid type fuel cell configured as described in (5) above, the fuel gas flow path or the air flow path composed of a plurality of flow paths having different depths is formed by multiple rotary blades. Using a processing machine equipped with, the angle between the center of the rotation axis of the rotary blade and the upper surface of the work table on which the workpiece is mounted is set to a predetermined value, and the rotary blade is moved by equilibrium movement to process and form. I do.
【0012】上記の(1)のごとくとすれば、複数の燃
料ガス通流路を、流路の幅が略同一で、流路の深さが空
気入口側ほど深く、空気出口側ほど浅い複数の通流路よ
り構成したものにおいては、空気入口側の燃料ガス通流
路の流路断面積が空気出口側の燃料ガス通流路の流路断
面積より大きくなり、この流路断面積に比例して、燃料
ガス中の水素の消費量が相対的に多量となる空気入口側
の燃料ガス通流路に相対的に多量の燃料ガス、したがっ
て相対的に多量の水素が供給されるので、従来のごとく
下流側で水素量が不足する事態は回避され、構成部材の
腐食が防止される。According to the above (1), the plurality of fuel gas passages are substantially the same in width, and the depth of the passage is greater toward the air inlet side and shallower toward the air outlet side. In the configuration formed by the flow passages, the cross-sectional area of the fuel gas flow passage on the air inlet side is larger than the flow cross-sectional area of the fuel gas flow passage on the air outlet side. In proportion, a relatively large amount of fuel gas, and thus a relatively large amount of hydrogen, is supplied to the fuel gas passage on the air inlet side where the consumption of hydrogen in the fuel gas is relatively large. A situation in which the amount of hydrogen is insufficient on the downstream side as in the related art is avoided, and corrosion of components is prevented.
【0013】また、複数の空気通流路を、流路の幅が略
同一で、流路の深さが燃料ガス入口側ほど深く、燃料ガ
ス出口側ほど浅い通流路より構成したものにおいては、
同等に、空気中の酸素の消費量が相対的に多量となる燃
料ガス入口側の空気通流路に相対的に多量の空気、した
がって相対的に多量の酸素が供給されるので、従来のご
とく下流側で酸素量が不足する事態は回避され、構成部
材の腐食が防止されることとなる。[0013] Further, in the case where the plurality of air passages are constituted by passages having substantially the same width, the depth of the passage being deeper on the fuel gas inlet side and shallower on the fuel gas outlet side. ,
Similarly, a relatively large amount of air, and thus a relatively large amount of oxygen, is supplied to the air passage on the fuel gas inlet side where the consumption of oxygen in the air is relatively large. A shortage of oxygen on the downstream side is avoided, and corrosion of the components is prevented.
【0014】また、上記の(2)のごとくとすれば、燃
料ガス通流路の下流側での水素量の不足、ならびに空気
通流路の下流側での酸素量の不足が回避され、構成部材
の腐食が防止されることとなる。また、上記の(3)の
ごとくとすれば、燃料ガス通流路の下流側での水素量の
不足が回避され、構成部材の腐食が防止されるばかりで
なく、燃料電極の構成部材に燃料ガス通流路を形成した
ものにあっても、残肉の肉厚をほぼ一定にすることがで
きるので、本構成部材中のガス拡散を面内で均一にする
ことができる。また上記の(4)のごとくとすれば、空
気通流路の下流側での酸素量の不足が回避され、構成部
材の腐食が防止されるばかりでなく、空気電極の構成部
材に空気通流路を形成したものにあっても、構成部材中
のガス拡散を面内で均一にすることができる。According to the above (2), the shortage of hydrogen on the downstream side of the fuel gas passage and the shortage of oxygen on the downstream side of the air passage are avoided. Corrosion of the member is prevented. According to the above (3), shortage of the amount of hydrogen on the downstream side of the fuel gas passage is avoided, and not only corrosion of the components is prevented, but also the components of the fuel electrode are provided with fuel. Even in the case where the gas passage is formed, the thickness of the remaining wall can be made substantially constant, so that the gas diffusion in the constituent member can be uniform in the plane. In addition, according to the above (4), shortage of oxygen on the downstream side of the air passage is avoided, so that not only corrosion of the components is prevented but also the air flow to the components of the air electrode is prevented. Even in the case where the passage is formed, the gas diffusion in the constituent members can be made uniform in the plane.
【0015】さらに、上記の(5)のごとくとすれば、
例えば上記の(6)のごとき方法を用いることにより、
容易に加工できることとなる。Further, if the above (5) is satisfied,
For example, by using a method such as the above (6),
It can be easily processed.
【0016】[0016]
【発明の実施の形態】以下、本発明の実施例を図面を用
いて説明する。 <第1実施例>図1は、本発明のリン酸型燃料電池の第
1実施例を示す単セルの基本構成図である。図11に示
した従来例と同じく、左上の図は積層方向より見た平面
図、右上の図は空気出口側より見た側面図、下の図は燃
料ガス入口側より見た側面図である。Embodiments of the present invention will be described below with reference to the drawings. <First Embodiment> FIG. 1 is a basic structural diagram of a single cell showing a first embodiment of the phosphoric acid type fuel cell of the present invention. As in the conventional example shown in FIG. 11, the upper left figure is a plan view seen from the laminating direction, the upper right figure is a side view seen from the air outlet side, and the lower figure is a side view seen from the fuel gas inlet side. .
