JP2003287680A - Image pickup lens device - Google Patents

Image pickup lens device

Info

Publication number
JP2003287680A
JP2003287680A JP2002090302A JP2002090302A JP2003287680A JP 2003287680 A JP2003287680 A JP 2003287680A JP 2002090302 A JP2002090302 A JP 2002090302A JP 2002090302 A JP2002090302 A JP 2002090302A JP 2003287680 A JP2003287680 A JP 2003287680A
Authority
JP
Japan
Prior art keywords
group
lens
positive
object side
conditional expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002090302A
Other languages
Japanese (ja)
Inventor
Mamoru Terada
守 寺田
Hiroyuki Matsumoto
博之 松本
Naoki Hirose
直樹 広瀬
Tetsuya Arimoto
哲也 有本
Yoshito Iwazawa
嘉人 岩澤
Tetsuo Kono
哲生 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2002090302A priority Critical patent/JP2003287680A/en
Publication of JP2003287680A publication Critical patent/JP2003287680A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image pickup lens device equipped with a compact high variable power zoom lens system having high performance. <P>SOLUTION: The zoom lens system constituting the image pickup lens device consists of a 1st group (Gr1) having positive power, a 2nd group (Gr2) having negative power, a 3rd group (Gr3) having negative power, a 4th group (Gr4) having positive power, a 5th group (Gr5) having positive power and a 6th group (Gr6) having positive power in order from an object side, and the 1st group (Gr1) or the like is moved in the case of variable power and the 6th group (Gr6) is a fixed group. It satisfies a conditional expression (1): -3.0<f23W/fW<-0.9 äf23W: the focal distance of a composite system of the 2nd group (Gr2) and the 3rd group (Gr3) at a wide end (W), and fW: the focal distance of the entire zoom lens system at the wide end (W)}. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は撮像レンズ装置に関
するものであり、特に被写体の映像を光学系により光学
的に取り込んで撮像素子により電気的な信号として出力
する撮像レンズ装置{例えば、デジタルカメラ;ビデオ
カメラ;デジタルビデオユニット,パーソナルコンピュ
ータ,モバイルコンピュータ,携帯電話,携帯情報端末
(PDA:Personal Digital Assistant)等に内蔵又は外
付けされるカメラの主たる構成要素}、なかでも小型で
高変倍のズームレンズ系を備えた撮像レンズ装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup lens device, and more particularly, to an image pickup lens device for optically capturing an image of a subject by an optical system and outputting it as an electric signal by an image pickup device (for example, a digital camera; Video camera; digital video unit, personal computer, mobile computer, mobile phone, personal digital assistant
(Principal components of a camera built in or attached to a (PDA: Personal Digital Assistant) or the like}, and particularly to an imaging lens device having a small and highly variable zoom lens system.

【0002】[0002]

【従来の技術】近年、パーソナルコンピュータの普及に
伴い、手軽に画像を取り込むことのできるデジタルカメ
ラが普及しつつある。このため、より高変倍のデジタル
カメラが求められるようになってきており、撮影レンズ
系にもより一層の小型化・高変倍化が要望されている。
その一方で、撮像素子の画素数が年々増加の傾向にある
ため、より高性能な撮影レンズ系が求められている。
2. Description of the Related Art In recent years, along with the widespread use of personal computers, digital cameras capable of easily capturing images have become widespread. For this reason, digital cameras with higher zoom ratios have been demanded, and further miniaturization and high zoom ratios have been demanded for the taking lens system.
On the other hand, the number of pixels of the image pickup element tends to increase year by year, so that a higher-performance taking lens system is required.

【0003】[0003]

【発明が解決しようとする課題】したがって、小型化・
高変倍化と高性能化という相反する要求に応えていく必
要があるが、従来より知られているズームレンズ系で
は、これらの要求に充分応えることができない。
Therefore, miniaturization and
It is necessary to meet the contradictory demands for high zoom ratio and high performance, but conventionally known zoom lens systems cannot sufficiently meet these demands.

【0004】本発明はこのような状況に鑑みてなされた
ものであって、高性能で小型・高変倍のズームレンズ系
を備えた撮像レンズ装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an image pickup lens device having a high-performance, small-sized, high-magnification zoom lens system.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明の撮像レンズ装置は、複数の群から成り
各群の間隔を変化させることにより変倍を行うズームレ
ンズ系と、そのズームレンズ系により形成された光学像
を電気的な信号に変換する撮像素子と、を備えた撮像レ
ンズ装置であって、前記ズームレンズ系が、物体側から
順に、正のパワーを有する第1群と、負のパワーを有す
る第2群と、第3群と、正のパワーを有する第4群と、
正のパワーを有する第5群と、を備え、変倍の際に少な
くとも前記第1群が移動し、以下の条件式(1)を満足す
ることを特徴とする。 -3.0<f23W/fW<-0.9 …(1) ただし、 f23W:ワイド端での第2群と第3群との合成系の焦点距
離、 fW:ワイド端でのズームレンズ系全体の焦点距離、 である。
In order to achieve the above object, the image pickup lens device of the first invention comprises a zoom lens system which is composed of a plurality of groups and which performs zooming by changing the interval between the groups. An image pickup lens device comprising: an image pickup device that converts an optical image formed by the zoom lens system into an electrical signal, wherein the zoom lens system has positive power in order from the object side. A group, a second group having negative power, a third group, and a fourth group having positive power,
And a fifth group having a positive power, at least the first group moves during zooming, and the following conditional expression (1) is satisfied. -3.0 <f23W / fW <-0.9 (1) However, f23W: focal length of the combined system of the second group and the third group at the wide end, fW: focal length of the entire zoom lens system at the wide end, Is.

【0006】第2の発明の撮像レンズ装置は、上記第1
の発明の構成において、前記第5群の移動によりフォー
カシングを行うことを特徴とする。
An image pickup lens device according to a second invention is the above-mentioned first lens device.
In the configuration of the invention described above, the focusing is performed by moving the fifth group.

【0007】第3の発明の撮像レンズ装置は、複数の群
から成り各群の間隔を変化させることにより変倍を行う
ズームレンズ系と、そのズームレンズ系により形成され
た光学像を電気的な信号に変換する撮像素子と、を備え
た撮像レンズ装置であって、前記ズームレンズ系が、物
体側から順に、正のパワーを有する第1群と、負のパワ
ーを有する第2群と、負のパワーを有する第3群と、変
倍の際に固定の最終群と、を備え、変倍の際に少なくと
も前記第1群が移動し、以下の条件式(1)を満足するこ
とを特徴とする。 -3.0<f23W/fW<-0.9 …(1) ただし、 f23W:ワイド端での第2群と第3群との合成系の焦点距
離、 fW:ワイド端でのズームレンズ系全体の焦点距離、 である。
The image pickup lens device of the third invention is composed of a plurality of groups and performs zooming by changing the distance between the groups, and an optical image formed by the zoom lens system electrically. An image pickup lens device comprising an image pickup device for converting into a signal, wherein the zoom lens system has, in order from the object side, a first group having a positive power, a second group having a negative power, and a negative group. A third group having a power of 1 and a final group that is fixed during zooming, and at least the first group moves during zooming and satisfies the following conditional expression (1): And -3.0 <f23W / fW <-0.9 (1) However, f23W: focal length of the combined system of the second group and the third group at the wide end, fW: focal length of the entire zoom lens system at the wide end, Is.

