JPH10319314A - Relay lens optical system - Google Patents

Relay lens optical system

Info

Publication number
JPH10319314A
JPH10319314A JP13227397A JP13227397A JPH10319314A JP H10319314 A JPH10319314 A JP H10319314A JP 13227397 A JP13227397 A JP 13227397A JP 13227397 A JP13227397 A JP 13227397A JP H10319314 A JPH10319314 A JP H10319314A
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
image
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13227397A
Other languages
Japanese (ja)
Inventor
Suketoshi Takaira
祐俊 高以良
Manami Saka
真奈美 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP13227397A priority Critical patent/JPH10319314A/en
Publication of JPH10319314A publication Critical patent/JPH10319314A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a compact optical system obtaining high image quality and provided with many usable interchangeable lenses and to reduce the drop of illuminace by constituting the optical system of a condenser lens group and an image-formation lens group having positive power and satisfying a specified condition in order from a primary image surface side. SOLUTION: This relay lens optical system is provided with a condenser lens group Gr1 having positive power and an imageformation lens group Gr2 having the positive power and satisfies the condition of 0.9<|Dcr.β/f1| in order from the image-formation surface of a photographing lens group GrS. Provided that Dcr is a distance from the apex of the side surface nearest to an image side of the lens group Gr1 to the lens group Gr2, β is relay magnification, and f1 is the focal distance of an entire system. The lens group Gr1 is constituted of 1st and 2nd positive lenses in order from an object side, and the lens group Gr2 is constituted of 3rd and 4th positive lenses whose convex surfaces face to the object side, a 5th cemented lens consisting of a positive lens and a negative lens, a 6th negative lens whose concave surface faces to the object side, and 7th to 9th positive lenses whose convex surfaces face to the object side in order from the object side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、1次像を2次像と
して再結像させるリレーレンズ光学系に関し、更に詳し
くは、例えば一眼レフカメラによって結像された1次像
をリレーし、固体撮像素子等の受光素子面に2次像とし
て再結像させる光学系に好適なリレーレンズ光学系に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a relay lens optical system for re-forming a primary image as a secondary image, and more particularly, to relaying a primary image formed by, for example, a single-lens reflex camera to form a solid-state image. The present invention relates to a relay lens optical system suitable for an optical system for re-forming a secondary image on a light receiving element surface such as an imaging element.

【0002】[0002]

【従来の技術】近年ビデオカメラや電子スチルカメラ等
固体撮像素子を用いた製品の普及は著しい。このような
製品の一形態として、コストダウンや種類の多い一眼レ
フ用の交換レンズを用いることができる等のメリットか
ら一眼レフカメラを利用した電子スチルカメラもあらわ
れてきている。
2. Description of the Related Art In recent years, products using solid-state imaging devices such as video cameras and electronic still cameras have become remarkably popular. As one form of such a product, an electronic still camera using a single-lens reflex camera has emerged from the advantages of cost reduction and the use of many types of interchangeable lenses for single-lens reflex cameras.

【0003】既存の一眼レフカメラシステムの一部を利
用した電子スチルカメラの場合、その結像方式として2
通りの方法が考えられる。1つは一眼レフ用の交換レン
ズによって作られる1次結像面上にCCD等の固体撮像素
子をおく方法で、もう1つは一眼レフ用の交換レンズに
よって作られる1次像をリレーし再結像した2次像面上
にCCD等の固体撮像素子をおく方法である。
In the case of an electronic still camera utilizing a part of an existing single-lens reflex camera system, an image forming method is two-dimensional.
There are different ways. One is to place a solid-state image sensor such as a CCD on the primary image plane formed by an SLR interchangeable lens, and the other is to relay and replay the primary image created by a SLR interchangeable lens. This is a method in which a solid-state imaging device such as a CCD is placed on a formed secondary image plane.

【0004】前者の1次像面上に固体撮像素子をおく場
合、理論上、一般的な一眼レフカメラと同じ性能で同じ
スペックが得られる。このようなカメラでは、一眼レフ
カメラのファインダーをそのまま利用し、且つ一眼レフ
カメラとほぼ同等の画質を得ようとすると対角の長さが
約28mmで画素数が約120万以上の固体撮像素子が必要と
なる。ところが、このような大型な固体撮像素子はそれ
自体大変高価であるという問題がある。
When the solid-state imaging device is placed on the former primary image plane, the same specifications can be theoretically obtained with the same performance as a general single-lens reflex camera. In such a camera, a solid-state imaging device having a diagonal length of about 28 mm and a number of pixels of about 1.2 million or more, in order to use the viewfinder of a single-lens reflex camera as it is and to obtain almost the same image quality as a single-lens reflex camera Is required. However, there is a problem that such a large solid-state imaging device is very expensive.

【0005】このため、安価な製品を提供するには1/2
インチや1/3インチの固体撮像素子を用いる必要があ
る。ところが、一眼レフカメラの像高はY'=13.85mm(APS
classicformat)であり1/2インチの固体撮像素子はY'=4
で2/3インチの固体撮像素子はY'=5.5である。1次結像
象面に直接これらの固体撮像素子をおくと一眼レフ用の
交換レンズは約4倍から5倍の望遠レンズとなってしま
う。
[0005] For this reason, it is 1/2
It is necessary to use an inch or 1/3 inch solid-state imaging device. However, the image height of a single-lens reflex camera is Y '= 13.85 mm (APS
classic format) and 1/2 'solid-state image sensor Y' = 4
And the solid-state imaging device of 2/3 inches has Y '= 5.5. If these solid-state imaging devices are placed directly on the primary imaging image plane, the interchangeable lens for a single-lens reflex camera becomes a telephoto lens of about 4 to 5 times.

【0006】一方、後者の場合、結像レンズ系で1次像
を縮小することにより一眼レフカメラの画角に近づける
ことが行われている。例えば、図13に示すように、撮影
レンズ群GrSで形成された1次像はさらにコンデンサレ
ンズ群Gr1と結像レンズ群Gr2で2次結像面に縮小させて
再結像させることにより、1/2インチや2/3インチサイ
ズの比較的安価な固体撮像素子を用いて、画像情報を劣
化させることなく電子スチルカメラを構成することが可
能となる。
On the other hand, in the latter case, the primary image is reduced by an imaging lens system to approach the angle of view of a single-lens reflex camera. For example, as shown in FIG. 13, the primary image formed by the photographing lens group GrS is further reduced by a condenser lens group Gr1 and an imaging lens group Gr2 to a secondary imaging plane and re-imaged, thereby By using a relatively inexpensive solid-state imaging device having a size of 1/2 inch or 2/3 inch, an electronic still camera can be configured without deteriorating image information.

【0007】一方、このような電子スチルカメラを考え
る場合、コストの他にもコンパクトさは大変重要であ
る。1次結像面の大きさと、固体撮像素子の大きさが決
まればおおよそのリレーレンズ光学系の大きさは決まっ
てしまうが、コンデンサーレンズ群最像側面頂点から結
像レンズ群最物体側面頂点までの光路を曲げることによ
って全体としてコンパクト化が可能である。光路を曲げ
る例としては、図14の構成が考えられる。この例では光
路が3回折り曲げられており、構成がコンパクトにおさ
まっている。
On the other hand, when considering such an electronic still camera, compactness is very important in addition to cost. If the size of the primary imaging surface and the size of the solid-state imaging device are determined, the approximate size of the relay lens optical system will be determined, but from the vertex of the condenser lens group most image side to the vertex of the imaging lens group most object side. By bending the optical path of the above, it is possible to make the whole compact. As an example of bending the optical path, the configuration shown in FIG. 14 can be considered. In this example, the optical path is bent three times, and the configuration is compact.

【0008】光路を曲げるためには反射ミラーを設ける
必要があるが、その為にはコンデンサーレンズ群最像側
面頂点から結像レンズ群最物体側面頂点までの距離をあ
る程度確保する必要がある。一方1次結像に対して使用
する固体撮像素子が決まれば、リレー倍率が決まるがコ
ンデンサーレンズ最像側面頂点からリレーレンズ最物体
側面頂点までの距離を大きくすることは倍率を縮小する
方向にあり、固体撮像素子の有効面より小さい2次結像
をする。
In order to bend the optical path, it is necessary to provide a reflecting mirror. For this purpose, it is necessary to secure a certain distance from the vertex of the image side of the condenser lens group to the vertex of the object side of the imaging lens group. On the other hand, if the solid-state imaging device to be used for the primary image formation is determined, the relay magnification is determined. However, increasing the distance from the vertex of the image side of the condenser lens to the vertex of the object side of the relay lens tends to reduce the magnification. To form a secondary image smaller than the effective surface of the solid-state imaging device.

【0009】このようにリレー倍率を確保しつつ、コン
デンサーレンズ群最像側面頂点から結像レンズ群最物体
側面頂点までの距離を大きくとることは相反することで
ある。
As described above, it is contradictory to increase the distance from the vertex of the most image side surface of the condenser lens group to the vertex of the most object side surface of the imaging lens group while securing the relay magnification.

