JPH10320053A - Detection and correction method for displacement angle and device therefor - Google Patents

Detection and correction method for displacement angle and device therefor

Info

Publication number
JPH10320053A
JPH10320053A JP9125440A JP12544097A JPH10320053A JP H10320053 A JPH10320053 A JP H10320053A JP 9125440 A JP9125440 A JP 9125440A JP 12544097 A JP12544097 A JP 12544097A JP H10320053 A JPH10320053 A JP H10320053A
Authority
JP
Japan
Prior art keywords
detecting
rotation
shaft coupling
deviation
deviation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9125440A
Other languages
Japanese (ja)
Inventor
Koji Tomezuka
幸二 遠目塚
Masayoshi Furuichi
正義 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP9125440A priority Critical patent/JPH10320053A/en
Publication of JPH10320053A publication Critical patent/JPH10320053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PROBLEM TO BE SOLVED: To sufficiently demonstrate a vibration isolation effect by detecting the storage amount of a displacement angle generated between the drive side of a shaft joint and a load side and correcting the displacement angle of the load side to the drive side of the shaft joint based on the storage amount. SOLUTION: By signals from a saddle type photosensor 90 inputted to a displacement amount detection part 100 at the point of time of being rotated and stabilized (5 rotations), synchronizing signals 103 are measured. Simultaneously, by the signals from the saddle type photosensor 91, the measurement of the synchronizing signals is stopped. The pulse number of the synchronizing signals 103 measured during the time is stored and the stored pulse number 106 is inputted to a displacement amount synthesis part 107, added to a normal rotation drive pulse 101 and turned to the normal rotation drive pulse 101A. That is, the stored pulse number 106 is added at the time of elevating an elevating and lowering block and subtraction is performed at the time of lowering the elevating and lowering block. By the constitution, for instance, even when the displacement angle by a smoothing device to the pulsation of the shaft joint 1 is generated, it is detected and corrected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2軸間での駆動回
転の伝達に適用され、内部に脈動平滑装置を有する軸継
手において、軸継手の負荷側の負荷の変化による該軸継
手の駆動側に対する負荷側の偏位角の検知および補正方
法と、それを実施する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to transmission of drive rotation between two shafts, and in a shaft coupling having a pulsation smoothing device therein, the drive of the shaft coupling due to a change in load on the load side of the shaft coupling. The present invention relates to a method for detecting and correcting a deflection angle of a load side with respect to a load side, and an apparatus for implementing the method.

【0002】[0002]

【従来の技術】本発明が提案する2軸間の軸継手の偏位
角の検知および補正方法ならびにその装置に関する従来
技術は、現在のところ見出せない。
2. Description of the Related Art The prior art relating to a method and an apparatus for detecting and correcting the deviation angle of a shaft coupling between two shafts proposed by the present invention cannot be found at present.

【0003】[0003]

【発明が解決しようとする課題】半導体の各種処理に用
いられる搬送装置や、製造装置に用いられる搬送装置に
おいて、例えば、ウエハ等を搬送する場合に、搬送装置
の振動等によって、載置ウエハの搬送中における位置の
変動があったり、また、ウエハの移載に支障を来たす場
合がある。さらにウエハの移載に際して、正確な位置の
確保も併せて行う必要がある。
In a transfer device used for various processing of semiconductors and a transfer device used in a manufacturing apparatus, for example, when a wafer or the like is transferred, the vibration of the transfer device causes the mounted wafer to be moved. The position may fluctuate during the transfer, or the transfer of the wafer may be hindered. Further, when transferring the wafer, it is necessary to secure an accurate position.

【0004】本発明の課題は、2軸間での駆動回転の伝
達に適用され、内部に脈動平滑手段を具えた軸継手にお
いて、該軸継手の駆動側と負荷側との間に生じる偏位角
の貯留量を検知して、該偏位角の貯留量に基づいて、上
記軸継手の駆動側に対する負荷側の偏位角の補正を行う
方法、ならびにそれを実施する装置を提供することにあ
る。
An object of the present invention is to apply a drive rotation transmission between two shafts and, in a shaft joint provided with pulsation smoothing means therein, to produce a deviation between a driving side and a load side of the shaft joint. To provide a method of detecting the stored amount of angle and correcting the deviation angle of the load side with respect to the drive side of the shaft coupling based on the stored amount of the deviation angle, and an apparatus for implementing the method. is there.

【0005】[0005]