【0008】第4の発明の撮像レンズ装置は、上記第
1,第2又は第3の発明の構成において、さらに以下の
条件式(2)を満足することを特徴とする。 0.03<fW/f1<0.14 …(2) ただし、 f1:第1群の焦点距離、 である。
The image pickup lens device of the fourth invention is characterized in that, in the constitution of the first, second or third invention, the following conditional expression (2) is further satisfied. 0.03 <fW / f1 <0.14 (2) where f1 is the focal length of the first lens unit.

【0009】第5の発明の撮像レンズ装置は、上記第
1,第2,第3又は第4の発明の構成において、さらに
以下の条件式(3)を満足することを特徴とする。 -0.285<f23W/|f3|<-0.001 …(3) ただし、 f3:第3群の焦点距離、 である。
The imaging lens device of the fifth invention is characterized in that, in the constitution of the first, second, third or fourth invention, the following conditional expression (3) is further satisfied. -0.285 <f23W / | f3 | <-0.001 (3) where f3 is the focal length of the third lens unit.

【0010】[0010]

【発明の実施の形態】以下、本発明を実施した撮像レン
ズ装置を、図面を参照しつつ説明する。被写体の映像を
光学的に取り込んで電気的な信号として出力する撮像レ
ンズ装置は、被写体の静止画撮影や動画撮影に用いられ
るカメラ{例えば、デジタルカメラ;ビデオカメラ;デ
ジタルビデオユニット,パーソナルコンピュータ,モバ
イルコンピュータ,携帯電話,携帯情報端末(PDA)等
に内蔵又は外付けされるカメラ}の主たる構成要素であ
る。その撮像レンズ装置は、例えば図11に示すよう
に、物体(被写体)側から順に、物体の光学像を形成する
撮影レンズ系(TL)と、光学的ローパスフィルター等に相
当する平行平面板(PL)と、撮影レンズ系(TL)により形成
された光学像を電気的な信号に変換する撮像素子(SR)
と、で構成される。
DETAILED DESCRIPTION OF THE INVENTION An image pickup lens device embodying the present invention will be described below with reference to the drawings. An imaging lens device that optically captures an image of a subject and outputs it as an electrical signal is a camera used for capturing a still image or a moving image of a subject (for example, digital camera; video camera; digital video unit, personal computer, mobile). It is a main component of a camera built in or attached to a computer, a mobile phone, a personal digital assistant (PDA), or the like. For example, as shown in FIG. 11, the image pickup lens device includes a taking lens system (TL) that forms an optical image of an object and a plane parallel plate (PL) that corresponds to an optical low-pass filter and the like in order from the object (subject) side. ) And an image sensor (SR) that converts the optical image formed by the taking lens system (TL) into an electrical signal
It consists of and.

【0011】後述する各実施の形態では、複数の群から
成るズームレンズ系が撮影レンズ系(TL)として用いら
れ、複数の群が光軸(AX)に沿って移動し、各群の間隔を
変化させることにより変倍(すなわちズーミング)が行わ
れる。撮像素子(SR)としては、例えば複数の画素から成
るCCD(Charge Coupled Device)やCMOS(Compleme
ntary Metal Oxide Semiconductor)センサー等の固体撮
像素子が用いられ、ズームレンズ系により形成された光
学像が撮像素子(SR)により電気的な信号に変換される。
In each of the embodiments described later, a zoom lens system composed of a plurality of groups is used as a taking lens system (TL), the plurality of groups move along the optical axis (AX), and the distance between the groups is reduced. Magnification (that is, zooming) is performed by changing. The image sensor (SR) is, for example, a CCD (Charge Coupled Device) or a CMOS (Compleme
A solid-state image sensor such as a ntary metal oxide semiconductor) sensor is used, and an optical image formed by the zoom lens system is converted into an electrical signal by the image sensor (SR).

【0012】またズームレンズ系で形成されるべき光学
像は、撮像素子(SR)の画素ピッチにより決定される所定
の遮断周波数特性を有する光学的ローパスフィルター
{平行平面板(PL)から成る。}を通過することにより、電
気的な信号に変換される際に発生するいわゆる折り返し
ノイズが最小化されるように、空間周波数特性が調整さ
れる。光学的ローパスフィルターとしては、例えば所定
の結晶軸方向が調整された水晶等を材料とする複屈折型
ローパスフィルターや、必要とされる光学的な遮断周波
数特性を回折効果により達成する位相型ローパスフィル
ター等が適用可能である。撮像素子(SR)で生成した信号
は、必要に応じて所定のデジタル画像処理や画像圧縮処
理等が施されてデジタル映像信号としてメモリー(半導
体メモリー,光ディスク等)に記録されたり、場合によ
ってはケーブルを介したり赤外線信号に変換されたりし
て他の機器に伝送される。
The optical image to be formed by the zoom lens system is an optical low-pass filter having a predetermined cutoff frequency characteristic determined by the pixel pitch of the image sensor (SR).
{Consisting of parallel plane plates (PL). The spatial frequency characteristic is adjusted so that the so-called aliasing noise generated when the signal is converted into an electrical signal is minimized by passing the signal. As the optical low-pass filter, for example, a birefringent low-pass filter made of crystal or the like with a predetermined crystal axis direction adjusted, or a phase-type low-pass filter that achieves a required optical cutoff frequency characteristic by a diffraction effect. Etc. are applicable. The signal generated by the image sensor (SR) is subjected to predetermined digital image processing, image compression processing, etc. as necessary and recorded in a memory (semiconductor memory, optical disk, etc.) as a digital video signal, or in some cases, a cable. And is transmitted to other equipment via an infrared signal or converted into an infrared signal.

【0013】なお、図11に示す撮像レンズ装置では、
撮影レンズ系(TL)によって拡大側(共役長の長い側)の被
写体から縮小側(共役長の短い側)の撮像素子(SR)への縮
小投影が行われるが、撮像素子(SR)の代わりに2次元画
像を表示する表示素子(例えば液晶表示素子)を用い、撮
影レンズ系(TL)を投影レンズ系として使用すれば、縮小
側の画像表示面から拡大側のスクリーン面への拡大投影
を行う画像投影装置を構成することができる。つまり、
以下に説明する各実施の形態のズームレンズ系は、撮影
レンズ系(TL)としての使用に限らず、投影レンズ系とし
ても好適に使用することが可能である。
In the image pickup lens device shown in FIG.
The shooting lens system (TL) performs reduction projection from the object on the enlargement side (long side with long conjugate length) to the image sensor (SR) on the reduction side (short side with conjugate length), but instead of the image sensor (SR). By using a display element (for example, a liquid crystal display element) that displays a two-dimensional image and using the taking lens system (TL) as a projection lens system, the enlarged projection from the image display surface on the reduction side to the screen surface on the enlargement side can be performed. It is possible to configure an image projection device that performs the operation. That is,
The zoom lens system of each embodiment described below can be suitably used not only as the taking lens system (TL) but also as the projection lens system.