【0010】また、このような電子スチルカメラの場
合、複数の撮影レンズを使用できることが必要である
が、そのためには複数の撮影レンズ射出瞳位置の変化に
対してリレーレンズ光学系の許容範囲を広くすることも
重要な課題である。
In the case of such an electronic still camera, it is necessary that a plurality of photographing lenses can be used. For this purpose, the allowable range of the relay lens optical system is changed with respect to a change in the position of the plurality of photographing lens exit pupils. Widening is also an important issue.

【0011】電子スチルカメラの光学系としては、特開
昭63-205626号、特開平8-114742号に記載される光学系
が知られている。
As an optical system of an electronic still camera, the optical systems described in JP-A-63-205626 and JP-A-8-114742 are known.

【0012】[0012]

【発明が解決しようとする課題】ところが、前者の特開
昭63-205626号記載の光学系は、一眼レフ用交換レンズ
によって作られる1次結像面をリレーレンズ系によって
約0.5倍に縮小した構成となっている。しかしながら、
この光学系はコンデンサーレンズ群最像側面頂点から結
像レンズ群最物体側面頂点までの距離が短いために、光
路は1回しか曲げられておらず、カメラの後面および左
に大きくリレーユニットが張り出してしまうという問題
があった。
However, in the former optical system described in Japanese Patent Application Laid-Open No. 63-205626, the primary image plane formed by a single-lens reflex interchangeable lens is reduced to about 0.5 times by a relay lens system. It has a configuration. However,
In this optical system, the optical path is bent only once because the distance from the top image side vertex of the condenser lens group to the top object side vertex of the imaging lens group is short, and the relay unit projects greatly to the rear and left of the camera. There was a problem that would.

【0013】また、後者の特開平8-114742号記載の光学
系は、光路が3回ほど曲げることが可能な程度、コンデ
ンサーレンズ群最像側面頂点から結像レンズ群最物体側
面頂点までの距離があるが、リレー倍率が小さいため固
体撮像素子は小さなものを用いなければならず、画素数
の少ないCCDに限られてしまう。
In the latter optical system described in Japanese Patent Application Laid-Open No. 8-114742, the distance from the vertex of the most image side of the condenser lens group to the vertex of the most object side of the imaging lens group is such that the optical path can be bent about three times. However, since the relay magnification is small, a small solid-state imaging device must be used, and the CCD is limited to a CCD having a small number of pixels.

【0014】さらに、上記の各公報記載の光学系では、
複数の撮影レンズを使用する際、撮影レンズの射出瞳位
置とリレーレンズ系の入射瞳位置の整合が図れる許容幅
が必ずしも広くなく、結果として撮影レンズを交換して
瞳位置が大きく動いた場合に光線のケラレ、照度落ち等
の問題が生じる。
Furthermore, in the optical systems described in the above publications,
When using multiple photographing lenses, the tolerance range for matching the exit pupil position of the photographing lens and the entrance pupil position of the relay lens system is not always wide. Problems such as vignetting of the light beam and reduced illuminance occur.

【0015】本発明はこの様な状況に鑑みてなされたも
のであって、コンパクト化で高画質であるとともに、使
用可能交換レンズが多く、最終像面での照度落ちの少な
いリレーレンズ光学系を提供することを目的とする。
The present invention has been made in view of such a situation, and has been developed to provide a relay lens optical system that is compact, has high image quality, has many usable interchangeable lenses, and has little illuminance loss on the final image plane. The purpose is to provide.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載のリレーレンズ光学系は、1次像を2
次像として再結像させるリレーレンズ光学系であって、
1次像面側から順に、正のパワーを持つコンデンサーレ
ンズ群と、正のパワーを持つ結像レンズ群と、から構成
され、以下の条件を満足することを特徴とする。
According to a first aspect of the present invention, there is provided a relay lens optical system, comprising:
A relay lens optical system for re-imaging as a next image,
It is composed of a condenser lens group having a positive power and an imaging lens group having a positive power in order from the primary image surface side, and satisfies the following conditions.

【0017】0.9<| Dcr・β/fl| 但し、 Dcr :前記コンデンサーレンズ群最像側面頂点から結像
レンズ群最物体側面頂点までの距離、 β:リレー倍率、 fl:全系の焦点距離、 である。
0.9 <| Dcr · β / fl |, where Dcr is the distance from the vertex of the condenser lens group most image side to the vertex of the imaging lens group most object side, β: relay magnification, fl: focal length of the whole system, It is.

【0018】また、請求項2記載のリレーレンズ光学系
は、1次像を2次像として再結像させるリレーレンズ光
学系であって、1次像面側から順に、正のパワーを持つ
コンデンサーレンズ群と、正のパワーを持つ結像レンズ
群と、から構成され、以下の条件を満足することを特徴
とする。
A relay lens optical system according to a second aspect is a relay lens optical system for re-imaging a primary image as a secondary image, wherein the condenser having a positive power in order from the primary image surface side. It is composed of a lens group and an imaging lens group having a positive power, and satisfies the following conditions.

【0019】0.7<| flr/flc | 但し、 flr:結像レンズ群の焦点距離 flc:コンデンサーレンズ群の焦点距離 である。0.7 <| flr / flc | where, flr: focal length of the imaging lens group flc: focal length of the condenser lens group

【0020】さらに、請求項3記載のリレーレンズ光学
系は、請求項1または2記載のリレーレンズ光学系にお
いて、前記結像レンズ群は、1次像面側から順に、前群
と後群とから構成されるとともに、以下の条件を満足す
ることを特徴とする。
The relay lens optical system according to claim 3 is the relay lens optical system according to claim 1 or 2, wherein the imaging lens group includes a front group and a rear group in order from the primary image plane side. And satisfies the following conditions.

【0021】1.1<| flr/flrf | 但し、 flr:結像レンズ群の焦点距離 flrf:結像レンズ群前群の焦点距離 である。1.1 <| flr / flrf | where, flr: focal length of the imaging lens group flrf: focal length of the front group of the imaging lens group

【0022】[0022]

【発明の実施の形態】以下、本発明を実施したリレーレ
ンズ光学系を図面を参照しつつ説明する。図1〜4は、
第1〜4の実施形態の撮影レンズ系とリレーレンズ光学
系のレンズ構成図を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a relay lens optical system embodying the present invention will be described with reference to the drawings. Figures 1-4
FIG. 3 shows a lens configuration diagram of a photographing lens system and a relay lens optical system of the first to fourth embodiments.

【0023】第1〜4の実施形態のリレーレンズ光学系
は、撮影レンズ群(GrS)の結像面から順に、正のパワー
を有するコンデンサーレンズ群(Gr1)と、正のパワーを
有する結像レンズ群(Gr2)を有するリレーレンズ光学系
である。
The relay lens optical system according to the first to fourth embodiments includes a condenser lens group (Gr1) having a positive power and an image formation having a positive power in order from the imaging surface of the photographing lens group (GrS). This is a relay lens optical system having a lens group (Gr2).

【0024】第1実施形態のコンデンサーレンズ群(Gr
1)は物体側より順に第1正レンズG1、第2正レンズG2か
ら構成されている。
The condenser lens group (Gr
1) is composed of a first positive lens G1 and a second positive lens G2 in order from the object side.

【0025】第1実施形態の結像レンズ群(Gr2)は物体側
より順に物体側に強い凸面を向けた第3正レンズG3、物
体側に強い凸面を向けた第4正レンズG4、正レンズと負
レンズの第5接合レンズG5、物体側に強い凹面を向けた
第6負レンズG6、像面側に強い凸面を向けた第7正レンズ
G7、第8正レンズG8、第9正レンズG9から構成されてい
る。
The imaging lens unit (Gr2) according to the first embodiment includes a third positive lens G3 having a strong convex surface facing the object side, a fourth positive lens G4 having a strong convex surface facing the object side, and a positive lens. And the fifth cemented lens G5 with a negative lens, the sixth negative lens G6 with a strong concave surface facing the object side, and the seventh positive lens with a strong convex surface facing the image surface side
G7, an eighth positive lens G8, and a ninth positive lens G9.

【0026】第2実施形態のコンデンサーレンズ群(Gr1)
は物体側より順に第1正レンズG1、第2正レンズG2から
構成されている。
The condenser lens group (Gr1) of the second embodiment
Is composed of a first positive lens G1 and a second positive lens G2 in order from the object side.

【0027】第2実施形態の結像レンズ群(Gr2)は物体側
より順に像面側に強い凸面を向けた第3正レンズG3、物
体側に凸の正レンズと負レンズの第4接合レンズG4、第5
負レンズG5、像面側に強い凸面を向けた第6正レンズG
6、2枚の正レンズを接合した第7接合レンズG7、物体側
に凸の第8メニスカスレンズG8から構成されている。
The imaging lens unit (Gr2) according to the second embodiment includes a third positive lens G3 having a strong convex surface facing the image surface in order from the object side, and a fourth cemented lens of a positive lens and a negative lens convex to the object side. G4, 5th
Negative lens G5, 6th positive lens G with strong convex surface facing the image side
6, a seventh cemented lens G7 in which two positive lenses are cemented, and an eighth meniscus lens G8 convex on the object side.