【課題を解決するための手段】上記本発明の課題を達成
するために、本発明は特許請求の範囲に記載のような構
成とするものである。すなわち、本発明は請求項1に記
載のように、軸継手の駆動側と負荷側に、回動を検知す
る回動検知装置をそれぞれ設け、該軸継手の駆動側と負
荷側との間に生じる偏位角を検知して補正する偏位角の
検知および補正方法であって、上記駆動側の回動を検知
する回動検知装置を用いて偏位角の計測を開始し、次い
で、上記負荷側の回動を検知する回動検知装置による偏
位角の計測を停止して、上記駆動側と負荷側との間に生
じた偏位角の貯留量を検知し、該偏位角の貯留量に基づ
いて、上記軸継手の駆動側と負荷側との間の偏位角の補
正を行う偏位角の検知および補正方法である。このよう
な構成とすることにより、例えば軸継手の脈動に対する
平滑装置による偏位角が発生しても、これを検知し補正
を行うことが容易であるので、軸継手のみならず、AC
サーボモーター全体の防振にも活用することができ、ウ
エハ等の搬送、移送の安定性が増加し、品質に優れたウ
エハ等の被処理品を高歩留まりで作製できる効果があ
る。また、本発明は請求項2に記載のように、軸継手の
駆動側と負荷側に、回動を検知する回動検知装置をそれ
ぞれ設け、該軸継手の駆動側と負荷側との間に生じる偏
位角を検知して補正する偏位角の検知および補正装置で
あって、ACサーボモーターの軸に連結された軸継手
と、該軸継手の駆動側の偏位角を検知するフォトセンサ
ーと、該軸継手の負荷側の偏位角を検知するフォトセン
サーとを有し、正転(もしくは逆転)駆動における上記
軸継手の駆動側と負荷側との間に生じる偏位角の貯留量
を検知して、該偏位角の貯留量に基づいて、上記軸継手
の駆動側と負荷側との間の偏位角の補正を行う手段を少
なくとも備えた偏位角の検知および補正装置とするもの
である。また、本発明は請求項3に記載のように、請求
項2に記載の偏位角の検知および補正装置において、偏
位角の検知および補正の全体の制御を行う総括制御部か
ら、偏位角の偏位量を合成する偏位量合成部に正転(も
しくは逆転)駆動パルスを入力する手段と、偏位角の偏
位量を検出する偏位量検出部に、正転(もしくは逆転)
駆動パルスに同期した同期信号を入力する手段と、軸継
手の駆動側の偏位角を検知するフォトセンサーおよび負
荷側の偏位角を検知するフォトセンサーから送られる偏
位角の偏位量を貯留パルス数に変換して、上記偏位量合
成部に入力する偏位量検出部と、上記総括制御部から送
信される正転(もしくは逆転)駆動パルスに、偏位量合
成部で変換された貯留パルス数を加算(もしくは減算)
して、該補正した正転(もしくは逆転)駆動パルスによ
り同期回動するACサーボモーターを少なくとも備えた
偏位角の検知および補正装置とするものである。このよ
うに、請求項2または請求項3に記載の偏位角の検知お
よび補正装置とすることにより、請求項1と同様の効果
が得られると共に、偏位角の検知および補正を自動的に
制御することが可能となり、大きな偏位角の偏位量が生
じても、直ちに検知および補正をすることができるの
で、ウエハ等の搬送、移載の安定性が増加し、品質に優
れたウエハ等の被処理品を高歩留まりで作製できる効果
がある。
In order to achieve the above object of the present invention, the present invention is configured as described in the appended claims. That is, according to the present invention, a rotation detecting device for detecting rotation is provided on the driving side and the load side of the shaft coupling, respectively, and between the driving side and the load side of the shaft coupling. A method for detecting and correcting a deviation angle that detects and corrects a generated deviation angle, wherein measurement of the deviation angle is started using a rotation detection device that detects the rotation of the drive side, The measurement of the deviation angle by the rotation detection device that detects the rotation on the load side is stopped, and the stored amount of the deviation angle generated between the driving side and the load side is detected, and the deviation angle is detected. This is a method of detecting and correcting a deflection angle for correcting a deflection angle between a driving side and a load side of the shaft coupling based on the stored amount. With such a configuration, for example, even if a deviation angle due to the pulsation of the shaft coupling is generated by the smoothing device, it is easy to detect and correct the deviation angle.
It can also be used for vibration isolation of the entire servo motor, and has an effect of increasing the stability of transfer and transfer of wafers and the like, and enabling to produce high-quality products such as wafers with high yield. Further, according to the present invention, a rotation detecting device for detecting rotation is provided on the drive side and the load side of the shaft coupling, respectively, and between the drive side and the load side of the shaft coupling. A displacement angle detection and correction device for detecting and correcting a generated displacement angle, comprising: a shaft coupling connected to a shaft of an AC servomotor; and a photosensor for detecting a deviation angle on a driving side of the shaft coupling. And a photosensor for detecting a deflection angle of the shaft coupling on the load side, and a stored amount of the deviation angle generated between the driving side and the load side of the shaft coupling in forward (or reverse) driving. And a device for detecting and correcting a deviation angle comprising at least means for correcting the deviation angle between the drive side and the load side of the shaft coupling based on the stored amount of the deviation angle. Is what you do. According to a third aspect of the present invention, in the deviation angle detection and correction device according to the second aspect, the general control unit that performs overall control of the deviation angle detection and the correction includes: Means for inputting a normal rotation (or reverse rotation) drive pulse to a deflection amount synthesizing unit for synthesizing the angle deviation amount, and a normal rotation (or reverse rotation) for a deviation amount detection unit for detecting the deviation angle deviation amount. )
A means for inputting a synchronization signal synchronized with the drive pulse, a photosensor for detecting a driveside deflection angle of the shaft coupling, and a displacement amount of a deflection angle sent from a photosensor for detecting a load side deflection angle. The deviation amount is converted into a stored pulse number, and the deviation amount is converted into a forward (or reverse) drive pulse transmitted from the overall control unit by a deviation amount detection unit input to the deviation amount combination unit. (Or subtract) the number of stored pulses
The deviation angle detection and correction device includes at least an AC servomotor that rotates synchronously with the corrected forward (or reverse) drive pulse. In this way, by using the deviation angle detection and correction device according to claim 2 or 3, the same effect as that of claim 1 can be obtained, and the detection and correction of the deviation angle can be automatically performed. This makes it possible to perform control and immediately detect and correct even if a large amount of deflection angle occurs, so that the stability of transport and transfer of wafers and the like increases, and wafers of excellent quality can be obtained. And the like can be manufactured with a high yield.