【0014】図1〜図5は、第1〜第5の実施の形態を
構成するズームレンズ系にそれぞれ対応するレンズ構成
図であり、ワイド端(W)でのレンズ配置を光学断面で示
している。各レンズ構成図中の矢印mj(j=1,2,...)は、
ワイド端(W)からテレ端(T)へのズーミングにおける第j
群(Grj)等の移動をそれぞれ模式的に示している。ただ
し、可動群は第1群(Gr1)〜第5群(Gr5)であり、m6はす
べてズーム位置固定を示している{図2中のm6は平行平
面板(PL)のみのズーム位置固定を示している。}。ま
た、各レンズ構成図中、ri(i=1,2,3,...)が付された面
は物体側から数えてi番目の面であり、riに*印が付され
た面は非球面である。di(i=1,2,3,...)が付された軸上
面間隔は、物体側から数えてi番目の軸上面間隔のう
ち、ズーミングにおいて変化する可変間隔である。
1 to 5 are lens configuration diagrams respectively corresponding to the zoom lens systems constituting the first to fifth embodiments, showing the lens arrangement at the wide end (W) in optical cross section. There is. The arrows mj (j = 1,2, ...) in each lens configuration diagram
Jth in zooming from wide end (W) to tele end (T)
The movements of the group (Grj) and the like are schematically shown. However, the movable groups are the first group (Gr1) to the fifth group (Gr5), and m6 indicates that the zoom position is fixed (m6 in FIG. 2 is fixed to the parallel plane plate (PL) only). Shows. }. Also, in each lens configuration diagram, the surface marked ri (i = 1,2,3, ...) is the i-th surface counted from the object side, and the surface marked * for ri is It is an aspherical surface. The axial upper surface spacing marked with di (i = 1,2,3, ...) is a variable spacing that changes during zooming among the i-th axial upper surface spacing counted from the object side.

【0015】各実施の形態のズームレンズ系はいずれ
も、物体側から順に、正のパワーを有する第1群(Gr1)
と、負のパワーを有する第2群(Gr2)と、負又は弱い正
のパワーを有する第3群(Gr3)と、正のパワーを有する
第4群(Gr4)と、正のパワーを有する第5群(Gr5)と、を
少なくとも備えており、各群の間隔を変化させることに
よりズーミングを行い、その際に少なくとも第1群(Gr
1)が移動するタイプのズームレンズである。そして、C
CD等の撮像素子(SR)を備えたカメラ(例えばデジタル
カメラ)に用いられるズームレンズ系として、その像側
には光学的ローパスフィルター,撮像素子(SR)のカバー
ガラス等に相当するガラス製の平行平面板(PL)が配置さ
れている。いずれの実施の形態においても、平行平面板
(PL)はズーミングにおいて位置固定であり、また、第4
群(Gr4)は最も物体側に絞り(ST)を含んでいる。各実施
の形態のレンズ構成を更に詳しく以下に説明する。
In each of the zoom lens systems of the respective embodiments, the first group (Gr1) having positive power is arranged in order from the object side.
A second group (Gr2) having negative power, a third group (Gr3) having negative or weak positive power, a fourth group (Gr4) having positive power, and a fourth group having positive power. At least five groups (Gr5) are provided, and zooming is performed by changing the interval of each group, and at that time, at least the first group (Gr5)
1) is a moving type zoom lens. And C
As a zoom lens system used in a camera (for example, a digital camera) equipped with an image sensor (SR) such as a CD, an optical low-pass filter on the image side, a glass corresponding to a cover glass of the image sensor (SR), etc. A plane parallel plate (PL) is arranged. In any of the embodiments, the plane parallel plate
(PL) is a fixed position for zooming, and
The group (Gr4) includes the stop (ST) closest to the object side. The lens configuration of each embodiment will be described in more detail below.

【0016】《第1の実施の形態(図1)》第1の実施の
形態のズームレンズ系は正・負・負・正・正・正の6群
ズームレンズであり、各群は物体側から順に以下のよう
に構成されている。第1群(Gr1)は、物体側に凸の負メ
ニスカスレンズと、物体側に凸の正メニスカスレンズ2
枚と、で構成されている。第2群(Gr2)は、物体側に凸
の負メニスカスレンズ(物体側面が非球面)と、両凹の負
レンズと、両凸の正レンズと、で構成されている。第3
群(Gr3)は、両凹の負レンズと、両凸の正レンズと、で
構成されている。第4群(Gr4)は、絞り(ST)、前群(Gr4
F)及び後群(Gr4R)から成っている。前群(Gr4F)は、両凸
の正レンズと、両凸の正レンズ及び両凹の負レンズから
成る接合負レンズと、で構成されており、後群(Gr4R)
は、両凸の正レンズ(物体側面が非球面)と、両凸の正レ
ンズと、両凹の負レンズと、で構成されている。第5群
(Gr5)は、物体側に凸の正メニスカスレンズ2枚で構成
されている。最終群である第6群(Gr6)は、物体側に凸
の正メニスカスレンズ1枚から成り、ズーミングにおい
て位置固定である。
<< First Embodiment (FIG. 1) >> The zoom lens system of the first embodiment is a positive, negative, negative, positive, positive, positive 6-group zoom lens, and each group is on the object side. It is configured as follows in order from. The first group (Gr1) includes a negative meniscus lens convex on the object side and a positive meniscus lens 2 convex on the object side.
It consists of a sheet and. The second group (Gr2) is composed of a negative meniscus lens convex to the object side (object side surface is aspherical surface), a biconcave negative lens, and a biconvex positive lens. Third
The group (Gr3) is composed of a biconcave negative lens and a biconvex positive lens. The fourth group (Gr4) is a diaphragm (ST), the front group (Gr4)
F) and the rear group (Gr4R). The front group (Gr4F) is composed of a biconvex positive lens, and a cemented negative lens composed of a biconvex positive lens and a biconcave negative lens, and a rear group (Gr4R).
Is composed of a biconvex positive lens (aspherical surface on the object side), a biconvex positive lens, and a biconcave negative lens. 5th group
(Gr5) is composed of two positive meniscus lenses having a convex surface on the object side. The sixth lens group (Gr6), which is the last lens group, is composed of one positive meniscus lens element convex to the object side, and its position is fixed during zooming.