【0017】本実施例の従来例との差異は、燃料電極5
の燃料電極触媒層5aを支持する燃料電極基材5bに形
成された複数の燃料ガス通流溝6Aの構成にある。従来
例においては同一流路幅と同一深さを備えた複数の燃料
ガス通流溝6より構成されていたのに対して、本実施例
では、同一流路幅を備え、空気出口側より空気入口側に
行くに従い溝の深さが深くなる複数の燃料ガス通流溝6
Aより構成されている。本構成では、空気出口側より空
気入口側に行くに従い流路断面積が増大するので、空気
入口側に近い燃料ガス通流溝6Aほど多量の燃料ガスが
通流することとなる。したがって、空気入口側に近い燃
料ガス通流溝6Aの上流側で多量の水素が消費されて
も、下流側の燃料ガスには十分な水素が含まれることと
なるので、水素の不足によって構成部材が腐食する危険
性はない。また、空気出口側に近い燃料ガス通流溝6A
に通流する燃料ガスは従来例に比べて減少するが、空気
出口側では空気に含まれる酸素量も少なく、したがって
水素の消費量も少ないので、水素の不足による構成部材
の腐食を生じるおそれはない。The difference between the present embodiment and the conventional example is that the fuel electrode 5
In the fuel electrode base layer 5b supporting the fuel electrode catalyst layer 5a. In contrast to the conventional example, which is constituted by a plurality of fuel gas flow grooves 6 having the same flow path width and the same depth, in the present embodiment, the fuel gas flow grooves 6 have the same flow path width and air is supplied from the air outlet side. A plurality of fuel gas flow grooves 6 in which the depth of the grooves increases toward the inlet side
A. In this configuration, since the flow path cross-sectional area increases from the air outlet side to the air inlet side, a larger amount of fuel gas flows through the fuel gas flow groove 6A closer to the air inlet side. Therefore, even if a large amount of hydrogen is consumed on the upstream side of the fuel gas flow groove 6A near the air inlet side, sufficient fuel is contained in the downstream fuel gas. There is no danger of corrosion. Also, the fuel gas flow groove 6A near the air outlet side
Although the amount of fuel gas flowing through the fuel cell is reduced as compared with the conventional example, the amount of oxygen contained in the air at the air outlet side is small, and the consumption of hydrogen is also small. Absent.
【0018】なお、複数の空気通流溝を、同一流路幅を
備え、燃料ガス出口側より燃料ガス入口側に行くに従い
溝の深さが深くなる複数のガス通流溝より構成すること
とすれば、従来例で見られた燃料ガス入口側の空気通流
溝の下流側での酸素不足が回避されることは、上記の第
1実施例より容易に類推されるので、図示しての説明は
省略する。It is to be noted that the plurality of air flow grooves have the same flow path width, and the plurality of gas flow grooves have a depth that becomes deeper as going from the fuel gas outlet side to the fuel gas inlet side. Then, the lack of oxygen on the downstream side of the air flow groove on the fuel gas inlet side, which is observed in the conventional example, can be easily analogized from the above-described first embodiment. Description is omitted.
【0019】<第2実施例>図2は、本発明のリン酸型
燃料電池の第2実施例を示す単セルの基本構成図であ
る。本実施例の特徴は、燃料電極基材5bに形成された
複数の燃料ガス通流溝6Aが、第1実施例と同様に、同
一流路幅を備え、空気出口側より空気入口側に行くに従
い溝の深さが深くなる複数のガス通流溝より構成され、
さらに、空気電極2の空気電極基材2bに備えられた空
気通流溝3Aが、同一流路幅を備え、燃料ガス出口側よ
り燃料ガス入口側に行くに従い溝の深さが深くなる複数
のガス通流溝より構成されている点にある。<Second Embodiment> FIG. 2 is a basic structural diagram of a single cell showing a second embodiment of the phosphoric acid fuel cell of the present invention. The feature of this embodiment is that a plurality of fuel gas flow grooves 6A formed in the fuel electrode base material 5b have the same flow path width as in the first embodiment, and go from the air outlet side to the air inlet side. It is composed of a plurality of gas flow grooves, the depth of which increases according to
Further, a plurality of air flow grooves 3A provided on the air electrode base material 2b of the air electrode 2 have the same flow path width, and the depth of the grooves increases from the fuel gas outlet side to the fuel gas inlet side. The point is that it is composed of gas flow grooves.
【0020】本構成では、第1実施例と同様に空気入口
側の燃料ガス通流溝6Aの下流側の燃料ガスにも十分な
水素が含まれ、燃料ガス入口側の空気通流溝の下流側の
空気にも十分な酸素が含まれることとなるので、構成部
材の腐食が効果的に防止されることとなる。 <第3実施例>図3は、本発明のリン酸型燃料電池の第
3実施例を示す単セルの基本構成図である。In this configuration, as in the first embodiment, sufficient hydrogen is also contained in the fuel gas on the downstream side of the fuel gas flow groove 6A on the air inlet side, and the downstream side of the air flow groove on the fuel gas inlet side is sufficient. Since sufficient oxygen is also contained in the air on the side, corrosion of the constituent members is effectively prevented. <Third Embodiment> FIG. 3 is a basic structural view of a single cell showing a third embodiment of the phosphoric acid fuel cell of the present invention.
【0021】本実施例の特徴は、空気電極2が空気電極
触媒層2a、空気電極基材2dおよび溝形成用のリブを
備えたリザーバプレート2eよりなり、燃料電極5が燃
料電極触媒層5a、燃料電極基材5dおよび溝形成用の
リブを備えたリザーバプレート5eよりなるものにおい
て、リザーバプレート2eに、同一流路幅を備え、燃料
ガス出口側より燃料ガス入口側に行くに従い溝の深さが
深くなる複数の空気通流溝3Aが備えられ、リザーバプ
レート5eに、同一流路幅を備え、空気出口側より空気
入口側に行くに従い溝の深さが深くなる複数の燃料ガス
通流溝6Aが備えられている点にある。The feature of this embodiment is that the air electrode 2 comprises an air electrode catalyst layer 2a, an air electrode base material 2d and a reservoir plate 2e having ribs for forming grooves, and the fuel electrode 5 comprises a fuel electrode catalyst layer 5a, In a fuel electrode base 5d and a reservoir plate 5e having ribs for forming grooves, the reservoir plate 2e has the same flow path width, and the depth of the groove increases from the fuel gas outlet to the fuel gas inlet. Are provided with a plurality of air flow grooves 3A, and the reservoir plate 5e has the same flow path width, and a plurality of fuel gas flow grooves whose grooves become deeper from the air outlet side to the air inlet side. 6A is provided.