【0028】第3及び第4実施形態の結像レンズ群(Gr2)
は物体側より順に物体側に強い凸面を向けた第3正レン
ズG3、物体側に凸の正レンズと負レンズの第4接合レン
ズG4、両凹の第5負レンズG5、像面側に強い凸の第6正レ
ンズG6、第7正レンズG7、物体側に強い凸面を向けた第8
正レンズG8から構成されている。
Imaging lens group (Gr2) of the third and fourth embodiments
Is a third positive lens G3 having a strong convex surface facing the object side in order from the object side, a fourth cemented lens G4 of a positive lens and a negative lens convex on the object side, a fifth concave lens G5 of a biconcave, strong on the image surface side Convex sixth positive lens G6, seventh positive lens G7, eighth convex with strong convex surface facing the object side
It consists of a positive lens G8.

【0029】コンデンサーレンズ群(Gr1)は通常光量の
損失がないように1次像面の近傍におかれる。この事
は、再結像された2次像の像面湾曲に大きく影響するこ
とを示しており、コンデンサーレンズ群(Gr1)を1枚の
正レンズのみで構成すると像面湾曲が大きくなるが、こ
の像面湾曲は結像レンズ群(Gr2)によって補正できるも
のではない。そこでなるべく少ないレンズ枚数で且つ像
面湾曲の小さくなるようにするには正レンズ2枚の構成
がもっともよい。
The condenser lens group (Gr1) is usually placed near the primary image plane so that there is no loss of light quantity. This indicates that the field curvature of the re-imaged secondary image is greatly affected. If the condenser lens group (Gr1) is constituted by only one positive lens, the field curvature becomes large, This curvature of field cannot be corrected by the imaging lens group (Gr2). Therefore, in order to minimize the number of lenses and to reduce the field curvature, the configuration of two positive lenses is the best.

【0030】また、コンデンサーレンズ群(Gr1)を2枚
の正レンズで構成した場合にはその正レンズの形状は、
物体側から順に物体側に平面または平面に近い面を向け
た正レンズ、像面側に平面または平面に近い面を向けた
正レンズで構成されていることが望ましい。この様な構
成にすることで像面湾曲をもっとも小さくすることがで
可能である。
When the condenser lens group (Gr1) is composed of two positive lenses, the shape of the positive lens is
It is preferable that the positive lens has a positive lens having a flat surface or a surface close to a flat surface facing the object side and a positive lens having a flat surface or a surface close to the flat surface facing the image side in order from the object side. With such a configuration, the field curvature can be minimized.

【0031】各実施形態のリレーレンズ系では、ミラー
等によって光路を折曲げてコンパクトな構成にするため
にコンデンサーレンズ群(Gr1)と結像レンズ群(Gr2)
のあいだに比較的大きな空気間隔をとっている。このこ
とによって光学系全体としては体積を最も小さくするこ
とが可能であるが、撮影レンズ及びリレーレンズ光学系
を合わせた瞳倍率は負の大きい値をとる。瞳倍率が大き
くなると、撮影レンズの違いによる瞳位置の差がリレー
レンズ光学系の内部での入射瞳位置及び射出瞳位置の大
きな差になってしまう。このことは撮影レンズを交換す
ることによって、光線にケラレや周辺光量の低下を生じ
る機種があることになる。一眼レフなどの撮影レンズで
は焦点距離の異なる多くの交換レンズがあり、これらの
交換レンズの射出瞳の位置の差は40mm以上もある。
In the relay lens system of each embodiment, the condenser lens group (Gr1) and the imaging lens group (Gr2) are used to bend the optical path by a mirror or the like to make a compact configuration.
There is a relatively large air gap between them. As a result, the volume of the entire optical system can be minimized, but the pupil magnification of the photographic lens and the relay lens optical system takes a large negative value. When the pupil magnification becomes large, the difference in the pupil position due to the difference in the photographing lens becomes a large difference between the entrance pupil position and the exit pupil position in the relay lens optical system. This means that there is a model that causes vignetting in the light beam and a decrease in the peripheral light amount by replacing the photographing lens. There are many interchangeable lenses with different focal lengths in photographing lenses such as single-lens reflex cameras, and the difference between the exit pupil positions of these interchangeable lenses is as large as 40 mm or more.

【0032】これらの多くの撮影レンズに対応するため
に本発明では第1次結像面から物体側へ約40〜80mmの位
置に瞳を置いた時に周辺光量比が常に約50%以上となる
様に結像レンズ群の有効径をとっている。このためリレ
ーレンズ光学系単独では使用しているFナンバー(Fno)よ
りも明るくなっている。
In order to cope with these many photographing lenses, in the present invention, when the pupil is placed at a position of about 40 to 80 mm from the primary image forming surface to the object side, the peripheral light amount ratio always becomes about 50% or more. Thus, the effective diameter of the imaging lens group is taken. For this reason, the relay lens optical system alone is brighter than the F number (Fno) used.

【0033】また、第2〜4実施形態のリレーレンズ光
学系では、結像レンズ群(Gr2)のもっとも物体側のレン
ズおよびもっとも像面側のレンズに非球面を設けてい
る。このように、結像レンズ群(Gr2)のもっとも物体側
のレンズ、またはもっとも像面側のレンズに非球面を少
なくとも1面設けることにより、結像レンズ群(Gr2)の
もっとも物体側のレンズおよびもっとも像面側のレンズ
で発生する非点収差を良好に補正することができる。
In the relay lens optical systems of the second to fourth embodiments, the aspherical surface is provided for the lens closest to the object and the lens closest to the image plane in the imaging lens unit (Gr2). In this way, by providing at least one aspheric surface on the most object side lens of the imaging lens group (Gr2) or the most image side lens, the most object side lens of the imaging lens group (Gr2) and Astigmatism generated by the lens closest to the image plane can be satisfactorily corrected.

【0034】各実施形態のリレーレンズ光学系の構成
は、以下の条件式範囲(1)を満足することが望まし
い。 0.9<| Dcrβ/fl |・・・・・・(1) 但し、 Dcr :コンデンサーレンズ群最像側面頂点から結像レン
ズ群最物体側面頂点までの距離、 β:リレー倍率、 fl:リレーレンズ光学系の焦点距離、 である。
It is desirable that the configuration of the relay lens optical system of each embodiment satisfies the following conditional expression range (1). 0.9 <| Dcrβ / fl | ・ ・ ・ ・ ・ ・ (1) Here, Dcr: distance from the vertex of the image side of the condenser lens group to the vertex of the object side of the imaging lens group, β: relay magnification, fl: relay lens optics The focal length of the system,

【0035】上記条件式範囲は、コンデンサーレンズ群
最像側面頂点から結像レンズ群最物体側面頂点までの距
離と倍率をかけたものとリレーレンズ光学系の焦点距離
の比を表している。条件式範囲の下限を超えると、光路
を3回以上曲げる事と大きな倍率を得ることを同時に達
成できない。
The above conditional expression range represents the ratio of the focal length of the relay lens optical system multiplied by the distance multiplied by the distance from the top image side vertex of the condenser lens group to the top object side vertex of the imaging lens group. If the lower limit of the range of the conditional expression is exceeded, it is impossible to simultaneously bend the optical path three times or more and obtain a large magnification.

【0036】なお、上記条件式範囲に加えて、さらに以
下の条件式範囲を満足することが望ましい。
It is desirable that the following conditional expression range be satisfied in addition to the above conditional expression range.

【0037】 0.9<| Dcrβ/fl |<4 ・・・・・・(1)’ 上記条件式範囲は、前述の条件式範囲のさらに上限を規
定したものである。条件式範囲の上限を超えると、撮影
レンズを交換して瞳位置が大きく動いたときに光線のケ
ラレ、照度落ちなどの問題が発生するので、結像レンズ
で対応するためには結像レンズをとても大きくしなくて
はならず、コンパクト性に欠けるものになる。
0.9 <| Dcrβ / fl | <4 (1) 'The above conditional expression range further defines the upper limit of the above conditional expression range. Exceeding the upper limit of the conditional expression range causes problems such as vignetting of the light beam and illuminance drop when the pupil position moves greatly after replacing the shooting lens. It has to be very large and lacks compactness.

【0038】また、各実施形態のリレーレンズ光学系の
構成は、結像レンズ群中を透過する光束が一番細くなる
場所の近傍で、結像レンズ中の空気レンズのパワーが最
も強くなっている部分を境にして、物体側を前群、像側
を後群としたときに、以下の条件式(2)を満たすこと
が好ましい。 1.1<| flr/flrf |・・・・(2) 但し、 flr:結像レンズ群の焦点距離 flrf:結像レンズ群前群の焦点距離 である。
Further, in the configuration of the relay lens optical system of each embodiment, the power of the air lens in the imaging lens is maximized near the place where the light flux transmitted through the imaging lens group becomes the thinnest. It is preferable that the following conditional expression (2) be satisfied when the object side is a front group and the image side is a rear group with the part where the boundary is located. 1.1 <| flr / flrf | (2) where flr is the focal length of the imaging lens group. Flrf is the focal length of the front group of the imaging lens group.