【0017】《第2の実施の形態(図2)》第2の実施の
形態のズームレンズ系は正・負・負・正・正の5群ズー
ムレンズであり、各群は物体側から順に以下のように構
成されている。第1群(Gr1)は、物体側に凸の負メニス
カスレンズと、物体側に凸の正メニスカスレンズ2枚
と、で構成されている。第2群(Gr2)は、物体側に凸の
負メニスカスレンズ(物体側面が非球面)と、両凹の負レ
ンズと、両凸の正レンズと、で構成されている。第3群
(Gr3)は、両凹の負レンズと、両凸の正レンズと、で構
成されている。第4群(Gr4)は、絞り(ST)、前群(Gr4F)
及び後群(Gr4R)から成っている。前群(Gr4F)は、両凸の
正レンズと、両凸の正レンズ及び両凹の負レンズから成
る接合負レンズと、で構成されており、後群(Gr4R)は、
両凸の正レンズ(物体側面が非球面)と、両凸の正レンズ
と、物体側に凸の負メニスカスレンズと、で構成されて
いる。最終群である第5群(Gr5)は、物体側に凸の正メ
ニスカスレンズ2枚で構成されている。
<< Second Embodiment (FIG. 2) >> The zoom lens system of the second embodiment is a positive / negative / negative / positive / positive five-group zoom lens, and each group is arranged in order from the object side. It is configured as follows. The first group (Gr1) is composed of a negative meniscus lens convex on the object side and two positive meniscus lenses convex on the object side. The second group (Gr2) is composed of a negative meniscus lens convex to the object side (object side surface is aspherical surface), a biconcave negative lens, and a biconvex positive lens. Third group
(Gr3) is composed of a biconcave negative lens and a biconvex positive lens. The fourth group (Gr4) is a diaphragm (ST), the front group (Gr4F)
And the rear group (Gr4R). The front group (Gr4F) is composed of a biconvex positive lens and a cemented negative lens consisting of a biconvex positive lens and a biconcave negative lens, and the rear group (Gr4R) is
It is composed of a biconvex positive lens (aspherical surface on the object side), a biconvex positive lens, and a negative meniscus lens convex on the object side. The fifth group (Gr5), which is the final group, is composed of two positive meniscus lenses having a convex surface on the object side.

【0018】《第3の実施の形態(図3)》第3の実施の
形態のズームレンズ系は正・負・負・正・正・正の6群
ズームレンズであり、各群は物体側から順に以下のよう
に構成されている。第1群(Gr1)は、物体側に凸の負メ
ニスカスレンズと、物体側に凸の正メニスカスレンズ2
枚と、で構成されている。第2群(Gr2)は、物体側に凸
の負メニスカスレンズと、物体側に凸の負メニスカスレ
ンズ(物体側面が非球面)と、両凹の負レンズと、両凸の
正レンズと、で構成されている。第3群(Gr3)は、物体
側に凹の負メニスカスレンズと、像側に凸の正メニスカ
スレンズと、で構成されている。第4群(Gr4)は、絞り
(ST)、前群(Gr4F)及び後群(Gr4R)から成っている。前群
(Gr4F)は、両凸の正レンズと、両凸の正レンズ及び両凹
の負レンズから成る接合負レンズと、で構成されてお
り、後群(Gr4R)は、両凸の正レンズ(物体側面が非球面)
と、両凸の正レンズと、両凹の負レンズと、で構成され
ている。第5群(Gr5)は、物体側に凸の正メニスカスレ
ンズ2枚で構成されている。最終群である第6群(Gr6)
は、物体側に凸の正メニスカスレンズ1枚から成り、ズ
ーミングにおいて位置固定である。
<< Third Embodiment (FIG. 3) >> The zoom lens system of the third embodiment is a positive, negative, negative, positive, positive, positive six-group zoom lens, and each group is on the object side. It is configured as follows in order from. The first group (Gr1) includes a negative meniscus lens convex on the object side and a positive meniscus lens 2 convex on the object side.
It consists of a sheet and. The second group (Gr2) is composed of a negative meniscus lens convex to the object side, a negative meniscus lens convex to the object side (object side surface is aspherical surface), a biconcave negative lens, and a biconvex positive lens. It is configured. The third group (Gr3) is composed of a negative meniscus lens concave on the object side and a positive meniscus lens convex on the image side. The fourth group (Gr4) is a diaphragm
(ST), front group (Gr4F) and rear group (Gr4R). Front group
(Gr4F) is composed of a biconvex positive lens and a cemented negative lens consisting of a biconvex positive lens and a biconcave negative lens, and the rear group (Gr4R) is a biconvex positive lens (object (Aspherical side)
And a biconvex positive lens and a biconcave negative lens. The fifth group (Gr5) is composed of two positive meniscus lenses having a convex surface on the object side. 6th group (Gr6) which is the last group
Is composed of one positive meniscus lens convex on the object side, and its position is fixed during zooming.

【0019】《第4の実施の形態(図4)》第4の実施の
形態のズームレンズ系は正・負・負・正・正・正の6群
ズームレンズであり、各群は物体側から順に以下のよう
に構成されている。第1群(Gr1)は、物体側に凸の負メ
ニスカスレンズと、物体側に凸の正メニスカスレンズ2
枚と、で構成されている。第2群(Gr2)は、物体側に凸
の負メニスカスレンズと、物体側に凸の負メニスカスレ
ンズ(物体側面が非球面)と、両凹の負レンズと、両凸の
正レンズと、で構成されている。第3群(Gr3)は、物体
側に凹の負メニスカスレンズと、像側に凸の正メニスカ
スレンズと、で構成されている。第4群(Gr4)は、絞り
(ST)、前群(Gr4F)及び後群(Gr4R)から成っている。前群
(Gr4F)は、両凸の正レンズと、両凸の正レンズ及び両凹
の負レンズから成る接合負レンズと、で構成されてお
り、後群(Gr4R)は、物体側に凸の正メニスカスレンズ
(物体側面が非球面)と、両凸の正レンズと、物体側に凸
の負メニスカスレンズと、で構成されている。第5群(G
r5)は、物体側に凸の負メニスカスレンズと、物体側に
凸の正メニスカスレンズと、で構成されている。最終群
である第6群(Gr6)は、物体側に凸の正メニスカスレン
ズ1枚から成り、ズーミングにおいて位置固定である。
<< Fourth Embodiment (FIG. 4) >> The zoom lens system of the fourth embodiment is a positive, negative, negative, positive, positive, positive six-group zoom lens, and each group is on the object side. It is configured as follows in order from. The first group (Gr1) includes a negative meniscus lens convex on the object side and a positive meniscus lens 2 convex on the object side.
It consists of a sheet and. The second group (Gr2) is composed of a negative meniscus lens convex to the object side, a negative meniscus lens convex to the object side (object side surface is aspherical surface), a biconcave negative lens, and a biconvex positive lens. It is configured. The third group (Gr3) is composed of a negative meniscus lens concave on the object side and a positive meniscus lens convex on the image side. The fourth group (Gr4) is a diaphragm
(ST), front group (Gr4F) and rear group (Gr4R). Front group
(Gr4F) is composed of a biconvex positive lens and a cemented negative lens consisting of a biconvex positive lens and a biconcave negative lens, and the rear group (Gr4R) is a positive meniscus convex on the object side. lens
The object side surface is an aspherical surface, a biconvex positive lens, and a negative meniscus lens convex to the object side. Fifth group (G
r5) is composed of a negative meniscus lens convex to the object side and a positive meniscus lens convex to the object side. The sixth lens group (Gr6), which is the last lens group, is composed of one positive meniscus lens element convex to the object side, and its position is fixed during zooming.