【0022】本構成においても、第2実施例と同様に、
空気入口側の燃料ガス通流溝6Aの下流側の燃料ガスに
も十分な水素が含まれ、燃料ガス入口側の空気通流溝3
Aの下流側の空気にも十分な酸素が含まれることとな
る。 <第4実施例>図4は、本発明のリン酸型燃料電池の第
4実施例を示す単セルの基本構成図である。In this configuration, as in the second embodiment,
The fuel gas on the downstream side of the fuel gas flow groove 6A on the air inlet side also contains sufficient hydrogen, and the air flow groove 3 on the fuel gas inlet side also has sufficient hydrogen.
The air downstream of A also contains sufficient oxygen. <Fourth Embodiment> FIG. 4 is a basic structural diagram of a single cell showing a fourth embodiment of the phosphoric acid fuel cell of the present invention.
【0023】本実施例の特徴は、一方の主面に空気通流
溝3Aを形成するリブを備え、もう一方の主面に燃料ガ
ス通流溝6Aを形成するリブを備えたセパレート板7A
と単セル1を交互に積層して構成するものにおいて、空
気通流溝3Aを、同一流路幅を備え、燃料ガス出口側よ
り燃料ガス入口側に行くに従い溝の深さが深くなる複数
の空気通流溝より構成し、複数の燃料ガス通流溝6A、
同一流路幅を備え、空気出口側より空気入口側に行くに
従い溝の深さが深くなる複数の燃料ガス通流溝より構成
した点にある。This embodiment is characterized in that a separate plate 7A having a rib forming an air flow groove 3A on one main surface and a rib forming a fuel gas flow groove 6A on the other main surface.
And the unit cells 1 are alternately stacked, and the air flow grooves 3A have the same flow path width, and the depth of the grooves increases from the fuel gas outlet side to the fuel gas inlet side. A plurality of fuel gas flow grooves 6A,
This is characterized in that it has a plurality of fuel gas flow grooves having the same flow path width, and the depth of the grooves increases from the air outlet side to the air inlet side.
【0024】本構成においても、第2実施例、第3実施
例と同様に、空気入口側の燃料ガス通流溝6Aの下流側
の燃料ガスにも十分な水素が含まれ、燃料ガス入口側の
空気通流溝3Aの下流側の空気にも十分な酸素が含まれ
ることとなる。 <第5実施例>図5は、本発明のリン酸型燃料電池の第
5実施例を示す単セルの基本構成図である。Also in this configuration, as in the second and third embodiments, sufficient hydrogen is also contained in the fuel gas downstream of the fuel gas flow groove 6A on the air inlet side, and The air downstream of the air flow groove 3A also contains sufficient oxygen. <Fifth Embodiment> FIG. 5 is a basic structural diagram of a single cell showing a fifth embodiment of the phosphoric acid fuel cell of the present invention.
【0025】本実施例の特徴は、第1実施例と類似の基
本構成よりなる単セル1において、同一流路幅を備え、
空気出口側より空気入口側に行くに従い溝の深さが深く
なる複数の燃料ガス通流溝6Aを備えた燃料電極基材5
bの厚さを、空気入口側ほど厚く、空気出口側ほど薄く
形成し、空気通流路3を備えた空気電極基材2bの厚さ
を、空気入口側ほど薄く、空気出口側ほど厚く形成し、
かつ燃料電極基材5bと空気電極基材2bの厚さの和が
面内で同一となるよう形成した点にある。The feature of this embodiment is that a single cell 1 having a basic structure similar to that of the first embodiment is provided with the same channel width,
A fuel electrode substrate 5 having a plurality of fuel gas flow grooves 6A whose groove depths increase from the air outlet side to the air inlet side.
The thickness of the air electrode base material 2b provided with the air passage 3 is made thinner toward the air inlet side and thicker toward the air outlet side. And
In addition, the point is that the sum of the thicknesses of the fuel electrode substrate 5b and the air electrode substrate 2b is the same in the plane.
【0026】本構成においては、第1実施例と同様に空
気入口側の燃料ガス通流溝6Aの下流側の燃料ガスにも
十分な水素が含まれ、腐食の恐れが無いばかりでなく、
深さの異なる複数の燃料ガス通流溝6Aを備えても、燃
料電極基材5bの残肉の厚さがほぼ均一に形成されてい
るので、燃料ガス中の水素はほぼ均一に拡散して燃料電
極触媒層5aに達することとなるので、電池反応の面内
での均一性を侵す恐れが無い。また、燃料電極基材5b
と空気電極基材2bの厚みの和が面内で同一となるよう
形成されているので、単セル1の厚さも面内で均一とな
る。In this structure, as in the first embodiment, the fuel gas downstream of the fuel gas flow groove 6A on the air inlet side contains sufficient hydrogen, so that there is no danger of corrosion.
Even when a plurality of fuel gas flow grooves 6A having different depths are provided, the remaining thickness of the fuel electrode base material 5b is substantially uniform, so that hydrogen in the fuel gas diffuses substantially uniformly. Since the fuel reaches the fuel electrode catalyst layer 5a, there is no possibility that the in-plane uniformity of the cell reaction is impaired. Also, the fuel electrode substrate 5b
And the sum of the thicknesses of the air electrode base material 2b and the air electrode base material 2b are the same in the plane, so that the thickness of the single cell 1 is also uniform in the plane.