【0039】上記条件式範囲は、結像レンズの前群のパ
ワーとリレーレンズ光学系の焦点距離の関係を表してい
る。条件式範囲の下限を超えると、結像レンズの後ろ側
のレンズ径が増大し、コンパクト性を失ってしまい、更
にコンデンサーレンズ群最像側面頂点から結像レンズ群
最物体側面頂点までの光路の折り曲げ方の自由度が減っ
てしまう。
The conditional expression range represents the relationship between the power of the front group of the imaging lens and the focal length of the relay lens optical system. When the lower limit of the conditional expression range is exceeded, the lens diameter on the rear side of the imaging lens increases, the compactness is lost, and furthermore, the optical path from the vertex of the condenser lens group most image side to the vertex of the imaging lens group most object side. The degree of freedom in bending is reduced.

【0040】なお、上記条件式範囲に加えて、さらに以
下の条件式範囲を満足することが望ましい。
It is desirable that the following conditional expression range be satisfied in addition to the conditional expression range.

【0041】1.1<| flr/flrf |<2.5・・・・(2)' 上記条件式範囲は、前述の条件式範囲のさらに上限を規
定したものである。条件式範囲の上限を超えると結像レ
ンズの前側のレンズ径が増大し、コンパクト性を失って
しまい、更にコンデンサーレンズ群最像側面頂点から結
像レンズ群最物体側面頂点までの光路の折り曲げ方の自
由度が減ってしまうと同時に撮影レンズの瞳の近いもの
を取り付けたときに光線のケラレ、照度落ち、非点収差
が発生しやすくなる、などの問題が発生する。
1.1 <| flr / flrf | <2.5 (2) 'The above conditional expression range further defines the upper limit of the conditional expression range. When the value exceeds the upper limit of the conditional expression range, the lens diameter on the front side of the imaging lens increases, the compactness is lost, and how to bend the optical path from the vertex of the condenser lens group most image side to the vertex of the imaging lens group most object side. At the same time, when a lens close to the pupil of the photographing lens is attached, problems such as vignetting of light, illuminance drop, and astigmatism are likely to occur.

【0042】各実施形態のリレーレンズ光学系は、以下
の条件式範囲(3)を満足することが望ましい。 0.7<| flr/flc |<1.5・・・・(3) 但し、 flr:結像レンズの焦点距離、 flcはコンデンサーレンズの焦点距離、である。
It is desirable that the relay lens optical system of each embodiment satisfies the following conditional expression range (3). 0.7 <| flr / flc | <1.5 (3) where flr is the focal length of the imaging lens, and flc is the focal length of the condenser lens.

【0043】上記条件式範囲は、結像レンズの焦点距離
とコンデンサーレンズ群の焦点距離の比をリレーレンズ
光学系の焦点距離で割ることにより一般化したものを表
している。条件式範囲の下限を超えるとコンデンサーレ
ンズ群の屈折率が、リレーレンズ光学系の焦点距離に対
して弱くなるために撮影レンズを交換して瞳位置が大き
く動いたときに光線のケラレ、照度落ちなどの問題が発
生する。条件式範囲の上限を超えると、結像レンズに入
る光線の角度が強くなるので、ワイド系のレンズにな
り、一般的に収差の補正が難しくなる。
The above conditional expression range is generalized by dividing the ratio of the focal length of the imaging lens to the focal length of the condenser lens group by the focal length of the relay lens optical system. If the lower limit of the conditional expression range is exceeded, the refractive index of the condenser lens group becomes weaker with respect to the focal length of the relay lens optical system. And other problems occur. When the value exceeds the upper limit of the conditional expression range, the angle of the light beam entering the imaging lens becomes strong, so that the lens becomes a wide-angle lens, and it is generally difficult to correct aberration.

【0044】各実施形態のリレーレンズ光学系は、以下
の条件式範囲(4)を満足することが望ましい。 0.41<Drelay/Dcr<1 ・・・・・(4) 但し、 Dcr:コンデンサーレンズ群最像側面頂点から結像レン
ズ群最物体側面頂点までの距離、 Drelay:は結像レンズの全長、 である。
It is desirable that the relay lens optical system of each embodiment satisfies the following conditional expression range (4). 0.41 <Drelay / Dcr <1 ································································································································································ (4) where Dcr is the distance from the vertex of the condenser lens group to the vertex of the imaging lens group. .

【0045】上記条件式範囲は、コンデンサーレンズ群
最像側面頂点から結像レンズ群最物体側面頂点までの距
離と結像レンズの全長の比を表したものである。条件式
範囲の下限を超えると結像レンズの全長がコンデンサー
レンズ群最像側面頂点から結像レンズ群最物体側面頂点
までの距離に対して小さくなるために、撮影レンズを交
換して瞳位置が大きく動いたときに光線のケラレ、照度
落ちなどの問題が発生する。条件式範囲の上限を超える
と、コンパクト性を失ってしまう。
The conditional expression range represents the ratio of the distance from the vertex of the most image side surface of the condenser lens group to the vertex of the most object side surface of the imaging lens group and the total length of the imaging lens. Exceeding the lower limit of the conditional expression range causes the overall length of the imaging lens to be smaller than the distance from the vertex of the image side of the condenser lens group to the vertex of the object side of the imaging lens group. When moving greatly, problems such as vignetting of light beams and illuminance drop occur. If the upper limit of the conditional expression range is exceeded, compactness will be lost.

【0046】また、各実施形態のリレーレンズ光学系
は、以下の条件式範囲(6)を満たすことが好ましい。 0.2<| Drelayβ/fl | <1 ・・・・・(5) 但し、 Drelay:結像レンズの全長 fl:リレーレンズ光学系の焦点距離 である。
It is preferable that the relay lens optical system of each embodiment satisfies the following conditional expression range (6). 0.2 <| Drelayβ / fl | <1 ········································································································································· (5)

【0047】上記条件式範囲は、条件式範囲がレンズの
全長とリレー倍率をかけたものとリレーレンズ光学系の
焦点距離の比を表したものである。条件式範囲の下限を
超えると結像レンズの全長とリレー倍率の積がリレーレ
ンズ光学系の焦点距離に対して小さくなるために、撮影
レンズを交換して瞳位置が大きく動いたときに光線のケ
ラレ、照度落ちなどの問題が発生する。条件式範囲の上
限を超えると、コンパクト性を失ってしまう。
The above conditional expression range represents the ratio of the focal length of the relay lens optical system to the value obtained by multiplying the total length of the lens by the relay magnification. If the lower limit of the conditional expression range is exceeded, the product of the total length of the imaging lens and the relay magnification becomes smaller with respect to the focal length of the relay lens optical system. Problems such as vignetting and reduced illumination occur. If the upper limit of the conditional expression range is exceeded, compactness will be lost.

【0048】また、各実施形態のリレーレンズ光学系
は、以下の条件式範囲(6)を満たすことが好ましい。 0.05<| Rmaxβ/fl |<1 ・・・・・(6) 但し、 Rmax:結像レンズの最大有効系 β:リレー倍率 である。
It is preferable that the relay lens optical system of each embodiment satisfies the following conditional expression range (6). 0.05 <| Rmaxβ / fl | <1 (6) where Rmax is the maximum effective system of the imaging lens β is the relay magnification.

【0049】条件式範囲(6)は、結像レンズの最大有
効系とリレー倍率をかけたものとリレーレンズ光学系の
焦点距離の比を表したものである。条件式範囲の下限を
超えると結像レンズの最大有効系とリレー倍率をかけた
もがリレーレンズ光学系の焦点距離に対して小さくなる
ために、撮影レンズを交換して瞳位置が大きく動いたと
きに光線のケラレ、照度落ちなどの問題が発生する。条
件式範囲の上限を超えると、コンパクト性を失ってしま
う。
The conditional expression range (6) expresses the ratio of the focal length of the relay lens optical system to the maximum effective system of the imaging lens multiplied by the relay magnification. When the lower limit of the conditional expression range is exceeded, the maximum effective system of the imaging lens and the relay magnification are multiplied, but the focal length of the relay lens optical system becomes smaller. Occasionally, problems such as vignetting of the light beam and reduced illuminance occur. If the upper limit of the conditional expression range is exceeded, compactness will be lost.

【0050】[0050]

【実施例】以下、本発明に係るリレーレンズ光学系を、
撮影レンズ群を含めてコンストラクションデータ,収差
図等を挙げて、更に具体的に示す。なお、以下に挙げる
実施例1〜4は、前述した第1〜第4の実施形態にそれ
ぞれ対応しており、第1〜第4の実施形態を表すレンズ
配置図は、対応する実施例1〜4のレンズ構成をぞれぞ
れ示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a relay lens optical system according to the present invention will be described.
This will be described more specifically with construction data, aberration diagrams, and the like including the photographing lens group. The following Examples 1 to 4 correspond to the above-described first to fourth embodiments, respectively. The lens arrangement diagrams representing the first to fourth embodiments correspond to the corresponding Examples 1 to 4, respectively. No. 4 shows a lens configuration.