【0020】《第5の実施の形態(図5)》第5の実施の
形態のズームレンズ系は正・負・正・正・正・正の6群
ズームレンズであり、各群は物体側から順に以下のよう
に構成されている。第1群(Gr1)は、物体側に凸の負メ
ニスカスレンズ及び両凸の正レンズから成る接合レンズ
と、物体側に凸の正メニスカスレンズと、で構成されて
いる。第2群(Gr2)は、物体側に凸の負メニスカスレン
ズと、物体側に凸の負メニスカスレンズ(物体側面が非
球面)と、両凹の負レンズと、両凸の正レンズと、で構
成されている。第3群(Gr3)は、物体側に凸の負メニス
カスレンズと、物体側に凸の正メニスカスレンズと、で
構成されている。第4群(Gr4)は、絞り(ST)、前群(Gr4
F)及び後群(Gr4R)から成っている。前群(Gr4F)は、両凸
の正レンズと、両凸の正レンズ及び両凹の負レンズから
成る接合負レンズと、で構成されており、後群(Gr4R)
は、物体側に凸の正メニスカスレンズ(物体側面が非球
面)と、両凸の正レンズと、物体側に凸の負メニスカス
レンズと、で構成されている。第5群(Gr5)は、物体側
に凸の正メニスカスレンズ2枚で構成されている。最終
群である第6群(Gr6)は、物体側に凸の正メニスカスレ
ンズ1枚から成り、ズーミングにおいて位置固定であ
る。
<Fifth Embodiment (FIG. 5)> The zoom lens system of the fifth embodiment is a positive, negative, positive, positive, positive, positive six-group zoom lens, and each group is on the object side. It is configured as follows in order from. The first group (Gr1) is composed of a cemented lens including a negative meniscus lens having a convex surface on the object side and a biconvex positive lens, and a positive meniscus lens having a convex surface on the object side. The second group (Gr2) is composed of a negative meniscus lens convex to the object side, a negative meniscus lens convex to the object side (object side surface is aspherical surface), a biconcave negative lens, and a biconvex positive lens. It is configured. The third group (Gr3) is composed of a negative meniscus lens convex on the object side and a positive meniscus lens convex on the object side. The fourth group (Gr4) is a diaphragm (ST), the front group (Gr4)
F) and the rear group (Gr4R). The front group (Gr4F) is composed of a biconvex positive lens, and a cemented negative lens composed of a biconvex positive lens and a biconcave negative lens, and a rear group (Gr4R).
Is composed of a positive meniscus lens convex to the object side (object side surface is aspherical surface), a biconvex positive lens, and a negative meniscus lens convex to the object side. The fifth group (Gr5) is composed of two positive meniscus lenses having a convex surface on the object side. The sixth lens group (Gr6), which is the last lens group, is composed of one positive meniscus lens element convex to the object side, and its position is fixed during zooming.

【0021】各実施の形態のように、物体側から順に、
正のパワーを有する第1群(Gr1)と、負のパワーを有す
る第2群(Gr2)と、第3群(Gr3)と、正のパワーを有する
第4群(Gr4)と、正のパワーを有する第5群(Gr5)と、を
備え、変倍の際に少なくとも第1群(Gr1)が移動するズ
ームレンズ系においては、以下の条件式(1)を満足する
ことが望ましい。 -3.0<f23W/fW<-0.9 …(1) ただし、 f23W:ワイド端(W)での第2群(Gr2)と第3群(Gr3)との
合成系の焦点距離、 fW:ワイド端(W)でのズームレンズ系全体の焦点距離、 である。
As in each embodiment, from the object side,
The first group (Gr1) having positive power, the second group (Gr2) having negative power, the third group (Gr3), the fourth group (Gr4) having positive power, and the positive power In a zoom lens system that includes a fifth lens unit (Gr5) having, and at least the first lens unit (Gr1) moves during zooming, it is desirable to satisfy the following conditional expression (1). -3.0 <f23W / fW <-0.9 (1) However, f23W: focal length of the combined system of the second group (Gr2) and the third group (Gr3) at the wide end (W), fW: wide end ( The focal length of the entire zoom lens system in (W).

【0022】高変倍のズームレンズ系において、物体側
から正・負・(負又は正)・正・正を有するズーム構成を
採るとともに条件式(1)を満たすことにより、充分な性
能を確保しながらコンパクト化を図ることができる。条
件式(1)は、第2群(Gr2)と第3群(Gr3)との合成パワー
の適切な範囲を示している。条件式(1)の下限を超える
と、第2群(Gr2)と第3群(Gr3)との合成パワーが弱くな
って全長が大きくなってしまい、さらに照度の確保のた
めに第1群(Gr1)の径を大きくしなければならなくな
る。逆に条件式(1)の上限を超えると、第2群(Gr2)と第
3群(Gr3)との合成パワーが強くなり、第2群(Gr2)と第
3群(Gr3)で発生する収差(特に像面湾曲収差及びコマ収
差)の補正が困難になる。そして、それを補正するため
にレンズ枚数を増やさなければならなくなり、コストが
高くなる。
Sufficient performance is assured by adopting a zoom configuration having positive / negative / (negative or positive) / positive / positive from the object side in the zoom lens system of high zoom ratio and satisfying conditional expression (1). However, it can be made compact. Conditional expression (1) indicates an appropriate range of the combined power of the second group (Gr2) and the third group (Gr3). If the lower limit of conditional expression (1) is exceeded, the combined power of the second group (Gr2) and the third group (Gr3) will be weakened and the total length will become large. It is necessary to increase the diameter of Gr1). On the contrary, if the upper limit of the conditional expression (1) is exceeded, the combined power of the second group (Gr2) and the third group (Gr3) becomes strong, and the second group (Gr2) and the third group (Gr3) occur. It becomes difficult to correct aberrations (particularly field curvature and coma). Then, in order to correct it, the number of lenses has to be increased, which increases the cost.