【0006】[0006]

【発明の実施の形態】まず、偏位角が発生する軸継手の
構造について述べる。図1は、軸継手1の構造の一例を
示す斜視図であり、図2は、軸継手1の要部断面構造を
示す模式図である。駆動側軸継手2は、駆動側軸Aを固
着するボス部3を設け、軸心に平行に、かつ対称位置
に、所要の形をした授圧部4および5を形成する。授圧
部4および5は、中央部を境に、開口部を介して対向面
6および7、また8および9を設定し、さらに各々にタ
ップ穴10、11、12、13(13は図では見えな
い)を設ける。負荷側軸継手14は、円板15の一方の
面中央には、負荷側軸Bを結合するボス16を配設し、
他方の面には、所要の形をした受圧部17および18を
対称的に設けている。受圧部17および18のV形を形
成する平面の所定位置には、各々の浅い球面窪み19
群、20群、21群および22群を所要数設ける。図2
に示すように、軸継手1としては、浅い球面窪み19、
20、21および22の各々の群には、所要の径のウレ
タンゴムからなる反発弾性に富んだボール23、24、
25および26群を、接触頂点のみを接着して配列す
る。浅い球面窪み19、20、21および22群と対向
した同じ位置に、浅い球面窪み27、28、29および
30群を設ける。受圧中継板31、32、33および3
4は、図示のように、ばね受ざぐり35、36、37お
よび38の各々に、ばね39、40、41および42の
一方の端部を挿入する。ばね39、40、41および4
2の他方の端は、予圧を付与され、段付き座金43、4
4、45(点線)および46(点線)を介し、先端段付
きボルト47、48、49および50(点線)を配設し
た構造とする。ここでは、軸継手1の脈動の平滑作用の
説明は省略する。ばね39、40、41および42は、
軸継手1の伝達馬力により設定するものであって、通常
の運転状態での負荷の変動程度では大きな角度偏位は生
じないが、精度を要する場合は、わずかな偏位でも問題
となる。ここでは、最悪の偏位について検討する。図2
において、ボール23が潰れた場合は、実測で角51は
2.5°(度)、角52は33°あるが、ばね39が挿
入されているので、ばねが密着した場合を考えると、ば
ね39の間隔は、1間隔が4°なので、5間隔分は4°
×5=20°となり、ボール23の潰れた分を加えて、
最大20°+4°=24°となる。以上は、実際あま
り、あり得ない仮定を設定して説明したが、実際には、
搬送装置であるエレベーターには自重があり、これはモ
ーター出力の50%にもなるが、実負荷を100%載せ
てもモーターの出力には余裕がある。例えば、モーター
の定格出力が120Wのエレベーターにおいて、実負荷
を0%から100%にしたときの軸継手の偏位角は2.
7°変化した。したがって、偏位角2.7°の偏位量を
補正することになる。図3は、軸継手1の偏位角を抽出
し、補正を行う場合の一実施の形態を模式的に示す斜視
図である。エレベーター54は、ベース55および支持
材56とで、ガイドロット57および57を挟持、固着
し、各々のボールナット58を介し昇降ブロック59
は、各々のガイドロット57に沿って円滑に昇降可能に
保持される。昇降ブロック59の中央部には、ボールナ
ット60を付し、ボールネジ61を係合連通する。ボー
ルネジ61の下端を、ベース55にボールベアリング6
2を介して支持し、かつ上方部は、支持材56に軸受部
63を介して回動自在に懸垂支持し、上端には傘歯車6
4を固着する。円筒状のものを伏せた形をした載置台6
5は、支持腕66および67を介して、昇降ブロック5
9と一体化される。駆動部68は、ACサーボモーター
69は、モーター軸70と遊離する支持部材71に堅着
し、支持部材71の下部には、軸72の座73を固着す
る。軸72の下端は、ボールベアリング74で受け、そ
れを収容するベアリングケース75に堅着される。軸7
2には、ウォームホイール76を固定し、ウォームホイ
ール76と係合するウォーム77は、サーボモーター7
8の軸79に固着する。 サーボモーター78は、サー
ボ制御のできるエンコーダを備えたリバーシブルモータ
ーでよい。図示していないが、ウォーム77、ウォーム
ホイール76の代わりに、カム機構を用いても良い。支
持部材71に取り付けた中空軸80には、ボールベアリ
ング81を設け、それを介して固定部材82を所定の位
置に設定し、ボールベアリング74とあいまって支持部
材71を可動可能にする。それと共に、ACサーボモー
ター69も全体を可動にする。モーター軸70には、軸
継手1のボス部3を堅着する。さらに、ボス部3には、
スリット84を付した円板83を設ける。軸継手1のボ
ス16には、軸85を固着し、軸85は、軸受ブロック
86の両側に設けた各々のボールベアリング87(1個
は図3では見えない)で回動自在に支持される。軸85
には、スリット88を付した円板89を固着する。各々
の円板83および89には、各々の鞍形のフォトセンサ
90および91を設ける。軸85の上端は、減速機92
の入力軸93に連結する。軸95は、支持材56に固着
した支持アングル96に設けたボールベアリング97を
通し、一方の端を減速機92の出力軸に連結し、他方の
単には傘歯車64と係合する傘歯車98を固着する。次
に、偏位角の検知、補正装置の全体の動作について説明
する。図3に示すように、サーボモーター78が所定位
置で停止中は、ウォームホイール76も停止しているの
で、支持部材71も動かず、ACサーボモーター69に
駆動パルスを付与すれば、モーター軸70、軸継手1、
軸85、減速機92、軸95、傘歯車98および傘歯車
64を介してボールネジ61を回動し、昇降ブロック5
9を昇降させる。エレベーター54の昇降ブロック59
の動きと、ACサーボモーター69の回転数との関連に
ついて述べる。ボールネジ61のリードが6mm、すな
わち、ボールネジ61の1回転で昇降ブロック59の移
動量は6mmである。傘歯車64および98は歯数が同
一なので、減速比は1となる。減速機92の減速比は1
/20なので、軸95を1回転するときは軸85は20
回転することになる。 すなわち、ACサーボモーター
69の軸70は20回転することになる。例えば、昇降
ブロック59の移動量が1回ごとに4.5mmとすれ
ば、ボールネジ61の1回ごとの回転数は4.5/6=
0.75回となり、ACサーボモーター69の回転数は
減速機92の減速比倍であり、0.75×20=15回
転となる。上記の条件は、昇降ブロック59と一体的に
ある載置台65上には被搬送物が無い状態であり、これ
に100%の荷重を掛けた場合は、上述したとおり、軸
継手1での駆動側軸継手2と負荷側軸継手14との偏位
角度は2.7°となる。この偏位角度2.7°はボールネ
ジ61で考察すると、その変化量は、まず減速比で割る
と2.7/20=0.135°となり、ボールネジ61が
1回転360°で6mm動くので、比例計算により6×
0.135/360≒0.00225mmとなる。また、
ACサーボモーター69が400パルスで1回転する場
合、2.7°が幾パルスに相当するかは、400パルス
で360°回わることから、比例計算により、400×
2.7/360=3パルスである。したがって、偏位角
2.7°に相当する補正を行う必要があるが、これを電
気的に行う方法、機械的に行う方法とがあるが、この両
方については後述する。次に、偏位量の検知方法につき
述べる。装置全体の制御については省略し、偏位角の検
知方法についてのみ述べる。図4に示す偏位量の検知方
法のブロック図の全体制御部(総括制御部)99から、
偏位量検出部100には、正転駆動パルス101および
逆転駆動パルス102に同期して、偏位量検出部100
に同期信号103、104、105が入力される。AC
サーボモーター69は、正転駆動パルス101は偏位量
合成部107を通り、正転駆動パルス101Aにより同
期回動が始まる。上述のように、昇降ブロック59が
4.5mm移動するのに、ACサーボモーター69は1
5回転を必要とする。したがって、回転して安定した時
点(5回転)で偏位量検出部100に入力されている鞍
形のフォトセンサー90からの信号で、同期信号103
の計測を行い、同時に鞍形のフォトセンサー91からの
信号で同期信号の計測の停止を行い、その間に計測した
同期信号103のパルス数を貯留し、その貯留パルス数
106を偏位量合成部107に入力し正転駆動パルス1
01に加算し、正転駆動パルス101Aとする。すなわ
ち、昇降ブロック59の上昇の際は、貯留パルス数10
6を加算し、昇降ブロック59の下降の際は減算を行う