【0051】各実施例において、ri(i=1,2,3,...)は物
体側から数えてi番目の面の曲率半径、di(i=1,2,3...)
は物体側から数えてi番目の軸上面間隔を示し、Ni(i=1,
2,3...),νi(i=1,2,3...)は物体側から数えてi番目の
レンズのd線に対する屈折率,アッベ数を示す。なお、
実施例中の数値データに付された文字Eは、該当する数
値の指数部分を表し、例えば、1.0×10E02であ
れば、1.0×102を示すものとする。
In each embodiment, ri (i = 1, 2, 3,...) Is the radius of curvature of the i-th surface counted from the object side, and di (i = 1, 2, 3,...)
Indicates the i-th axial top surface distance counted from the object side, and Ni (i = 1,
2,3 ...) and νi (i = 1,2,3 ...) indicate the refractive index and Abbe number of the i-th lens from the object side with respect to the d-line. In addition,
The letter E added to the numerical data in the embodiment represents the exponent part of the corresponding numerical value. For example, 1.0 × 10E02 indicates 1.0 × 10 2 .

【0052】なお、2次結像面の前の平行平板は光束分
割用のそれぞれ、プリズム・ローパスフィルタ・フェイ
スプレートである。本発明の実施例は、この例で記載し
ている以外の一眼レフ用交換レンズも使用可能である。
また、光束分割手段はプリズム以外にハーフミラー・ペ
リクルミラー等も活用することができる。
The parallel flat plates in front of the secondary image forming plane are prisms, low-pass filters, and face plates for splitting a light beam. Embodiments of the present invention can use interchangeable lenses for single-lens reflex cameras other than those described in this embodiment.
In addition, a half mirror, a pellicle mirror, or the like can be used as the light beam splitting unit in addition to the prism.

【0053】図5〜図8は、それぞれ前記実施例1〜2
に対応する光路図である。各図は光路を示し、各光路図
は、軸上光と、最軸外光を通したものを示している。
FIGS. 5 to 8 show the first and second embodiments, respectively.
FIG. Each figure shows an optical path, and each optical path diagram shows an optical path passing on-axis light and outermost off-axis light.

【0054】図5において、結像レンズ前群はr16〜r2
2、後群はr23〜r30である。結像レンズで光束がもっと
も細くなるのは、r23近傍であり、r22、r23で囲まれた
空気レンズは結像レンズ中の空気レンズの中でもっとも
パワーが強い。
In FIG. 5, the front group of the imaging lens is r16 to r2.
2. The rear group is r23-r30. In the imaging lens, the light beam becomes narrowest near r23, and the air lens surrounded by r22 and r23 has the strongest power among the air lenses in the imaging lens.

【0055】図6において、結像レンズ前群はr16〜r2
0、後群はr21〜r29である。結像レンズ群で光束がもっ
とも細くなるのは、r21近傍であり、r20、r21で囲まれ
た空気レンズは結像レンズ中の空気レンズの中でもっと
もパワーが強い。
In FIG. 6, the front group of the imaging lens is r16 to r2.
0, rear group is r21 to r29. In the image forming lens group, the light beam becomes narrowest near r21, and the air lens surrounded by r20 and r21 has the strongest power among the air lenses in the image forming lens.

【0056】図7において、結像レンズ前群はr17〜r2
1、後群はr23〜r30である。結像レンズ群で光束がもっ
とも細くなるのは、r23近傍であり、r21、r23で囲まれ
た空気レンズは結像レンズ中の空気レンズの中でもっと
もパワーが強い。
In FIG. 7, the front group of the imaging lens is r17 to r2.
1, the rear group is r23-r30. In the imaging lens group, the light beam becomes the thinnest near r23, and the air lens surrounded by r21 and r23 has the strongest power among the air lenses in the imaging lens.

【0057】図8において、結像レンズ前群はr17〜r2
1、後群はr23〜r30である。結像レンズ群で光束がもっ
とも細くなるのは、r23近傍であり、r21、r23で囲まれ
た空気レンズは結像レンズ中の空気レンズの中でもっと
もパワーが強い。
In FIG. 8, the front group of the imaging lens is r17 to r2.
1, the rear group is r23-r30. In the imaging lens group, the light beam becomes the thinnest near r23, and the air lens surrounded by r21 and r23 has the strongest power among the air lenses in the imaging lens.

【0058】また、各実施例において、撮影レンズ群
(GrS)のベスト像面はコンデンサレンズ群(Gr1)の
最物体側の面頂点から2.35mm物体側へ行った位置であ
る。
In each embodiment, the best image plane of the photographing lens group (GrS) is a position located 2.35 mm from the vertex on the object side of the condenser lens group (Gr1) toward the object side.

【0059】各実施例中、曲率半径に*印を付した面は
非球面で構成された面であることを示し、非球面の面形
状を表す以下の式で定義するものとする。
In each of the embodiments, the surface marked with an asterisk (*) indicates the surface constituted by an aspherical surface, and is defined by the following expression representing the surface shape of the aspherical surface.

【0060】[0060]

【数1】 (Equation 1)

【0061】ここで、 X:光軸と垂直な方向の高さ、 Y:光軸方向の基準面からの変位量、 C:近軸曲率、 ε:2次曲面パラメータ、 Ai:i次式の非球面係数、 である。X: height in the direction perpendicular to the optical axis, Y: displacement amount from the reference plane in the optical axis direction, C: paraxial curvature, ε: secondary curved surface parameter, Ai: i of the following equation The aspheric coefficient,