【0027】<第6実施例>図6は、本発明のリン酸型
燃料電池の第6実施例を示す単セルの基本構成図であ
る。本実施例の特徴は、第3実施例と類似の基本構成よ
りなる単セル1において、同一流路幅を備え、空気出口
側より空気入口側に行くに従い溝の深さが深くなる複数
の燃料ガス通流溝6Aを備えたリザーバプレート5eの
厚さを、空気入口側ほど厚く、空気出口側ほど薄く形成
し、空気通流路3を備えたリザーバプレート2eの厚さ
を、空気入口側ほど薄く、空気出口側ほど厚く形成し、
かつリザーバプレート5eとリザーバプレート2eの厚
さの和が面内で同一となるよう形成した点にある。<Sixth Embodiment> FIG. 6 is a basic structural view of a single cell showing a sixth embodiment of the phosphoric acid type fuel cell of the present invention. The feature of this embodiment is that a plurality of fuel cells having the same flow path width and having a deeper groove from the air outlet side to the air inlet side in a single cell 1 having a basic configuration similar to that of the third embodiment. The thickness of the reservoir plate 5e provided with the gas flow grooves 6A is formed to be thicker toward the air inlet side and thinner toward the air outlet side, and the thickness of the reservoir plate 2e provided with the air flow passage 3 is set closer to the air inlet side. Thinner, thicker on the air outlet side,
The point is that the sum of the thicknesses of the reservoir plate 5e and the reservoir plate 2e is formed to be the same in the plane.
【0028】本構成においては、第3実施例と同様に空
気入口側の燃料ガス通流溝6Aの下流側の燃料ガスにも
十分な水素が含まれ、腐食の恐れが無いばかりでなく、
相対的に発電量が多く、したがってリン酸の飛散量が多
い空気入口側ほどリザーバプレート5eの単位長さ当た
りの体積が大きくなり、相対的に多量のリン酸を保持す
ることができるので、効果的にリン酸が補給できること
となる。また、リザーバプレート5eとリザーバプレー
ト2eの厚さの和が面内で同一となるよう形成されてい
るので、単セル1の厚さも面内で均一となる。In the present configuration, as in the third embodiment, the fuel gas downstream of the fuel gas flow groove 6A on the air inlet side contains sufficient hydrogen, so that not only there is no danger of corrosion, but also
Since the volume of power generated per unit length of the reservoir plate 5e becomes larger on the air inlet side where the amount of power generation is relatively large and the amount of phosphoric acid scattered is large, a relatively large amount of phosphoric acid can be held. Phosphoric acid can be supplied remarkably. Further, since the sum of the thicknesses of the reservoir plate 5e and the reservoir plate 2e is the same in the plane, the thickness of the unit cell 1 is also uniform in the plane.
【0029】<第7実施例>図7は、本発明のリン酸型
燃料電池の第7実施例を示す単セルの基本構成図であ
る。本実施例の特徴は、第5実施例と類似の基本構成よ
りなる単セル1において、空気電極基材2bに備えられ
た空気通流溝3Bが、空気入口側で溝の深さが浅く、空
気出口側で深さの深い通流溝となるよう構成されている
点にある。したがって、本構成においては、第5実施例
と同様の特徴を持つとともに、空気電極基材2bにおい
ても残肉の厚さが面内で均一となるので、空気中の酸素
はほぼ均一に拡散して空気電極触媒層2aに達すること
となり、電池反応の面内での均一性が保持されることと
なる。また、空気通流溝3Bの流路断面積が下流側で大
きくなり通流される空気の流速が下がるので、上流側で
飛散して空気に混入したリン酸の捕収が相対的に容易と
なる。<Seventh Embodiment> FIG. 7 is a basic structural view of a single cell showing a seventh embodiment of the phosphoric acid fuel cell of the present invention. The feature of this embodiment is that in the single cell 1 having the same basic configuration as the fifth embodiment, the air flow grooves 3B provided in the air electrode base material 2b have a shallow groove depth on the air inlet side, The point is that it is configured to have a deep flow groove on the air outlet side. Therefore, this configuration has the same features as the fifth embodiment, and the remaining thickness of the air electrode substrate 2b becomes uniform in the plane, so that oxygen in the air diffuses almost uniformly. As a result, the air reaches the air electrode catalyst layer 2a, and the in-plane uniformity of the battery reaction is maintained. Further, since the flow passage cross-sectional area of the air flow groove 3B increases on the downstream side and the flow velocity of the flowing air decreases, it becomes relatively easy to collect phosphoric acid scattered on the upstream side and mixed into the air. .
【0030】<第8実施例>図8は、本発明のリン酸型
燃料電池の第8実施例を示す単セルの基本構成図であ
る。本実施例の特徴は、第6実施例と類似の基本構成よ
りなる単セル1において、リザーバプレート2eに備え
られた空気通流溝3Bが、空気入口側で溝の深さが浅
く、空気出口側で深さの深い通流溝となるよう構成され
ている点にある。したがって、本構成においては、第6
実施例と同様の特徴を持つとともに、上流側で飛散して
空気に混入したリン酸の捕収が相対的に容易となる。<Eighth Embodiment> FIG. 8 is a basic structural view of a single cell showing an eighth embodiment of the phosphoric acid type fuel cell of the present invention. The feature of the present embodiment is that in the single cell 1 having the basic configuration similar to that of the sixth embodiment, the air flow groove 3B provided in the reservoir plate 2e has a shallow groove depth on the air inlet side and an air outlet groove. The point is that it is configured to be a deep flow groove on the side. Therefore, in this configuration, the sixth
In addition to having the same features as the embodiment, the collection of phosphoric acid scattered on the upstream side and mixed in the air becomes relatively easy.