【0023】以下の条件式(1a)を満足することが更に望
ましい。条件式(1a)は、上記条件式(1)が規定している
条件範囲のなかでも、より一層好ましい条件範囲を規定
している。 -2<f23W/fW<-1 …(1a)
It is more desirable to satisfy the following conditional expression (1a). The conditional expression (1a) defines an even more preferable conditional range among the conditional ranges defined by the conditional expression (1). -2 <f23W / fW <-1… (1a)

【0024】また、変倍の際に少なくとも第1群(Gr1)
が移動する構成にすることで、変倍時に第1群(Gr1)を
通過する光線の位置を変化させることができ、第1群(G
r1)にも収差補正の負担を割り振ることができるように
なる。つまり、第1群(Gr1)を変倍時可動に構成すれ
ば、ワイド端(W)とテレ端(T)での収差補正の自由度が増
えることになる。したがって、ワイド端(W)における全
長及び径を小さくしながら、良好な収差補正を行うこと
が可能となる。
Further, at the time of zooming, at least the first group (Gr1)
By moving the first lens group (Gr1), it is possible to change the position of the light beam that passes through the first lens group (Gr1) during zooming.
The burden of aberration correction can be allocated to r1). That is, if the first lens unit (Gr1) is configured to be movable during zooming, the degree of freedom of aberration correction at the wide end (W) and the tele end (T) increases. Therefore, it becomes possible to perform good aberration correction while reducing the overall length and diameter at the wide end (W).

【0025】第1,第3,第4の実施の形態のように、
物体側から順に、正のパワーを有する第1群(Gr1)と、
負のパワーを有する第2群(Gr2)と、負のパワーを有す
る第3群(Gr3)と、変倍の際に固定の最終群と、を備
え、変倍の際に少なくとも第1群(Gr1)が移動するズー
ムレンズ系においては、前記条件式(1)を満足すること
が望ましい。高変倍のズームレンズ系において、物体側
から正・負・負を有するズーム構成を採るとともに条件
式(1)を満たすことにより、前述したように充分な性能
を確保しながらコンパクト化を図ることができる。ま
た、ズーミングにおいて最終群を位置固定とすることに
より、鏡胴構成の簡略化が可能となり、さらにズーミン
グ時等における撮像素子(SR)部分へのゴミの混入とその
表面(例えばCCD面)へのゴミの付着を防ぐことが可能
となる。
As in the first, third and fourth embodiments,
From the object side, in order from the first group (Gr1) having a positive power,
A second group (Gr2) having negative power, a third group (Gr3) having negative power, and a fixed final group at the time of zooming are provided, and at least the first group ( In the zoom lens system in which Gr1) moves, it is desirable to satisfy the conditional expression (1). In a high-zoom zoom lens system, by adopting a zoom configuration having positive / negative / negative from the object side and satisfying conditional expression (1), it is possible to achieve compactness while ensuring sufficient performance as described above. You can Also, by fixing the position of the final lens group during zooming, it is possible to simplify the lens barrel configuration, and further, when dust is mixed into the image sensor (SR) portion during zooming, etc., and its surface (for example, CCD surface) It becomes possible to prevent the adhesion of dust.

【0026】第1群(Gr1)に関しては、以下の条件式(2)
を満足することが望ましい。 0.03<fW/f1<0.14 …(2) ただし、 f1:第1群(Gr1)の焦点距離、 fW:ワイド端(W)でのズームレンズ系全体の焦点距離、 である。
Regarding the first group (Gr1), the following conditional expression (2)
It is desirable to satisfy. 0.03 <fW / f1 <0.14 (2) where f1 is the focal length of the first lens unit (Gr1), and fW is the focal length of the entire zoom lens system at the wide end (W).

【0027】条件式(2)は、第1群(Gr1)の適切なパワー
を規定しており、条件式(2)を満たすことにより、全長
をコンパクトにしながら良好な収差補正を行うことが可
能となる。条件式(2)の上限を超えると、第1群(Gr1)の
パワーが強くなる。これはコンパクト化を図る上では好
ましいが収差補正を行う上では好ましくなく、特に偏心
誤差感度が高くなるため好ましくない。逆に条件式(2)
の下限を超えると、第1群(Gr1)のパワーが弱くなる。
これは収差補正及び誤差感度の点では好ましいが、コン
パクト化を図る上では好ましくない。
Conditional expression (2) defines an appropriate power of the first lens unit (Gr1), and by satisfying conditional expression (2), it is possible to perform good aberration correction while making the overall length compact. Becomes When the upper limit of conditional expression (2) is exceeded, the power of the first group (Gr1) becomes strong. This is preferable for achieving compactness, but is not preferable for correcting aberrations, and is particularly not preferable because the sensitivity to decentering error increases. Conversely, conditional expression (2)
Beyond the lower limit of, the power of the first group (Gr1) becomes weak.
This is preferable in terms of aberration correction and error sensitivity, but it is not preferable in terms of downsizing.

【0028】以下の条件式(2a)を満足することが更に望
ましい。条件式(2a)は、上記条件式(2)が規定している
条件範囲のなかでも、より一層好ましい条件範囲を規定
している。 0.058<fW/f1<0.110 …(2a)
It is more desirable to satisfy the following conditional expression (2a). The conditional expression (2a) defines a more preferable conditional range among the conditional ranges defined by the conditional expression (2). 0.058 <fW / f1 <0.110… (2a)

【0029】第3群(Gr3)に関しては、以下の条件式(3)
を満足することが望ましい。 -0.285<f23W/|f3|<-0.001 …(3) ただし、 f3:第3群(Gr3)の焦点距離、 f23W:ワイド端(W)での第2群(Gr2)と第3群(Gr3)との
合成系の焦点距離、 である。
Regarding the third group (Gr3), the following conditional expression (3)
It is desirable to satisfy. -0.285 <f23W / | f3 | <-0.001 (3) where f3: focal length of the third lens unit (Gr3), f23W: second lens unit (Gr2) and third lens unit (Gr3) at the wide end (W) ) Is the focal length of the combined system.

【0030】条件式(3)は、ワイド端(W)での第2群(Gr
2)と第3群(Gr3)との合成パワーに対する第3群(Gr3)の
適切なパワーを規定しており、条件式(3)を満たすこと
により、誤差感度を低くしながらコンパクト化及び高性
能化を図ることができる。条件式(3)の下限を超える
と、第3群(Gr3)のパワーが強くなるため、第3群(Gr3)
の誤差感度が高くなる。逆に条件式(3)の上限を超える
と、第3群(Gr3)のパワーが弱くなる。したがって、誤
差感度は低くなるので好ましいが、収差{特にワイド端
(W)での像面湾曲やコマ収差}が悪くなるため好ましくな
い。
Conditional expression (3) is defined by the second group (Gr at the wide end (W)).
It regulates the appropriate power of the third group (Gr3) with respect to the combined power of 2) and the third group (Gr3), and by satisfying the conditional expression (3), the error sensitivity is reduced while the size is reduced and the power is increased. Performance can be improved. If the lower limit of conditional expression (3) is exceeded, the power of the third group (Gr3) will become strong, so the third group (Gr3)
Error sensitivity is increased. On the contrary, if the upper limit of conditional expression (3) is exceeded, the power of the third lens unit (Gr3) becomes weak. Therefore, error sensitivity is low, which is preferable, but aberrations (especially at the wide end)
The field curvature and the coma aberration in (W) are deteriorated, which is not preferable.