【0062】 《実施例1》 Fno= 2.8 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1= 67.535 d1= 2.700 N1= 1.74100 ν1= 52.65 r2= -232.627 d2= 0.150 r3= 15.084 d3= 3.250 N2= 1.81554 ν2= 44.36 r4= 28.371 d4= 0.700 r5= 79.470 d5= 1.200 N3= 1.67270 ν3= 32.10 r6= 12.601 d6= 4.057 r7= ∞ d7= 3.200 r8= -14.692 d8= 2.150 N4= 1.78472 ν4= 25.68 r9= -20.601 d9= 0.150 r10=-104.766 d10= 2.400 N5= 1.69680 ν5= 55.53 r11= -19.982 d11=42.916 r12= ∞ d12= 4.000 N6= 1.67000 ν6= 57.07 r13= -74.713 d13= 1.200 r14= 48.544 d14= 4.500 N7= 1.69350 ν7= 50.29 r15= ∞ d15=80.000 r16= 32.500 d16= 3.000 N8= 1.61720 ν8= 54.00 r17= 59.145 d17= 0.150 r18= 17.282 d18= 3.600 N9= 1.85000 ν9= 40.04 r19= 54.944 d19= 0.120 r20= 13.200 d20= 4.000 N10=1.85000 ν10=40.04 r21= 44.197 d21= 0.900 N11=1.75000 ν11=25.14 r22= 8.000 d22= 6.985 r23= -9.622 d23= 3.196 N12=1.75000 ν12=25.14 r24= 33.405 d24= 4.200 r25= -69.312 d25= 3.600 N13=1.80420 ν13=46.50 r26= -24.194 d26= 0.300 r27= 85.357 d27= 5.300 N14=1.69350 ν14=50.29 r28= -28.842 d28= 0.500 r29= 25.161 d29= 4.900 N15=1.69680 ν15=56.47 r30=-422.477 d30= 1.000 r31= ∞ d31=18.000 N16=1.77551 ν16=37.90 r32= ∞ d32= 3.610 N17=1.54426 ν17=69.60 r33= ∞ d33= 1.000 N18=1.51680 ν18=64.20 r34= ∞ d34= 1.200 N19=1.51680 ν19=64.20 r35= ∞ 《実施例2》 Fno= 2.8 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1= 67.535 d1= 2.700 N1= 1.74100 ν1= 52.65 r2= -232.627 d2= 0.150 r3= 15.084 d3= 3.250 N2= 1.81554 ν2= 44.36 r4= 28.371 d4= 0.700 r5= 79.470 d5= 1.200 N3= 1.67270 ν3= 32.10 r6= 12.601 d6= 4.057 r7= ∞ d7= 3.200 r8= -14.692 d8= 2.150 N4= 1.78472 ν4= 25.68 r9= -20.601 d9= 0.150 r10=-104.766 d10= 2.400 N5= 1.69680 ν5= 55.53 r11= -19.982 d11=42.916 r12= ∞ d12= 4.000 N6= 1.69680 ν6= 56.47 r13= -36.608 d13= 1.200 r14= 100.000 d14= 4.500 N7= 1.80500 ν7= 40.97 r15= ∞ d15=80.000 r16*=-21.421 d16= 5.500 N8= 1.64050 ν8= 60.08 r17*=-15.028 d17= 0.120 r18= 14.143 d18= 3.700 N9= 1.80100 ν9= 46.54 r19= 26.175 d19= 0.599 N10=1.79850 ν10=22.60 r20= 21.290 d20= 6.156 r21= -16.941 d21= 1.772 N11=1.76182 ν11=26.55 r22= 20.041 d22= 4.700 r23= -38.298 d23= 3.500 N12=1.67000 ν12=57.07 r24= -16.739 d24= 0.689 r25= 78.394 d25= 4.501 N13=1.67000 ν13=57.07 r26= -23.456 d26= 2.845 N14=1.72000 ν14=54.71 r27= -20.929 d27= 0.174 r28*= 14.861 d28= 6.000 N15=1.67790 ν15=53.38 r29*= 9.803 d29= 4.500 r30= ∞ d30=19.000 N16=1.74400 ν16=44.93 r31= ∞ d31= 4.000 N17=1.54426 ν17=69.60 r32= ∞ d32= 2.000 N18=1.51680 ν18=64.20 r33= ∞ [第16面(r16)の非球面データ] ε= 1.00000 A4= 0.39429E-04 A6= -0.95980E-07 A8= -0.73458E-09 [第17面(r17)の非球面データ] ε= 1.00000 A4= 0.52818E-04 A6= -0.16900E-07 A8= -0.43349E-09 [第28面(r28)の非球面データ] ε= 1.00000 A4= 0.85599E-05 A6= -0.30859E-07 A8= 0.13771E-09 [第29面(r29)の非球面データ] ε= 1.00000 A4= -0.22588E-04 A6= 0.58537E-07 A8= -0.24623E-09 《実施例3》 Fno= 2.8 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1= 67.535 d1= 2.700 N1= 1.74100 ν1= 52.65 r2= -232.627 d2= 0.150 r3= 15.084 d3= 3.250 N2= 1.81554 ν2= 44.36 r4= 28.371 d4= 0.700 r5= 79.470 d5= 1.200 N3= 1.67270 ν3= 32.10 r6= 12.601 d6= 4.057 r7= ∞ d7= 3.200 r8= -14.692 d8= 2.150 N4= 1.78472 ν4= 25.68 r9= -20.601 d9= 0.150 r10=-104.766 d10= 2.400 N5= 1.69680 ν5= 55.53 r11= -19.982 d11=40.570 r12= ∞ d12= 2.350 r13= ∞ d13= 4.000 N6= 1.69680 ν6= 56.47 r14= -75.992 d14= 1.200 r15= 55.556 d15= 4.500 N7= 1.80500 ν7= 40.97 r16= ∞ d16=80.000 r17*= 21.647 d17= 5.500 N8= 1.81100 ν8= 44.86 r18=-1298.819 d18= 0.120 r19= 10.086 d19= 3.700 N9= 1.81100 ν9= 44.86 r20= 14.044 d20= 0.949 N10=1.79850 ν10=22.60 r21= 7.040 d21= 4.050 r22= ∞ d22= 1.890 r23= -16.527 d23= 1.965 N11=1.76182 ν11=26.55 r24= 19.096 d24= 4.500 r25= -64.357 d25= 3.500 N12=1.67000 ν12=57.07 r26= -19.896 d26= 0.503 r27= 50.243 d27= 5.816 N13=1.67000 ν13=57.07 r28= -44.214 d28= 0.500 r29= 26.17 d29= 6.000 N14=1.67000 ν14=57.07 r30*=-209.057 d30= 1.000 r31= ∞ d31=19.000 N15=1.74400 ν15=44.93 r32= ∞ d32= 4.000 N16=1.54426 ν16=69.60 r33= ∞ d33= 2.000 N17=1.51680 ν17=64.20 r34= ∞ [第17面(r17)の非球面データ] ε= 1.00000 A4= -0.40082E-05 A6= -0.92820E-08 A8= 0.39019E-11 [第30面(r30)の非球面データ] ε= 1.00000 A4= -0.25721E-04 A6= 0.10290E-06 A8= -0.25625E-09 《実施例4》 Fno= 2.7 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1= 67.535 d1= 2.700 N1= 1.74100 ν1= 52.65 r2= -232.627 d2= 0.150 r3= 15.084 d3= 3.250 N2= 1.81554 ν2= 44.36 r4= 28.371 d4= 0.700 r5= 79.470 d5= 1.200 N3= 1.67270 ν3= 32.10 r6= 12.601 d6= 4.057 r7= ∞ d7= 3.200 r8= -14.692 d8= 2.150 N4= 1.78472 ν4= 25.68 r9= -20.601 d9= 0.150 r10=-104.766 d10= 2.400 N5= 1.69680 ν5= 55.53 r11= -19.982 d11=40.570 r12= ∞ d12= 2.350 r13= ∞ d13= 4.000 N6= 1.69680 ν6= 56.47 r14= -50.819 d14= 1.200 r15= 74.074 d15= 4.500 N7= 1.80500 ν7= 40.97 r16= ∞ d16=80.000 r17*= 32.078 d17= 5.500 N8= 1.80100 ν8= 46.54 r18*=-86.358 d18= 0.120 r19= 13.386 d19= 3.700 N9= 1.81100 ν9= 44.86 r20= 30.557 d20= 0.917 N10=1.79859 ν10=22.60 r21= 11.557 d21= 3.050 r22= ∞ d22= 2.950 r23= -11.960 d23= 1.875 N11=1.76182 ν11=26.55 r24= 38.729 d24= 4.500 r25= -23.073 d25= 3.900 N12=1.67000 ν12=57.07 r26= -13.848 d26= 0.509 r27= -85.002 d27= 5.845 N13=1.67830 ν13=48.97 r28= -21.617 d28= 0.500 r29*= 25.313 d29= 5.600 N14=1.67790 ν14=53.38 r30*= 79.223 d30= 2.000 r31= ∞ d31=19.000 N15=1.74400 ν15=44.93 r32= ∞ d32= 4.000 N16=1.54426 ν16=69.60 r33= ∞ d33= 2.000 N17=1.51680 ν17=64.20 r34= ∞ [第17面(r17)の非球面データ] ε= 1.00000 A4= 0.24014E-04 A6= 0.25807E-07 A8= -0.47768E-11 [第18面(r18)の非球面データ] ε= 1.00000 A4= 0.27284E-04 A6= -0.25600E-07 A8= -0.78520E-10 [第29面(r29)の非球面データ] ε= 1.00000 A4= -0.14964E-04 A6= -0.56017E-08 A8= 0.16439E-09 [第30面(r30)の非球面データ] ε= 1.00000 A4= −0.24514E−04 A6= 0.61671E−07 A8= −0.70013E−10 図9〜図12は、それぞれ前記実施例1〜4に対応する
収差図である。各図は収差を示し、各収差図は、左から
順に、球面収差、非点収差、歪曲に対応する。球面収差
図において、実線(d)はd線、破線(c)はc線、一点
鎖線(g)はg線に対する球面収差をそれぞれ表す。ま
た、実線(Y)と実線(X)はメリディオナル面とサジタル面
での非点収差をそれぞれ表している。