【0031】なお、上記の第5実施例〜第8実施例で
は、燃料電極2を構成する燃料電極基材5bあるいはリ
ザーバプレート5eに備えた燃料ガス通流溝6Aの流路
の溝の深さを空気出口側より空気入口側に行くに従い深
く形成したものについて例示したが、燃料ガス通流溝6
Aをセパレート板に備える構造においても、同様の効果
が得られることは容易に理解される。In the above-described fifth to eighth embodiments, the depth of the fuel gas passage groove 6A provided in the fuel electrode base material 5b or the reservoir plate 5e constituting the fuel electrode 2 is set to the depth. Is formed deeper as going from the air outlet side to the air inlet side.
It is easily understood that the same effect can be obtained even in a structure in which A is provided on the separate plate.
【0032】また、空気電極を構成する空気電極基材や
リザーバプレート、あるいはセパレート板に備えた空気
通流溝を、流路の幅が略同一で、流路の深さが燃料ガス
入口側ほど深く、燃料ガス出口側ほど浅い通流溝とし、
この空気通流溝を備えた構成部材を、燃料ガス入口側ほ
ど厚く燃料ガス出口側ほど薄く形成し、さらに燃料ガス
通流溝を備えた構成部材を、燃料ガス入口側ほど薄く燃
料ガス出口側ほど厚い部材より形成して、二つの構成部
材の厚みの和が面内で略同一となるよう形成することと
しても、上述の第5実施例〜第8実施例と類似の効果が
得られることは図示するまでもなく容易に類推されるの
で、図示しての説明は省略する。Further, the air flow grooves provided on the air electrode base material, the reservoir plate, or the separate plate constituting the air electrode are formed so that the width of the flow path is substantially the same, and the depth of the flow path is closer to the fuel gas inlet side. The flow groove is deeper and shallower on the fuel gas outlet side,
The constituent member having the air passage groove is formed thicker toward the fuel gas inlet side and thinner toward the fuel gas outlet side, and the constituent member provided with the fuel gas passage groove is further thinned toward the fuel gas inlet side. The same effect as in the above-described fifth to eighth embodiments can be obtained even if the two components are formed so that the sum of the thicknesses of the two components is substantially the same in the plane. Can be easily inferred without being shown in the figure, and the description thereof is omitted.
【0033】<第9実施例>図9は、本発明のリン酸型
燃料電池の第9実施例における単セルの構成部材に形成
されたガス通流溝の形状を示す断面図である。本図は、
燃料電極または空気電極の電極基材やリザーバプレー
ト、あるいはセパレート板等の構成部材10に、溝の深
さを一様に変化させて形成した複数のガス通流溝の代表
例を、3種類例示したものである。これらのガス通流溝
の特徴は、流路の溝端部の断面形状が同一形状をなし、
かつ、複数のガス通流溝11A(あるいは11B、11
C)の最深部が同一平面、すなわち溝最深部平面12上
に位置するよう形成されていることにある。図の(a)
は流路の溝端部が角形の断面形状をなすガス通流溝11
Aを、(b)はU字型の断面形状をなすガス通流溝11
Bを、また(c)は角度の開いたU字型の断面形状をな
すガス通流溝11Cを形成したもので、いずれにおいて
もガス通流溝の最深部が溝最深部平面12上に位置して
いる。<Ninth Embodiment> FIG. 9 is a cross-sectional view showing the shape of a gas passage groove formed in a component of a single cell in a ninth embodiment of the phosphoric acid type fuel cell of the present invention. This figure is
Three types of representative examples of a plurality of gas flow grooves formed by changing the depth of the grooves uniformly in the constituent member 10 such as the electrode base material of the fuel electrode or the air electrode, the reservoir plate, or the separate plate. It was done. The feature of these gas flow grooves is that the cross-sectional shape of the groove end of the flow path has the same shape,
In addition, a plurality of gas flow grooves 11A (or 11B, 11B
C) is formed so that the deepest part is located on the same plane, that is, on the groove deepest part plane 12. (A) of the figure
Is a gas flow groove 11 in which the groove end of the flow path has a square cross section.
A, (b) is a gas flow groove 11 having a U-shaped cross section.
B, and (c) are gas flow grooves 11C having a U-shaped cross section with an open angle. In each case, the deepest portion of the gas flow groove is located on the groove deepest plane 12. doing.
【0034】図10は、図9のごとく溝の深さが一様に
変化するガス通流溝の加工方法を示す概念図である。本
図は、多連の回転刃を備えた加工機を用いて、角溝の最
深部が位置する溝最深部平面12が角度αで一様に変化
するガス通流溝11を構成部材10に形成する場合を示
すもので、回転させて溝加工を行う溝加工刃物14の刃
物加工回転軸15に対して、ワークテーブル13を角度
α傾斜させ、その上に溝加工を行う構成部材10を組み
込んだのち、溝加工刃物14により溝を加工し、溝加工
刃物14を刃物加工回転軸15に沿って平行移動させて
順次溝を加工することによりガス通流溝11が形成され
る。したがって、本方法を用いれば、図9に示したごと
きガス通流溝を極めて容易に加工することができ、この
ようなガス通流溝を備えた単セルも作業性良く製造する
ことができる。FIG. 10 is a conceptual diagram showing a method of processing a gas flow groove in which the depth of the groove changes uniformly as shown in FIG. In this drawing, using a processing machine equipped with multiple rotary blades, a gas flow groove 11 in which a groove deepest plane 12 in which the deepest part of a square groove is located uniformly changes at an angle α is formed on a component 10. This shows a case where the work table 13 is inclined at an angle α with respect to a blade processing rotary shaft 15 of a groove processing blade 14 which rotates and performs groove processing, and a component member 10 for performing groove processing is incorporated thereon. After that, the gas flow grooves 11 are formed by processing the grooves by the groove processing blades 14 and moving the groove processing blades 14 in parallel along the blade processing rotation axis 15 to sequentially process the grooves. Therefore, by using this method, the gas flow grooves as shown in FIG. 9 can be processed very easily, and a single cell having such gas flow grooves can be manufactured with good workability.