のである。なお、逆転駆動時には、鞍形のフォトセンサ
ー90、91の動作順序を逆にすれば貯留パルス数はそ
のまま活用することができる。上記の場合は、ACサー
ボモーター69を補正分を含めて回動するようにする。
図3におけるサーボモーター78を駆動する場合は、偏
位量検出部100の貯留パルス数106のみで正、およ
び逆の回動を行い、ACサーボモーター69を全体に回
位し、偏位角を補正することができる。上述のように、
軸継手の偏位角が発生しても、これを検知し、補正を行
うことが容易にできるので、軸継手1のみならず、AC
サーボモーター全体の防振にも活用することができ、搬
送するウエハへの安定性が増す効果がある。また、偏位
量が多く発生しても補正を容易に行うことができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the structure of a shaft joint in which a deflection angle occurs will be described. FIG. 1 is a perspective view illustrating an example of the structure of the shaft coupling 1, and FIG. 2 is a schematic diagram illustrating a cross-sectional structure of a main part of the shaft coupling 1. The drive-side shaft coupling 2 is provided with a boss portion 3 for fixing the drive-side shaft A, and forms pressure applying portions 4 and 5 having required shapes in parallel with the axis and at symmetric positions. The pressure applying portions 4 and 5 have opposed surfaces 6 and 7 and 8 and 9 set at the center portion via openings, and further have tapped holes 10, 11, 12, and 13 (13 in the figure). (Not visible). The load-side shaft coupling 14 is provided with a boss 16 for connecting the load-side shaft B at the center of one surface of the disk 15,
On the other surface, pressure receiving portions 17 and 18 having a required shape are provided symmetrically. Each shallow spherical recess 19 is provided at a predetermined position on the plane forming the V-shape of the pressure receiving portions 17 and 18.
A required number of groups, 20, 20, 21 and 22 are provided. FIG.
As shown in the figure, the shaft coupling 1 has a shallow spherical depression 19,
Each of the groups 20, 21, and 22 includes balls 23, 24, which are made of urethane rubber having a required diameter and have high resilience.
Groups 25 and 26 are arranged with only the contact vertices glued. A group of shallow spherical depressions 27, 28, 29 and 30 are provided at the same position facing the groups of shallow spherical depressions 19, 20, 21 and 22. Pressure receiving relay plates 31, 32, 33 and 3
4 inserts one end of springs 39, 40, 41 and 42 into each of the spring counterbore 35, 36, 37 and 38 as shown. Springs 39, 40, 41 and 4
The other end of 2 is preloaded and has stepped washers 43, 4
The stepped bolts 47, 48, 49, and 50 (dotted lines) are arranged via 4, 45 (dotted lines) and 46 (dotted lines). Here, the description of the pulsation smoothing action of the shaft coupling 1 will be omitted. The springs 39, 40, 41 and 42
This is set based on the transmission horsepower of the shaft coupling 1, and a large angular deviation does not occur when the load fluctuates in a normal operation state. However, when accuracy is required, even a slight deviation causes a problem. Here, the worst excursion is considered. FIG.
In the case where the ball 23 is crushed, the angle 51 is 2.5 ° (degrees) and the angle 52 is 33 ° in actual measurement. However, since the spring 39 is inserted, it is considered that the 39 intervals are 4 ° because one interval is 4 °
× 5 = 20 °, and the crushed ball 23 is added,
20 ° + 4 ° = 24 ° at maximum. Although the above has been described with assumptions that are unlikely in practice, in practice,
The elevator, which is a transfer device, has its own weight, which is 50% of the motor output, but there is room for the motor output even when the actual load is loaded at 100%. For example, in an elevator having a motor rated output of 120 W, when the actual load is changed from 0% to 100%, the deviation angle of the shaft coupling is 2.