<< Example 1 >> Fno = 2.8 [Radius of curvature] [Shaft upper surface interval] [Refractive index] [Abbe number] r1 = 67.535 d1 = 2.700 N1 = 1.74100 ν1 = 52.65 r2 = -232.627 d2 = 0.150 r3 = 15.084 d3 = 3.250 N2 = 1.81554 ν2 = 44.36 r4 = 28.371 d4 = 0.700 r5 = 79.470 d5 = 1.200 N3 = 1.67270 ν3 = 32.10 r6 = 12.601 d6 = 4.057 r7 = ∞ d7 = 3.200 r8 = -14.692 d8 = 2.150 N4 = 1.78472 ν4 = 25.68 r9 = -20.601 d9 = 0.150 r10 = -104.766 d10 = 2.400 N5 = 1.69680 ν5 = 55.53 r11 = -19.982 d11 = 42.916 r12 = ∞ d12 = 4.000 N6 = 1.67000 ν6 = 57.07 r13 = -74.713 d13 = 1.200 r14 = 48.544 d14 = 4.500 N7 = 1.69350 ν7 = 50.29 r15 = ∞ d15 = 80.000 r16 = 32.500 d16 = 3.000 N8 = 1.61720 ν8 = 54.00 r17 = 59.145 d17 = 0.150 r18 = 17.282 d18 = 3.600 N9 = 1.85000 ν9 = 40.04 r19 = 54.944 d19 = 0.120 r20 = 13.200 d20 = 4.000 N10 = 1.85000 ν10 = 40.04 r21 = 44.197 d21 = 0.900 N11 = 1.75000 ν11 = 25.14 r22 = 8.000 d22 = 6.985 r23 = -9.622 d23 = 3.196 N12 = 1.75000 ν12 = 25.14 r24 = 33.405 d24 = 4.200 r25 = -69.312 d25 = 3.600 N13 = 1.80420 ν13 = 46.50 r26 = -24.194 d26 = 0.300 r27 = 85.357 d27 = 5.300 N14 = 1.69350 ν14 = 50.29 r28 = -28.842 d28 = 0.500 r29 = 25.161 d29 = 4.900 N15 = 1.69680 ν15 = 56.47 r30 = -422.477 d30 = 1.000 r31 = ∞ d31 = 18.000 N16 = 1.77551 ν16 = 37.90 r32 = ∞ d32 = 3.610 N17 = 1.54426 ν17 = 69.60 r33 = ∞ d33 = 1.000 N18 = 1.51680 ν18 = 64.20 r34 = ∞ d34 = 1.200 N19 = 1.51680 ν19 = 64.20 r35 = ∞ 《Example 2》 Fno = 2.8 [Radius of curvature] ] [Refractive index] [Abbe number] r1 = 67.535 d1 = 2.700 N1 = 1.74100 ν1 = 52.65 r2 = -232.627 d2 = 0.150 r3 = 15.084 d3 = 3.250 N2 = 1.81554 ν2 = 44.36 r4 = 28.371 d4 = 0.700 r5 = 79.470 d5 = 1.200 N3 = 1.67270 ν3 = 32.10 r6 = 12.601 d6 = 4.057 r7 = ∞ d7 = 3.200 r8 = -14.692 d8 = 2.150 N4 = 1.78472 ν4 = 25.68 r9 = -20.601 d9 = 0.150 r10 = -104.766 d10 = 2.400 N5 = 1.69680 ν5 = 55.53 r11 = -19.982 d11 = 42.916 r12 = ∞ d12 = 4.000 N6 = 1.69680 ν6 = 56.47 r13 = -36.608 d13 = 1.200 r14 = 100.000 d14 = 4.500 N7 = 1.80500 ν7 = 40.97 r15 = ∞ d15 = 80.000 r16 * = -21.421 d16 = 5.500 N8 = 1.64050 ν8 = 60.08 r17 * =-15.028 d17 = 0.120 r18 = 14.143 d18 = 3.700 N9 = 1.80100 ν9 = 46.54 r19 = 2 6.175 d19 = 0.599 N10 = 1.79850 ν10 = 22.60 r20 = 21.290 d20 = 6.156 r21 = -16.941 d21 = 1.772 N11 = 1.76182 ν11 = 26.55 r22 = 20.041 d22 = 4.700 r23 = -38.298 d23 = 3.500 N12 = 1.67000 ν12 = 57.07 r24 = -16.739 d24 = 0.689 r25 = 78.394 d25 = 4.501 N13 = 1.67000 ν13 = 57.07 r26 = -23.456 d26 = 2.845 N14 = 1.72000 ν14 = 54.71 r27 = -20.929 d27 = 0.174 r28 * = 14.861 d28 = 6.000 N15 = 1.67790 ν15 = 53.38 r29 * = 9.803 d29 = 4.500 r30 = ∞ d30 = 19.000 N16 = 1.74400 ν16 = 44.93 r31 = ∞ d31 = 4.000 N17 = 1.54426 ν17 = 69.60 r32 = ∞ d32 = 2.000 N18 = 1.51680 ν18 = 64.20 r33 = ∞ Aspherical data of (r16)] ε = 1.00000 A4 = 0.39429E-04 A6 = -0.95980E-07 A8 = -0.73458E-09 [Aspherical data of 17th surface (r17)] ε = 1.00000 A4 = 0.52818E -04 A6 = -0.16900E-07 A8 = -0.43349E-09 [Aspheric data of the 28th surface (r28)] ε = 1.00000 A4 = 0.85599E-05 A6 = -0.30859E-07 A8 = 0.13771E-09 [Aspherical surface data of the 29th surface (r29)] ε = 1.00000 A4 = -0.22588E-04 A6 = 0.58537E-07 A8 = -0.24623E-09 << Example 3 >> Fno = 2.8 [Radius of curvature] [Top surface of shaft] [Interval] [Refractive index] [A Number) r1 = 67.535 d1 = 2.700 N1 = 1.74100 ν1 = 52.65 r2 = -232.627 d2 = 0.150 r3 = 15.084 d3 = 3.250 N2 = 1.81554 ν2 = 44.36 r4 = 28.371 d4 = 0.700 r5 = 79.470 d5 = 1.200 N3 = 1.67270 ν3 = 32.10 r6 = 12.601 d6 = 4.057 r7 = ∞ d7 = 3.200 r8 = -14.692 d8 = 2.150 N4 = 1.78472 ν4 = 25.68 r9 = -20.601 d9 = 0.150 r10 = -104.766 d10 = 2.400 N5 = 1.69680 ν5 = 55.53 r11 =- 19.982 d11 = 40.570 r12 = ∞ d12 = 2.350 r13 = ∞ d13 = 4.000 N6 = 1.69680 ν6 = 56.47 r14 = -75.992 d14 = 1.200 r15 = 55.556 d15 = 4.500 N7 = 1.80500 ν7 = 40.97 r16 = ∞ d16 = 80.000 r17 * = 21.647 d17 = 5.500 N8 = 1.81100 ν8 = 44.86 r18 = -1298.819 d18 = 0.120 r19 = 10.086 d19 = 3.700 N9 = 1.81100 ν9 = 44.86 r20 = 14.044 d20 = 0.949 N10 = 1.79850 ν10 = 22.60 r21 = 7.040 d21 = 4.050 r22 = d22 = 1.890 r23 = -16.527 d23 = 1.965 N11 = 1.76182 ν11 = 26.55 r24 = 19.096 d24 = 4.500 r25 = -64.357 d25 = 3.500 N12 = 1.67000 ν12 = 57.07 r26 = -19.896 d26 = 0.503 r27 = 50.243 d27 = 5.816 N13 = 1.67000 ν13 = 57.07 r28 = -44.214 d28 = 0.500 r29 = 26.17 d29 = 6.000 N14 = 1.67000 ν14 = 57.07 r30 * =-209.057 d30 = 1.0 00 r31 = ∞ d31 = 19.000 N15 = 1.74400 ν15 = 44.93 r32 = ∞ d32 = 4.000 N16 = 1.54426 ν16 = 69.60 r33 = ∞ d33 = 2.000 N17 = 1.51680 ν17 = 64.20 r34 = ∞ (The 17th surface (r17) aspheric surface Data] ε = 1.00000 A4 = -0.40082E-05 A6 = -0.92820E-08 A8 = 0.39019E-11 [Aspheric data of the 30th surface (r30)] ε = 1.00000 A4 = -0.25721E-04 A6 = 0.10290 E-06 A8 = -0.25625E-09 << Example 4 >> Fno = 2.7 [Radius of curvature] [Spacing of the upper surface of the shaft] [Refractive index] [Abbe number] r1 = 67.535 d1 = 2.700 N1 = 1.74100 ν1 = 52.65 r2 =- 232.627 d2 = 0.150 r3 = 15.084 d3 = 3.250 N2 = 1.81554 ν2 = 44.36 r4 = 28.371 d4 = 0.700 r5 = 79.470 d5 = 1.200 N3 = 1.67270 ν3 = 32.10 r6 = 12.601 d6 = 4.057 r7 = ∞ d7 = 3.200 r8 = -14.692 d8 = 2.150 N4 = 1.78472 ν4 = 25.68 r9 = -20.601 d9 = 0.150 r10 = -104.766 d10 = 2.400 N5 = 1.69680 ν5 = 55.53 r11 = -19.982 d11 = 40.570 r12 = ∞ d12 = 2.350 r13 = ∞ d13 = 4.000 N6 = 1.69680 ν6 = 56.47 r14 = -50.819 d14 = 1.200 r15 = 74.074 d15 = 4.500 N7 = 1.80500 ν7 = 40.97 r16 = ∞ d16 = 80.000 r17 * = 32.078 d17 = 5.500 N8 = 1.80100 ν8 = 46.54 r18 * =-86.358 d18 = 0.12 0 r19 = 13.386 d19 = 3.700 N9 = 1.81100 ν9 = 44.86 r20 = 30.557 d20 = 0.917 N10 = 1.79859 ν10 = 22.60 r21 = 11.557 d21 = 3.050 r22 = ∞ d22 = 2.950 r23 = -11.960 d23 = 1.875 N11 = 1.76182 ν11 = 26.55 r24 = 38.729 d24 = 4.500 r25 = -23.073 d25 = 3.900 N12 = 1.67000 ν12 = 57.07 r26 = -13.848 d26 = 0.509 r27 = -85.002 d27 = 5.845 N13 = 1.67830 ν13 = 48.97 r28 = -21.617 d28 = 0.500 r29 * = 25.313 d29 = 5.600 N14 = 1.67790 ν14 = 53.38 r30 * = 79.223 d30 = 2.000 r31 = ∞ d31 = 19.000 N15 = 1.74400 ν15 = 44.93 r32 = ∞ d32 = 4.000 N16 = 1.54426 ν16 = 69.60 r33 = ∞ d33 = 2.000 N17 = 1.51680 ν17 = 64.20 r34 = ∞ [Aspherical surface data of 17th surface (r17)] ε = 1.00000 A4 = 0.24014E-04 A6 = 0.25807E-07 A8 = -0.47768E-11 [Aspherical surface data of 18th surface (r18)] ] ε = 1.00000 A4 = 0.27284E-04 A6 = -0.25600E-07 A8 = -0.78520E-10 [Aspheric surface data of the 29th surface (r29)] ε = 1.00000 A4 = -0.14964E-04 A6 = -0.56017 E-08 A8 = 0.16439E-09 [Aspherical surface data of surface 30 (r30)] ε = 1.0000 A4 = −0.24514E-04 A6 = 0.61671E −07 A8 = −0.70013E−10 FIGS. 9 to 12 are aberration diagrams corresponding to Examples 1 to 4, respectively. Each diagram shows aberration, and each aberration diagram corresponds to spherical aberration, astigmatism, and distortion in order from the left. In the spherical aberration diagram, the solid line (d) represents the d-line, the broken line (c) represents the c-line, and the dashed line (g) represents the spherical aberration with respect to the g-line. The solid line (Y) and the solid line (X) represent astigmatism on the meridional surface and the sagittal surface, respectively.