【0035】[0035]
【発明の効果】上述のごとく、本発明によれば、リン酸
型燃料電池を、 (1)請求項1あるいは2に記載のごとく構成すること
としたので、通流する燃料ガス中の水素量、あるいは通
流する空気中の酸素量の分布が改良され、長期にわたり
安定して運転できるリン酸型燃料電池が得られることと
なった。As described above, according to the present invention, (1) the phosphoric acid type fuel cell is configured as described in claim 1 or 2, so that the amount of hydrogen in the flowing fuel gas is Alternatively, the distribution of the amount of oxygen in the flowing air has been improved, and a phosphoric acid fuel cell that can be operated stably for a long period of time has been obtained.
【0036】(2)さらに請求項3あるいは4に記載の
ごとく構成することとすれば、構成部材に深さの異なる
燃料ガス通流路を形成したものにあっても、電池反応の
面内での均一性が保持され、また、リン酸が効果的に補
給でき、あるいは飛散したリン酸の捕収が容易となるの
で、より好適である。 (3)さらに請求項5に記載のごとく構成することとす
れば、例えば請求項6に記載のごとき製造方法により、
極めて容易に製造することが可能となる。(2) Further, if the fuel cell system is configured as described in claim 3 or 4, even if the fuel gas passages having different depths are formed in the constituent members, the fuel cell can be formed within the surface of the cell reaction. This is more preferable because the uniformity of the phosphoric acid is maintained, the phosphoric acid can be effectively replenished, or the scattered phosphoric acid is easily collected. (3) If the structure is further configured as described in claim 5, for example, by a manufacturing method as described in claim 6,
It can be manufactured very easily.
【図1】本発明のリン酸型燃料電池の第1実施例を示す
単セルの基本構成図FIG. 1 is a basic configuration diagram of a single cell showing a first embodiment of a phosphoric acid fuel cell of the present invention.
【図2】本発明のリン酸型燃料電池の第2実施例を示す
単セルの基本構成図FIG. 2 is a basic configuration diagram of a single cell showing a second embodiment of the phosphoric acid type fuel cell of the present invention.
【図3】本発明のリン酸型燃料電池の第3実施例を示す
単セルの基本構成図FIG. 3 is a basic configuration diagram of a single cell showing a third embodiment of the phosphoric acid type fuel cell of the present invention.
【図4】本発明のリン酸型燃料電池の第4実施例を示す
単セルの基本構成図FIG. 4 is a basic configuration diagram of a single cell showing a fourth embodiment of the phosphoric acid fuel cell of the present invention.
【図5】本発明のリン酸型燃料電池の第5実施例を示す
単セルの基本構成図FIG. 5 is a basic configuration diagram of a single cell showing a fifth embodiment of the phosphoric acid type fuel cell of the present invention.
【図6】本発明のリン酸型燃料電池の第6実施例を示す
単セルの基本構成図FIG. 6 is a basic configuration diagram of a single cell showing a sixth embodiment of the phosphoric acid type fuel cell of the present invention.
【図7】本発明のリン酸型燃料電池の第7実施例を示す
単セルの基本構成図FIG. 7 is a basic configuration diagram of a single cell showing a seventh embodiment of the phosphoric acid type fuel cell of the present invention.
【図8】本発明のリン酸型燃料電池の第8実施例を示す
単セルの基本構成図FIG. 8 is a basic configuration diagram of a single cell showing an eighth embodiment of the phosphoric acid type fuel cell of the present invention.
【図9】本発明のリン酸型燃料電池の第9実施例におけ
る単セルの構成部材に形成されたガス通流溝の形状を示
す断面図FIG. 9 is a cross-sectional view showing the shape of a gas flow groove formed in a component of a single cell in a ninth embodiment of the phosphoric acid fuel cell of the present invention.
【図10】図9のごとき形状のガス通流溝の加工方法を
示す概念図FIG. 10 is a conceptual diagram showing a method of processing a gas flow groove having a shape as shown in FIG. 9;
【図11】従来より用いられているリン酸型燃料電池の
単セルの基本構成図FIG. 11 is a basic configuration diagram of a single cell of a conventionally used phosphoric acid fuel cell.