It changed by 7 °. Therefore, the deviation amount of the deviation angle of 2.7 ° is corrected. FIG. 3 is a perspective view schematically showing an embodiment in which the deviation angle of the shaft coupling 1 is extracted and corrected. The elevator 54 sandwiches and fixes the guide lots 57 and 57 with the base 55 and the support member 56, and lifts and lowers the block 59 via respective ball nuts 58.
Are held along the respective guide lots 57 so as to be able to move up and down smoothly. A ball nut 60 is attached to the center of the lifting block 59, and a ball screw 61 is engaged and in communication therewith. The lower end of the ball screw 61 is attached to the base 55 with the ball bearing 6.
2 and the upper part is rotatably suspended on a support member 56 via a bearing 63, and the bevel gear 6 is provided at the upper end.
4 is fixed. Mounting table 6 with cylindrical shape lying down
5 is a lifting block 5 via supporting arms 66 and 67.
9 is integrated. In the driving section 68, the AC servomotor 69 is fixedly attached to a support member 71 which is separated from the motor shaft 70, and a seat 73 of a shaft 72 is fixed to a lower portion of the support member 71. The lower end of the shaft 72 is received by a ball bearing 74 and is firmly attached to a bearing case 75 that houses the ball bearing 74. Axis 7
2, a worm wheel 76 is fixed, and a worm 77 that engages with the worm wheel 76 is provided with a servo motor 7.
8 is fixed to the shaft 79. The servomotor 78 may be a reversible motor having an encoder capable of servo control. Although not shown, a cam mechanism may be used instead of the worm 77 and the worm wheel 76. The hollow shaft 80 attached to the support member 71 is provided with a ball bearing 81, through which the fixed member 82 is set at a predetermined position, and the support member 71 is movable together with the ball bearing 74. At the same time, the AC servomotor 69 also makes the whole movable. The boss 3 of the shaft coupling 1 is firmly attached to the motor shaft 70. Furthermore, the boss 3 has
A disk 83 with a slit 84 is provided. A shaft 85 is fixed to the boss 16 of the shaft coupling 1, and the shaft 85 is rotatably supported by respective ball bearings 87 (one is not visible in FIG. 3) provided on both sides of the bearing block 86. . Axis 85
, A disk 89 provided with a slit 88 is fixed. Each disc 83 and 89 is provided with a respective saddle-shaped photosensor 90 and 91. The upper end of the shaft 85 is
To the input shaft 93. The shaft 95 passes through a ball bearing 97 provided on a support angle 96 fixed to the support member 56, and has one end connected to the output shaft of the speed reducer 92, and the other simply having a bevel gear 98 engaged with the bevel gear 64. Is fixed. Next, the overall operation of the deviation angle detection and correction device will be described. As shown in FIG. 3, when the servo motor 78 is stopped at a predetermined position, the worm wheel 76 is also stopped, so that the support member 71 does not move, and if a drive pulse is given to the AC servo motor 69, the motor shaft 70 , Shaft coupling 1,
The ball screw 61 is rotated via the shaft 85, the speed reducer 92, the shaft 95, the bevel gear 98 and the bevel gear 64, and the lifting block 5
9 is raised and lowered. Elevating block 59 of elevator 54
The relationship between the movement of the motor and the rotation speed of the AC servomotor 69 will be described. The lead of the ball screw 61 is 6 mm, that is, the amount of movement of the lifting block 59 by one rotation of the ball screw 61 is 6 mm. Since the bevel gears 64 and 98 have the same number of teeth, the reduction ratio is 1. The reduction ratio of the reduction gear 92 is 1
/ 20, so that when the shaft 95 makes one rotation, the shaft 85 becomes 20
Will rotate. That is, the shaft 70 of the AC servomotor 69 rotates 20 times. For example, if the amount of movement of the lifting block 59 is 4.5 mm each time, the number of rotations of the ball screw 61 every time is 4.5 / 6 =