【0063】実施例1〜実施例4は、前記条件式(1)乃
至(6)を満足する。以下の表に、実施例1〜実施例4に
おける前記条件式(1)乃至(6)に対応する値を示す。
The first to fourth embodiments satisfy the conditional expressions (1) to (6). The following table shows values corresponding to the conditional expressions (1) to (6) in Examples 1 to 4.

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【発明の効果】以上説明したように本発明によれば、多
種の交換レンズが使用可能で、コンデンサーレンズ群最
像側面頂点から結像レンズ群最物体側面頂点まで距離の
長い、つまり折り曲げて使用する自由度の増えた、小型
で、高性能なリレーレンズ光学系を提供することができ
る。
As described above, according to the present invention, various kinds of interchangeable lenses can be used, and the distance from the vertex of the condenser lens group most image side to the vertex of the imaging lens group most object side is long. It is possible to provide a small, high-performance relay lens optical system having an increased degree of freedom in performing the operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のレンズ構成図FIG. 1 is a lens configuration diagram of a first embodiment.

【図2】実施例2のレンズ構成図FIG. 2 is a lens configuration diagram of a second embodiment.

【図3】実施例3のレンズ構成図FIG. 3 is a lens configuration diagram of a third embodiment.

【図4】実施例4のレンズ構成図FIG. 4 is a lens configuration diagram of a fourth embodiment.

【図5】実施例1の光路図FIG. 5 is an optical path diagram of the first embodiment.

【図6】実施例2の光路図FIG. 6 is an optical path diagram according to a second embodiment.

【図7】実施例3の光路図FIG. 7 is an optical path diagram of a third embodiment.

【図8】実施例4の光路図FIG. 8 is an optical path diagram of a fourth embodiment.

【図9】実施例1の収差図FIG. 9 is an aberration diagram of the first embodiment.

【図10】実施例2の収差図FIG. 10 is an aberrational diagram of the second embodiment.

【図11】実施例3の収差図FIG. 11 is an aberration diagram of the third embodiment.

【図12】実施例4の収差図FIG. 12 is an aberrational diagram of the fourth embodiment.

【図13】撮影レンズ群とリレーレンズ光学系の説明
図。
FIG. 13 is an explanatory diagram of a photographing lens group and a relay lens optical system.

【図14】撮影レンズ群とリレーレンズ光学系の斜視
図。
FIG. 14 is a perspective view of a photographing lens group and a relay lens optical system.

【符号の説明】[Explanation of symbols]

GrS ・・・撮影レンズ群 Gr1 ・・・コンデンサーレンズ群 Gr2 ・・・結像レンズ群 GrS ・ ・ ・ Shooting lens group Gr1 ・ ・ ・ Condenser lens group Gr2 ・ ・ ・ Imaging lens group

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1次像を2次像として再結像させるリレ
ーレンズ光学系であって、1次像面側から順に、 正のパワーを持つコンデンサーレンズ群と、正のパワー
を持つ結像レンズ群と、から構成され、以下の条件を満
足することを特徴とするリレーレンズ光学系; 0.9<| Dcr・β/fl| 但し、 Dcr :前記コンデンサーレンズ群最像側面頂点から結像
レンズ群最物体側面頂点までの距離、 β:リレー倍率、 fl:全系の焦点距離、 である。
1. A relay lens optical system for re-imaging a primary image as a secondary image, comprising: a condenser lens group having a positive power and an imaging having a positive power in order from the primary image surface side. 0.9 <| Dcr · β / fl |, where Dcr is the lens group of the condenser lens group and the imaging lens group from the vertex of the most image side surface of the condenser lens group, and satisfies the following condition: Distance to the vertex of the side of the object, β: relay magnification, fl: focal length of the whole system.
【請求項2】 1次像を2次像として再結像させるリレ
ーレンズ光学系であって、1次像面側から順に、 正のパワーを持つコンデンサーレンズ群と、正のパワー
を持つ結像レンズ群と、から構成され、以下の条件を満
足することを特徴とするリレーレンズ光学系; 0.7<| flr/flc | 但し、 flr:結像レンズ群の焦点距離 flc:コンデンサーレンズ群の焦点距離 である。
2. A relay lens optical system for re-imaging a primary image as a secondary image, comprising a condenser lens group having a positive power and an imaging having a positive power in order from the primary image surface side. 0.7 <| flr / flc | where, flr: focal length of the imaging lens group, flc: focal length of the condenser lens group, comprising: a lens group and satisfying the following conditions: It is.
【請求項3】 前記結像レンズ群は、1次像面側から順
に、前群と後群とから構成されるとともに、以下の条件
を満足することを特徴とする請求項1または2記載のリ
レーレンズ光学系; 1.1<| flr/flrf | 但し、 flr:結像レンズ群の焦点距離 flrf:結像レンズ群前群の焦点距離 である。
3. The imaging lens group according to claim 1, wherein the imaging lens group includes a front group and a rear group in order from the primary image surface side, and satisfies the following conditions. Relay lens optical system; 1.1 <| flr / flrf | where, flr: focal length of the imaging lens group flrf: focal length of the front group of the imaging lens group
JP13227397A 1997-05-22 1997-05-22 Relay lens optical system Pending JPH10319314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13227397A JPH10319314A (en) 1997-05-22 1997-05-22 Relay lens optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13227397A JPH10319314A (en) 1997-05-22 1997-05-22 Relay lens optical system

Publications (1)

Publication Number Publication Date
JPH10319314A true JPH10319314A (en) 1998-12-04

Family

ID=15077434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13227397A Pending JPH10319314A (en) 1997-05-22 1997-05-22 Relay lens optical system

Country Status (1)

Country Link
JP (1) JPH10319314A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400515B1 (en) 1999-02-01 2002-06-04 Minolta Co., Ltd. Taking optical system, image taking apparatus, and method for converting frame-format in a taking optical system
WO2006018885A1 (en) * 2004-08-19 2006-02-23 Mitsubishi Denki Kabushiki Kaisha Imaging optical system and camera having same
WO2015170745A1 (en) * 2014-05-09 2015-11-12 株式会社ニコン Erecting unit magnification relay lens and camera system
JP2019061190A (en) * 2017-09-28 2019-04-18 富士フイルム株式会社 Imaging optical system, projection display device, and imaging device
CN110967805A (en) * 2018-09-30 2020-04-07 南昌欧菲精密光学制品有限公司 Optical camera lens assembly, image capturing module and electronic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400515B1 (en) 1999-02-01 2002-06-04 Minolta Co., Ltd. Taking optical system, image taking apparatus, and method for converting frame-format in a taking optical system
WO2006018885A1 (en) * 2004-08-19 2006-02-23 Mitsubishi Denki Kabushiki Kaisha Imaging optical system and camera having same
WO2015170745A1 (en) * 2014-05-09 2015-11-12 株式会社ニコン Erecting unit magnification relay lens and camera system
JPWO2015170745A1 (en) * 2014-05-09 2017-04-20 株式会社ニコン Inverted 1x relay lens, camera system, adapter and optical equipment
US10281693B2 (en) 2014-05-09 2019-05-07 Nikon Corporation Inverted equal-magnification relay lens and camera system
JP2019061190A (en) * 2017-09-28 2019-04-18 富士フイルム株式会社 Imaging optical system, projection display device, and imaging device
US10871638B2 (en) 2017-09-28 2020-12-22 Fujifilm Corporation Imaging optical system, projection display device, and imaging apparatus
CN110967805A (en) * 2018-09-30 2020-04-07 南昌欧菲精密光学制品有限公司 Optical camera lens assembly, image capturing module and electronic device

Similar Documents

Publication Publication Date Title
JP4845502B2 (en) Optical system and optical apparatus having the same
JP3433734B2 (en) Imaging lens device
US7196852B2 (en) Zoom lens system and image pickup device having zoom lens system
US6972909B2 (en) Zoom lens and image pickup apparatus having the same
JP4829586B2 (en) Zoom lens and imaging apparatus having the same
EP1265091A2 (en) Zoom lens and camera having the same
JP2002098893A (en) Imaging lens device
JP2001350093A (en) Image pickup lens device
JP3417396B2 (en) Imaging lens device
JP2001343588A (en) Image pickup lens device
US7199942B2 (en) Zoom lens system and image pickup apparatus including the zoom lens system
JPH0850244A (en) Zoom lens having high variable power ratio
JP4971632B2 (en) Zoom lens and imaging apparatus having the same
JPH11119101A (en) Zoom lens system
JP2003287680A (en) Image pickup lens device
JP4908887B2 (en) Fish eye attachment
JP3144191B2 (en) Zoom lens
JP2000121932A (en) Photographic optical system and reduction optical system
JP2002072091A (en) Zoom lens
JPH11352400A (en) Zoom lens system
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
US4618219A (en) Zoom lens
US6813091B2 (en) Zoom lens system and photographing apparatus having the same
JP2000221402A (en) Lens optical system
JPH10319314A (en) Relay lens optical system