【0031】以下の条件式(3a)を満足することが更に望
ましい。条件式(3a)は、上記条件式(3)が規定している
条件範囲のなかでも、より一層好ましい条件範囲を規定
している。 -0.167<f23W/|f3|<-0.01 …(3a)
It is more desirable to satisfy the following conditional expression (3a). The conditional expression (3a) defines a more preferable conditional range among the conditional ranges defined by the conditional expression (3). -0.167 <f23W / | f3 | <-0.01… (3a)

【0032】また第4群(Gr4)は、各実施の形態のよう
に、正レンズと、正レンズ及び負レンズから成る接合レ
ンズと、を少なくとも有する前群(Gr4F)と、正レンズと
負レンズをそれぞれ少なくとも1枚有する後群(Gr4R)
と、で構成されることが望ましい。一般的には、前群(G
r4F)と後群(Gr4R)との間で分割し、それをズーム間隔と
して像面湾曲の補正が行われる。しかしそのように分割
すると、前群(Gr4F)と後群(Gr4R)との相対偏心誤差感度
が強くなるため製造上好ましくない。各実施の形態のよ
うに、前群(Gr4F)と後群(Gr4R)を一体化して第4群(Gr
4)とすれば、誤差感度を抑えながら良好な収差補正を行
うことができる。
The fourth group (Gr4) includes, as in each embodiment, a front group (Gr4F) having at least a positive lens and a cemented lens including a positive lens and a negative lens, a positive lens and a negative lens. Rear group with at least one each (Gr4R)
It is desirable to be composed of and. In general, the front group (G
r4F) and the rear group (Gr4R) are divided, and the curvature of field is corrected by using that as a zoom interval. However, such division is not preferable in manufacturing because the sensitivity of relative eccentricity error between the front group (Gr4F) and the rear group (Gr4R) becomes strong. As in each embodiment, the front group (Gr4F) and the rear group (Gr4R) are integrated to form the fourth group (Gr4R).
In the case of 4), good aberration correction can be performed while suppressing error sensitivity.

【0033】第4群(Gr4)に関しては、前群(Gr4F)中の
いずれかの正レンズが以下の条件式(4)を満足すること
が望ましく、前群(Gr4F)中の接合レンズを構成している
正レンズが以下の条件式(4)を満足することが更に望ま
しい。また、各実施の形態のように第4群(Gr4)内に絞
り(ST)を配置し、その絞り(ST)近傍にある正レンズの後
方に非球面を配置し、その正レンズに関して以下の条件
式(4)を満足することが望ましい。 0.2<Dp/f4<0.35 …(4) ただし、 f4:第4群(Gr4)の焦点距離、 Dp:第4群(Gr4)の前群(Gr4F)中の正レンズの厚み、 である。
Regarding the fourth group (Gr4), it is desirable that one of the positive lenses in the front group (Gr4F) satisfies the following conditional expression (4), and a cemented lens in the front group (Gr4F) is constructed. It is more desirable that the positive lens satisfying the following conditional expression (4) is satisfied. Further, as in each of the embodiments, a diaphragm (ST) is arranged in the fourth lens unit (Gr4), an aspherical surface is arranged behind a positive lens near the diaphragm (ST), and the positive lens is as follows. It is desirable to satisfy conditional expression (4). 0.2 <Dp / f4 <0.35 (4) where f4 is the focal length of the fourth group (Gr4), Dp is the thickness of the positive lens in the front group (Gr4F) of the fourth group (Gr4).

【0034】条件式(4)は、第4群(Gr4)の前群(Gr4F)を
構成する正レンズの厚みを規定している。条件式(4)の
上限を超えると、正レンズの厚みが大きくなるため、そ
の正レンズを通過した光線の位置を低くすることができ
る。したがって、それに続く非球面の光線通過位置も低
くすることができるため、非球面の誤差感度を低減する
上では有利になる。しかし、正レンズの厚みが増すこと
によりコバ厚も大きくなるため、そこでゴーストフレア
ー光が発生しやすくなる。逆に条件式(4)の下限を超え
ると、ゴーストフレアー光を低減する上では有利になる
が、非球面の誤差感度が高くなってしまうため好ましく
ない。
Conditional expression (4) defines the thickness of the positive lens which constitutes the front group (Gr4F) of the fourth group (Gr4). If the upper limit of conditional expression (4) is exceeded, the thickness of the positive lens becomes large, so that the position of the light beam that has passed through the positive lens can be lowered. Therefore, the ray passing position of the subsequent aspherical surface can also be lowered, which is advantageous in reducing the error sensitivity of the aspherical surface. However, as the thickness of the positive lens increases, the edge thickness also increases, so that ghost flare light is likely to be generated there. On the other hand, if the lower limit of conditional expression (4) is exceeded, it is advantageous in reducing the ghost flare light, but it is not preferable because the error sensitivity of the aspherical surface becomes high.

【0035】第5群(Gr5)に関しては、以下の条件式(5)
を満足することが望ましい。 5<f5/fW<12 …(5) ただし、 f5:第5群(Gr5)の焦点距離、 fW:ワイド端(W)でのズームレンズ系全体の焦点距離、 である。
Regarding the fifth group (Gr5), the following conditional expression (5)
It is desirable to satisfy. 5 <f5 / fW <12 (5) where f5 is the focal length of the fifth lens unit (Gr5), and fW is the focal length of the entire zoom lens system at the wide end (W).

【0036】条件式(5)は、第5群(Gr5)の適切なパワー
を規定しており、条件式(5)を満たすことにより、高倍
率化を図りながら良好な収差補正を行うことが可能とな
る。条件式(5)の上限を超えると、特にテレ端(T)での収
差(コマ収差等)が大きくなって補正が困難になる。逆に
条件式(5)の下限を超えると、特にワイド端(W)での収差
(コマ収差,像面湾曲収差等)が大きくなって補正が困難
になる。
Conditional expression (5) defines an appropriate power of the fifth lens unit (Gr5). By satisfying conditional expression (5), it is possible to perform good aberration correction while achieving high magnification. It will be possible. If the upper limit of conditional expression (5) is exceeded, aberrations (coma aberration, etc.) will become large especially at the telephoto end (T), making correction difficult. Conversely, if the lower limit of conditional expression (5) is exceeded, aberrations will occur at the wide end (W) in particular.
(Coma aberration, field curvature aberration, etc.) becomes large and correction becomes difficult.