The number of rotations of the AC servomotor 69 is 0.75 times, which is the reduction ratio of the speed reducer 92, that is, 0.75 × 20 = 15 rotations. The above condition is a state in which there is no load on the mounting table 65 integrated with the elevating block 59, and when a load of 100% is applied to this, the driving by the shaft coupling 1 is performed as described above. The deviation angle between the side shaft coupling 2 and the load side shaft coupling 14 is 2.7 °. Considering this deviation angle 2.7 ° with the ball screw 61, the change amount is 2.7 / 20 = 0.135 ° when first divided by the reduction ratio, and the ball screw 61 moves 6 mm in one rotation of 360 °. 6 × by proportional calculation
0.135 / 360 ≒ 0.0225 mm. Also,
When the AC servomotor 69 makes one rotation at 400 pulses, the number of 2.7 ° pulses corresponds to 360 ° at 400 pulses.
2.7 / 360 = 3 pulses. Therefore, it is necessary to perform a correction corresponding to the deviation angle of 2.7 °. There are a method of performing the correction electrically and a method of performing the correction mechanically, both of which will be described later. Next, a method for detecting the amount of deviation will be described. The control of the entire apparatus is omitted, and only the method of detecting the deviation angle will be described. From the overall control unit (general control unit) 99 in the block diagram of the method of detecting the amount of deviation shown in FIG.
The displacement amount detection unit 100 synchronizes with the forward drive pulse 101 and the reverse drive pulse 102 and
Are supplied with synchronization signals 103, 104, and 105. AC
In the servo motor 69, the forward rotation drive pulse 101 passes through the displacement amount synthesizing unit 107, and synchronous rotation starts with the forward rotation drive pulse 101A. As described above, while the lifting block 59 moves 4.5 mm, the AC servomotor 69
Requires 5 rotations. Therefore, at the time when the rotation is stabilized (5 rotations), the synchronization signal 103 is a signal from the saddle-shaped photosensor 90 input to the deviation amount detection unit 100.
At the same time, the measurement of the synchronizing signal is stopped by the signal from the saddle-shaped photosensor 91, the number of pulses of the synchronizing signal 103 measured during that time is stored, and the stored pulse number 106 is used as the displacement amount synthesizing unit. 107 and forward drive pulse 1
01 to obtain a normal rotation drive pulse 101A. That is, when the lifting block 59 is raised, the number of stored pulses 10
6 is added, and when the lifting block 59 is lowered, a subtraction is performed. At the time of reverse rotation driving, the number of stored pulses can be utilized as it is if the operation order of the saddle-shaped photosensors 90 and 91 is reversed. In the above case, the AC servomotor 69 is rotated including the correction.
When the servo motor 78 in FIG. 3 is driven, forward and reverse rotations are performed only with the number of stored pulses 106 of the deviation amount detection unit 100, and the AC servo motor 69 is turned around as a whole to reduce the deviation angle. Can be corrected. As mentioned above,
Even if a deviation angle of the shaft coupling occurs, it can be easily detected and corrected, so that not only the shaft coupling 1 but also AC
It can also be used for vibration isolation of the entire servo motor, and has the effect of increasing the stability of the transferred wafer. Further, correction can be easily performed even when a large amount of deviation occurs.