1 単セル 2 空気電極 2a 空気電極触媒層 2b 空気電極基材 2d 空気電極基材 2e リザーバプレート 3 空気通流溝 3A 空気通流溝 3B 空気通流溝 4 マトリックス 5 燃料電極 5a 燃料電極触媒層 5b 燃料電極基材 5c リザーバプレート 5d 燃料電極基材 5e リザーバプレート 6 燃料ガス通流溝 6A 燃料ガス通流溝 7 セパレート板 7A セパレート板 10 構成部材 11 ガス通流溝 11A,11B,11C ガス通流溝 12 溝最深部平面 13 ワークテーブル 14 溝加工刃物 15 刃物加工回転軸 Reference Signs List 1 single cell 2 air electrode 2a air electrode catalyst layer 2b air electrode substrate 2d air electrode substrate 2e reservoir plate 3 air flow groove 3A air flow groove 3B air flow groove 4 matrix 5 fuel electrode 5a fuel electrode catalyst layer 5b Fuel electrode base material 5c Reservoir plate 5d Fuel electrode base material 5e Reservoir plate 6 Fuel gas flow groove 6A Fuel gas flow groove 7 Separate plate 7A Separate plate 10 Component member 11 Gas flow groove 11A, 11B, 11C Gas flow groove 12 Groove deepest plane 13 Work table 14 Groove cutting tool 15 Tool cutting rotary axis
Claims (6)
する燃料電極と空気電極を備えた方形平板状の単セル
を、ガス不透過性のセパレート板を介装し、複数層積層
して燃料電池積層体を構成し、燃料電極あるいはセパレ
ート板に側面より相対する側面へと連通して並列に設け
られた複数の燃料ガス通流路に燃料ガスを通流し、空気
電極あるいはセパレート板に側面より相対する側面へと
前記燃料ガス通流路に直交して連通して並列に設けられ
た複数の空気通流路に空気を通流して、電気化学反応に
より発電するリン酸型燃料電池において、 前記の複数の燃料ガス通流路が、流路の幅が略同一で、
流路の深さが空気入口側ほど深く、空気出口側ほど浅い
複数の通流路よりなるか、あるいは前記の複数の空気通
流路が、流路の幅が略同一で、流路の深さが燃料ガス入
口側ほど深く、燃料ガス出口側ほど浅い通流路よりなる
ことを特徴とするリン酸型燃料電池。A fuel cell comprising a matrix containing phosphoric acid, a single cell in the form of a rectangular plate having a fuel electrode and an air electrode sandwiching the matrix, and a plurality of layers laminated with a gas-impermeable separator interposed therebetween. The fuel cell flows through a plurality of fuel gas passages provided in parallel in parallel with the fuel electrode or the separate plate so as to communicate with the side surface opposite to the fuel electrode or the separate plate. In the phosphoric acid fuel cell, in which air flows through a plurality of air passages provided in parallel with the fuel gas passages orthogonally to the opposite side surfaces and provided in parallel, and generating power by an electrochemical reaction, A plurality of fuel gas flow paths, the width of the flow path is substantially the same,
The depth of the flow path is deeper on the air inlet side, and the flow path is formed of a plurality of flow paths shallower on the air outlet side, or the plurality of air flow paths have substantially the same width, and A phosphoric acid-type fuel cell, wherein the flow path is deeper on the fuel gas inlet side and shallower on the fuel gas outlet side.
する燃料電極と空気電極を備えた方形平板状の単セル
を、ガス不透過性のセパレート板を介装し、複数層積層
して燃料電池積層体を構成し、燃料電極あるいはセパレ
ート板に側面より相対する側面へと連通して並列に設け
られた複数の燃料ガス通流路に燃料ガスを通流し、空気
電極あるいはセパレート板に側面より相対する側面へと
前記燃料ガス通流路に直交して連通して並列に設けられ
た複数の空気通流路に空気を通流して、電気化学反応に
より発電するリン酸型燃料電池において、 前記の複数の燃料ガス通流路が、流路の幅が略同一で、
流路の深さが空気入口側ほど深く、空気出口側ほど浅い
複数の通流路よりなり、かつ、前記の複数の空気通流路
が、流路の幅が略同一で、流路の深さが燃料ガス入口側
ほど深く、燃料ガス出口側ほど浅い通流路よりなること
を特徴とするリン酸型燃料電池。2. A fuel cell comprising a matrix containing phosphoric acid, a single cell in the form of a rectangular plate provided with a fuel electrode and an air electrode sandwiching the matrix, and a plurality of layers laminated with a gas-impermeable separator interposed therebetween. The fuel cell flows through a plurality of fuel gas passages provided in parallel in parallel with the fuel electrode or the separate plate so as to communicate with the side surface opposite to the fuel electrode or the separate plate. In the phosphoric acid fuel cell, in which air flows through a plurality of air passages provided in parallel with the fuel gas passages orthogonally to the opposite side surfaces and provided in parallel, and generating power by an electrochemical reaction, A plurality of fuel gas flow paths, the width of the flow path is substantially the same,
The flow path has a plurality of flow paths that are deeper toward the air inlet side and shallower toward the air outlet side, and the plurality of air flow paths have substantially the same width, and the depth of the flow path. A phosphoric acid-type fuel cell, wherein the flow path is deeper on the fuel gas inlet side and shallower on the fuel gas outlet side.
数の燃料ガス通流路が、流路の幅が略同一で、流路の深
さが空気入口側ほど深く、空気出口側ほど浅い複数の通
流路よりなるものにおいて、 燃料ガス通流路を備えた構成部材が、空気入口側ほど厚
く、空気出口側ほど薄い部材より形成され、かつ空気通
流路を備えた構成部材が、空気入口側ほど薄く、空気出
口側ほど厚い部材より形成され、かつ二つの構成部材の
厚みの和が面内で略同一となるよう形成されていること
を特徴とするリン酸型燃料電池。3. The phosphoric acid type fuel cell according to claim 1, wherein the plurality of fuel gas passages have substantially the same width, the depth of the passages increases toward the air inlet side, and the air outlet A structure comprising a plurality of flow passages shallower toward the side, wherein the constituent member provided with the fuel gas flow passage is formed of a member which is thicker toward the air inlet side and thinner toward the air outlet side, and includes an air flow passage. A phosphoric acid-type fuel, wherein the member is formed from a member that is thinner on the air inlet side and thicker on the air outlet side, and that the sum of the thicknesses of the two constituent members is substantially the same in the plane. battery.