【0007】[0007]

【発明の効果】本発明の偏位角の検知および補正方法と
その装置によれば、軸継手の脈動に対する平滑装置によ
る偏位角の発生があっても容易に補正することができる
ので防振効果を充分に発揮でき、ウエハ等の搬送装置の
信頼性を一段と向上できる効果がある。
According to the method and the apparatus for detecting and correcting the deviation angle of the present invention, even if the deviation angle is generated by the smoothing device with respect to the pulsation of the shaft coupling, the deviation can be easily corrected. The effect can be sufficiently exhibited, and there is an effect that the reliability of a transfer device for a wafer or the like can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態で例示した軸継手の構造を
示す斜視図。
FIG. 1 is a perspective view showing a structure of a shaft coupling exemplified in an embodiment of the present invention.

【図2】図1に示す軸継手の要部の断面構造を示す模式
図。
FIG. 2 is a schematic diagram showing a cross-sectional structure of a main part of the shaft coupling shown in FIG.

【図3】本発明の実施の形態で例示した偏位角の検知お
よび補正を行う装置の構成を示す斜視図。
FIG. 3 is a perspective view showing a configuration of a device for detecting and correcting a deviation angle exemplified in the embodiment of the present invention.

【図4】本発明の実施の形態で例示した偏位角の検知お
よび補正を行うブロック図。
FIG. 4 is a block diagram for detecting and correcting a deflection angle exemplified in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…軸継手 2…駆動側軸継手 3…ボス部 4、5…授圧部 6、7、8、9…対向面 10、11、12、13…タップ穴 14…負荷側軸継手 15…円板 16…ボス 17、18…受圧部 19、20、21、22…浅い球面窪み 23、24、25、26…ボール 27、28、29、30…浅い球面窪み 31、32、33、34…受圧中継板 35、36、37、38…ばね受ざぐり 39、40、41、42…ばね 43、44、45、46…段付き座金 47、48、49、50…先端段付きボルト 51、52…角 54…エレベーター 55…ベース 56…支持材 57…ガイドロット 58…ボールナット 59…昇降ブロック 60…ボールナット 61…ボールネジ 62…ボールベアリング 63…軸受部 64…傘歯車 65…載置台 66、67…支持腕 68…駆動部 69…ACサーボモーター 70…モーター軸 71…支持部材 72…軸 73…座 74…ボールベアリング 75…ベアリングケース 76…ウオームホイール 77…ウオーム 78…ACサーボモーター 79…軸 80…中空軸 81…ボールベアリング 82…固定部材 83…円板 84…スリット 85…軸 86…軸受ブロック 87…ボールベアリング 88…スリット 89…円板 90、91…鞍形のフォトセンサー 92…減速機 93…入力軸 94…中空軸 95…軸 96…支持アングル 97…ボールベアリング 98…傘歯車 99…全体制御部(総括制御部) 100…偏位量検出部 101…正転駆動パルス 101A…正転駆動パルス 102…逆転駆動パルス 102A…逆転駆動パルス 103、104、105…同期信号 106…貯留パルス数 107…偏位量合成部 A…駆動側軸 B…負荷側軸 DESCRIPTION OF SYMBOLS 1 ... Shaft coupling 2 ... Drive side shaft coupling 3 ... Boss part 4, 5 ... Pressure applying part 6, 7, 8, 9 ... Opposing surface 10, 11, 12, 13 ... Tapped hole 14 ... Load side shaft coupling 15 ... Circle Plate 16 ... Boss 17, 18 ... Pressure receiving portion 19, 20, 21, 22 ... Shallow spherical depression 23, 24, 25, 26 ... Ball 27, 28, 29, 30 ... Shallow spherical depression 31, 32, 33, 34 ... Pressure receiving Relay plates 35, 36, 37, 38 ... counterbore springs 39, 40, 41, 42 ... springs 43, 44, 45, 46 ... stepped washers 47, 48, 49, 50 ... stepped bolts 51, 52 ... corners 54 ... Elevator 55 ... Base 56 ... Supporting material 57 ... Guide lot 58 ... Ball nut 59 ... Elevating block 60 ... Ball nut 61 ... Ball screw 62 ... Ball bearing 63 ... Bearing part 64 ... Bevel gear 65 ... Placement table 66,67 ... Support arm 68 ... Driver 69 ... AC servo motor 70 ... Motor shaft 71 ... Support member 72 ... Shaft 73 ... Seat 74 ... Ball bearing 75 ... Bearing case 76 ... Worm wheel 77 ... Warm 78 ... AC servo motor 79 ... Shaft 80 ... hollow shaft 81 ... ball bearing 82 ... fixing member 83 ... disk 84 ... slit 85 ... shaft 86 ... bearing block 87 ... ball bearing 88 ... slit 89 ... disk 90, 91 ... saddle-shaped photo sensor 92 ... reduction gear 93 … Input shaft 94… hollow shaft 95… shaft 96… support angle 97… ball bearing 98… bevel gear 99… overall control unit (overall control unit) 100… deviation amount detection unit 101… forward rotation drive pulse 101 A… forward rotation drive Pulse 102: reverse rotation drive pulse 102A: reverse rotation drive pulse 103, 104, 105 ... same Period signal 106: Number of stored pulses 107: Deflection amount synthesizing unit A: Drive side axis B: Load side axis

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】軸継手の駆動側と負荷側に、回動を検知す
る回動検知装置をそれぞれ設け、該軸継手の駆動側と負
荷側との間に生じる偏位角を検知して補正する偏位角の
検知および補正方法であって、上記駆動側の回動を検知
する回動検知装置を用いて偏位角の計測を開始し、次い
で、上記負荷側の回動を検知する回動検知装置による偏
位角の計測を停止して、上記駆動側と負荷側との間に生
じた偏位角の貯留量を検知し、該偏位角の貯留量に基づ
いて、上記軸継手の駆動側と負荷側との間の偏位角の補
正を行うことを特徴とする偏位角の検知および補正方
法。
1. A rotation detecting device for detecting rotation is provided on each of a driving side and a load side of a shaft coupling, and a deviation angle generated between the driving side and the load side of the shaft coupling is detected and corrected. A method of detecting and correcting a deviation angle, wherein the measurement of the deviation angle is started using a rotation detection device that detects the rotation of the drive side, and then the rotation is detected to detect the rotation of the load side. Stop measuring the deflection angle by the motion detection device, detect the stored amount of the deflection angle generated between the driving side and the load side, and based on the stored amount of the deflection angle, A deviation angle between the driving side and the load side.
【請求項2】軸継手の駆動側と負荷側に、回動を検知す
る回動検知装置をそれぞれ設け、該軸継手の駆動側と負
荷側との間に生じる偏位角を検知して補正する偏位角の
検知および補正装置であって、ACサーボモーターの軸
に連結された軸継手と、該軸継手の駆動側の偏位角を検
知するフォトセンサーと、該軸継手の負荷側の偏位角を
検知するフォトセンサーとを有し、正転(もしくは逆
転)駆動における上記軸継手の駆動側と負荷側との間に
生じる偏位角の貯留量を検知して、該偏位角の貯留量に
基づいて、上記軸継手の駆動側と負荷側との間の偏位角
の補正を行う手段を少なくとも備えたことを特徴とする
偏位角の検知および補正装置。
2. A rotation detecting device for detecting rotation is provided on each of a drive side and a load side of a shaft coupling, and a deviation angle generated between the drive side and the load side of the shaft coupling is detected and corrected. And a photo-sensor for detecting a deviation angle of a drive side of the shaft coupling, and a photo-sensor for detecting a deviation angle of a drive side of the shaft coupling. A photosensor for detecting a deviation angle, detecting a stored amount of the deviation angle generated between the driving side and the load side of the shaft coupling in the forward rotation (or reverse rotation) driving, and detecting the deviation angle. A device for correcting a deviation angle between the driving side and the load side of the shaft coupling based on the stored amount of the shaft coupling.
【請求項3】請求項2に記載の偏位角の検知および補正
装置において、偏位角の検知および補正の全体の制御を
行う総括制御部から、偏位角の偏位量を合成する偏位量
合成部に正転(もしくは逆転)駆動パルスを入力する手
段と、偏位角の偏位量を検出する偏位量検出部に、正転
(もしくは逆転)駆動パルスに同期した同期信号を入力
する手段と、軸継手の駆動側の偏位角を検知するフォト
センサーおよび負荷側の偏位角を検知するフォトセンサ
ーから送られる偏位角の偏位量を貯留パルス数に変換し
て、上記偏位量合成部に入力する偏位量検出部と、上記
総括制御部から送信される正転(もしくは逆転)駆動パ
ルスに、偏位量合成部で変換された貯留パルス数を加算
(もしくは減算)して、該補正した正転(もしくは逆
転)駆動パルスにより同期回動するACサーボモーター
を少なくとも備えたことを特徴とする偏位角の検知およ
び補正装置。
3. An apparatus for detecting and correcting a deflection angle according to claim 2, wherein a general control unit for performing overall control of the detection and correction of the deflection angle synthesizes a deflection amount of the deflection angle. A synchronization signal synchronized with the forward (or reverse) drive pulse is supplied to a means for inputting a forward (or reverse) drive pulse to the displacement synthesizer and a displacement detector for detecting the amount of deviation of the displacement angle. Means for inputting, by converting the deviation amount of the deviation angle sent from the photo sensor for detecting the deviation angle on the drive side of the shaft coupling and the photo sensor for detecting the deviation angle on the load side to the number of stored pulses, The number of stored pulses converted by the deviation amount synthesizing unit is added to the deviation amount detecting unit input to the deviation amount synthesizing unit and the normal rotation (or reverse rotation) driving pulse transmitted from the general control unit (or Subtraction), and the corrected forward (or reverse) drive pulse Detection and correction apparatus of deviation angle, characterized in that it comprises at least an AC servo motor for synchronizing rotation.
JP9125440A 1997-05-15 1997-05-15 Detection and correction method for displacement angle and device therefor Pending JPH10320053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9125440A JPH10320053A (en) 1997-05-15 1997-05-15 Detection and correction method for displacement angle and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9125440A JPH10320053A (en) 1997-05-15 1997-05-15 Detection and correction method for displacement angle and device therefor

Publications (1)

Publication Number Publication Date
JPH10320053A true JPH10320053A (en) 1998-12-04

Family

ID=14910148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9125440A Pending JPH10320053A (en) 1997-05-15 1997-05-15 Detection and correction method for displacement angle and device therefor

Country Status (1)

Country Link
JP (1) JPH10320053A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267742A (en) * 2014-09-24 2015-01-07 浙江宇视科技有限公司 Dome camera original point correction method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267742A (en) * 2014-09-24 2015-01-07 浙江宇视科技有限公司 Dome camera original point correction method and device

Similar Documents

Publication Publication Date Title
US5896672A (en) Precision shaft alignment system
JPH06183561A (en) Moving stage device
KR101447573B1 (en) Torque Measuring Device for Tapered Roller Bearings
WO2007099626A1 (en) Torque measurement device
WO2007099627A1 (en) Screw tightening device
WO2007105257A1 (en) Synchronization control system
JPH10320053A (en) Detection and correction method for displacement angle and device therefor
JP2010133847A5 (en)
CN1189070C (en) Device for positioning electronic circuits arranged on foil
KR101654248B1 (en) Ceramic structure for heat treatment arpparatus
JP2009012107A (en) Tool and method for teaching installation and conveyance information for substrate processing apparatus
JP3061651B2 (en) Laminating device
CN111256987B (en) Torque calibration mechanism for harmonic reducer
JP2552305B2 (en) Double side polishing machine
KR101976109B1 (en) Roller apparatus having horizontal correction function for laminating curved display panel
JPH11260783A (en) Substrate cleaning equipment
JP2008018514A (en) Surface polishing device
CN117516440B (en) Detection equipment for speed regulation disc of textile machinery
JPH05231864A (en) Roundness measuring machine
JP2000332494A (en) Substrate fixing device
JP2000288929A (en) Method and device for grinding plate-like body
CN213067646U (en) Press mechanism
CN218659094U (en) Full-automatic feeding manipulator of probe station
CN219856522U (en) Fixed measuring device of sign indicating number is spouted to polaroid
JPS63258037A (en) Transferring device for semiconductor wafer