数の空気通流路が、流路の幅が略同一で、流路の深さが
燃料ガス入口側ほど深く、燃料ガス出口側ほど浅い通流
路よりなるものにおいて、 空気通流路を備えた構成部材が、燃料ガス入口側ほど厚
く、燃料ガス出口側ほど薄い部材より形成され、かつ燃
料ガス通流路を備えた構成部材が、燃料ガス入口側ほど
薄く、燃料ガス出口側ほど厚い部材より形成され、かつ
二つの構成部材の厚みの和が面内で略同一となるよう形
成されていることを特徴とするリン酸型燃料電池。4. The phosphoric acid fuel cell according to claim 1, wherein the plurality of air passages have substantially the same width, and the depth of the passages is greater toward the fuel gas inlet side. In the structure having a flow passage that is shallower on the outlet side, the constituent member provided with the air flow passage is formed of a member that is thicker on the fuel gas inlet side and thinner on the fuel gas outlet side, and has a fuel gas flow passage. The component member is formed of a member that is thinner on the fuel gas inlet side and thicker on the fuel gas outlet side, and is formed so that the sum of the thicknesses of the two component members is substantially the same in the plane. Acid type fuel cell.
型燃料電池において、異なった深さを有する複数の通流
路よりなる燃料ガス通流路、あるいは空気通流路が、類
似の流路断面形状を備え、かつ複数の通流路の最深部が
いずれも同一平面上に位置するよう形成されてなること
を特徴とするリン酸型燃料電池。5. The phosphoric acid fuel cell according to claim 1, wherein the fuel gas flow path or the air flow path comprising a plurality of flow paths having different depths, A phosphoric acid type fuel cell having a similar flow path cross-sectional shape, wherein the deepest portions of the plurality of flow paths are formed so as to be all located on the same plane.
方法で、異なった深さを有する複数の通流路よりなる燃
料ガス通流路、あるいは空気通流路を、多連の回転刃を
備えた加工機を用い、回転刃の回転軸中心と被加工部材
を搭載するワークテーブルの上面との角度を所定値に設
定し、回転刃を平衡移動させて加工して、形成すること
を特徴とするリン酸型燃料電池の製造方法。6. The method for manufacturing a phosphoric acid fuel cell according to claim 5, wherein the fuel gas flow path or the air flow path comprising a plurality of flow paths having different depths is provided in a plurality. Using a processing machine equipped with a rotary blade, the angle between the center of the rotation axis of the rotary blade and the upper surface of the work table on which the workpiece is mounted is set to a predetermined value, and the rotary blade is processed by moving the blade in equilibrium. A method for producing a phosphoric acid fuel cell, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8183905A JPH1032012A (en) | 1996-07-15 | 1996-07-15 | Phosphoric acid fuel cell and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8183905A JPH1032012A (en) | 1996-07-15 | 1996-07-15 | Phosphoric acid fuel cell and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1032012A true JPH1032012A (en) | 1998-02-03 |
Family
ID=16143874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8183905A Pending JPH1032012A (en) | 1996-07-15 | 1996-07-15 | Phosphoric acid fuel cell and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1032012A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002065566A1 (en) * | 2001-02-12 | 2002-08-22 | The Morgan Crucible Company Plc | Flow field plate geometries |
WO2003081692A3 (en) * | 2002-03-20 | 2003-12-04 | Morgan Crucible Co | Flow field plate |
JP2005203288A (en) * | 2004-01-19 | 2005-07-28 | Toyota Motor Corp | Fuel cell |
WO2006111090A1 (en) * | 2005-04-22 | 2006-10-26 | Byd Company Limited | Flow field plates for fuel cells |
US7838139B2 (en) | 2002-06-24 | 2010-11-23 | The Morgan Crucible Company Plc | Flow field plate geometries |
-
1996
- 1996-07-15 JP JP8183905A patent/JPH1032012A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002065566A1 (en) * | 2001-02-12 | 2002-08-22 | The Morgan Crucible Company Plc | Flow field plate geometries |
US7067213B2 (en) | 2001-02-12 | 2006-06-27 | The Morgan Crucible Company Plc | Flow field plate geometries |
WO2003081692A3 (en) * | 2002-03-20 | 2003-12-04 | Morgan Crucible Co | Flow field plate |
US7838139B2 (en) | 2002-06-24 | 2010-11-23 | The Morgan Crucible Company Plc | Flow field plate geometries |
JP2005203288A (en) * | 2004-01-19 | 2005-07-28 | Toyota Motor Corp | Fuel cell |
WO2006111090A1 (en) * | 2005-04-22 | 2006-10-26 | Byd Company Limited | Flow field plates for fuel cells |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4205774B2 (en) | Fuel cell | |
US8557466B2 (en) | Fuel cell including separator with gas flow channels | |
EP1239530A2 (en) | Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in the fuel cell assembly | |
EP1366536B1 (en) | Polymer electrolyte fuel cell stack and operating method thereof | |
JP4029648B2 (en) | Fuel cell manufacturing method | |
JP2004039525A (en) | Fuel cell | |
JP2006278177A (en) | Fuel cell | |
JP2001085033A (en) | Electrochemical reaction cell and its manufacture | |
JP5101866B2 (en) | Fuel cell | |
JPH1032012A (en) | Phosphoric acid fuel cell and manufacture thereof | |
US20050158599A1 (en) | Fuel cell | |
US11557768B2 (en) | Proton exchange membrane fuel cell | |
JP4031952B2 (en) | Fuel cell | |
KR101703575B1 (en) | Separator and fuel cell with the same | |
US20240006627A1 (en) | Distributor plate for an electrochemical cell, method for producing the distributor plate, electrochemical cell, and method for operating the electrochemical cell | |
JP2016531397A (en) | Standard electrochemical cell | |
JP2010003541A (en) | Fuel cell stack | |
JPH09139222A (en) | Solid macromolecule type fuel cell | |
JP2007048538A (en) | Fuel cell | |
JP2004186139A (en) | Fuel cell | |
JP2003092131A (en) | Fuel cell stack | |
JP2005100753A (en) | Fuel cell | |
JP3615508B2 (en) | Fuel cell stack | |
JP2004335147A (en) | Fuel cell | |
JP5577156B2 (en) | Fuel cell |