【0037】また、第5群(Gr5)の移動によりフォーカ
シングを行う構成にすることが光学性能上望ましい。第
1群(Gr1)の移動によりフォーカシングを行う構成にす
ると、径の増大を招いてしまう。また第2群(Gr2)や第
3群(Gr3)は誤差感度が高く、第4群(Gr4)はレンズ枚数
が多いので、いずれもフォーカス群としては不適当であ
る。第5群(Gr5)は誤差感度が低くレンズ枚数も少ない
ので、フォーカス群として好適である。例えば、無限遠
から近距離へのフォーカシングに際し、第5群(Gr5)を
物体側へ移動させる構成にすれば、良好な近接性能を得
ることができる。
Further, it is desirable in terms of optical performance to have a structure in which focusing is performed by moving the fifth lens unit (Gr5). If the configuration is such that focusing is performed by moving the first lens unit (Gr1), the diameter is increased. Further, since the second group (Gr2) and the third group (Gr3) have high error sensitivity, and the fourth group (Gr4) has a large number of lenses, both are unsuitable as focus groups. The fifth group (Gr5) has a low error sensitivity and a small number of lenses, and is therefore suitable as a focus group. For example, when focusing from infinity to a short distance, if the fifth group (Gr5) is moved to the object side, good proximity performance can be obtained.

【0038】なお、各実施の形態を構成しているズーム
レンズ系には、入射光線を屈折作用により偏向させる屈
折型レンズ(つまり、異なる屈折率を有する媒質同士の
界面で偏向が行われるタイプのレンズ)が用いられてい
るが、使用可能なレンズはこれに限らない。例えば、回
折作用により入射光線を偏向させる回折型レンズ,回折
作用と屈折作用との組み合わせで入射光線を偏向させる
屈折・回折ハイブリッド型レンズ,入射光線を媒質内の
屈折率分布により偏向させる屈折率分布型レンズ等を用
いてもよい。また、絞り(ST)のほかに光束規制板等を必
要に応じて配置してもよく、ミラー,プリズム等を光路
中に配置することにより、その光学的なパワーを有しな
い面(反射面,屈折面,回折面等)でズームレンズ系の
前,後又は途中で光路を折り曲げてもよい。折り曲げ位
置は必要に応じて設定すればよく、光路の適正な折り曲
げにより、カメラの見かけ上の薄型化・小型化を達成す
ることが可能である。
It should be noted that the zoom lens system of each embodiment has a refraction type lens that deflects an incident light beam by refraction (that is, a type in which the deflection is performed at the interface between media having different refractive indices). Lens) is used, but the usable lens is not limited to this. For example, a diffractive lens that deflects an incident light beam by a diffractive action, a refraction / diffraction hybrid lens that deflects an incident light beam by a combination of a diffractive action and a refraction action, a refractive index distribution that deflects an incident light beam by a refractive index distribution in a medium. A mold lens or the like may be used. Further, in addition to the stop (ST), a light flux regulating plate or the like may be arranged as necessary. By disposing a mirror, a prism or the like in the optical path, a surface (reflection surface, The optical path may be bent before, after, or in the middle of the zoom lens system by a refractive surface, a diffractive surface, etc.). The bending position may be set as necessary, and by appropriately bending the optical path, it is possible to achieve an apparent thinning and miniaturization of the camera.

【0039】[0039]

【実施例】以下、本発明を実施した撮像レンズ装置に用
いられるズームレンズ系の構成等を、コンストラクショ
ンデータ等を挙げて更に具体的に説明する。ここで挙げ
る実施例1〜5は、前述した第1〜第5の実施の形態に
それぞれ対応しており、第1〜第5の実施の形態を表す
レンズ構成図(図1〜図5)は、対応する実施例1〜5の
レンズ構成をそれぞれ示している。
EXAMPLES The configuration and the like of the zoom lens system used in the image pickup lens apparatus embodying the present invention will be described more specifically with reference to construction data and the like. Examples 1 to 5 listed here correspond respectively to the above-described first to fifth embodiments, and the lens configuration diagrams (FIGS. 1 to 5) showing the first to fifth embodiments are , And corresponding lens configurations of Examples 1 to 5, respectively.

【0040】各実施例のコンストラクションデータにお
いて、ri(i=1,2,3,...)は物体側から数えてi番目の面の
曲率半径(mm)、di(i=1,2,3,...)は物体側から数えてi番
目の軸上面間隔(mm)を示しており、Ni(i=1,2,3,...),ν
i(i=1,2,3,...)は物体側から数えてi番目の光学要素の
d線に対する屈折率(Nd),アッベ数(νd)を示してい
る。また、コンストラクションデータ中、ズーミングに
おいて変化する軸上面間隔は、ワイド端(短焦点距離端,
W)〜ミドル(中間焦点距離状態,M)〜テレ端(長焦点距離
端,T)での可変空気間隔である。各焦点距離状態(W),
(M),(T)に対応する全系の焦点距離(f,mm)及びFナンバ
ー(FNO)を他のデータと併せて示し、各条件式の対応値
を表1に示す。
In the construction data of each example, ri (i = 1,2,3, ...) is the radius of curvature (mm) of the i-th surface counted from the object side, di (i = 1,2, (3, ...) indicates the i-th axial upper surface distance (mm) counted from the object side, and Ni (i = 1,2,3, ...), ν
i (i = 1,2,3, ...) Indicates the refractive index (Nd) and Abbe number (νd) of the i-th optical element with respect to the d-line counting from the object side. Also, in the construction data, the axial upper surface spacing that changes during zooming is at the wide end (short focal length end,
W) -Middle (intermediate focal length condition, M) -Tele end (long focal length end, T). Each focal length state (W),
The focal length (f, mm) and F number (FNO) of the entire system corresponding to (M) and (T) are shown together with other data, and Table 1 shows corresponding values of each conditional expression.

【0041】曲率半径riに*印が付された面は、非球面
(非球面形状の屈折光学面、非球面と等価な屈折作用を
有する面等)であり、非球面の面形状を表わす以下の式
(AS)で定義される。各実施例の非球面データを他のデー
タと併せて示す(ただしAi=0の場合は省略する。)。 X(H)=(C0・H2)/{1+√(1-ε・C02・H2)}+Σ(Ai・Hi) …(AS) ただし、式(AS)中、 X(H):高さHの位置での光軸(AX)方向の変位量(面頂点基
準)、 H:光軸(AX)に対して垂直な方向の高さ、 C0:近軸曲率(=1/曲率半径)、 ε:2次曲面パラメータ、 Ai:i次の非球面係数、 である。
The surface marked with * on the radius of curvature ri is an aspherical surface.
(Aspherical refracting optical surface, surface having a refracting action equivalent to an aspherical surface, etc.), and the following expression expressing the aspherical surface shape.
(AS). The aspherical surface data of each example are shown together with other data (however, omitted when Ai = 0). X (H) = (C0 ・ H 2 ) / {1 + √ (1-ε ・ C0 2・ H 2 )} + Σ (Ai ・ H i )… (AS) However, in the formula (AS), X (H ): Amount of displacement in the optical axis (AX) direction at height H (reference to surface apex), H: Height in the direction perpendicular to the optical axis (AX), C0: Paraxial curvature (= 1 / Radius of curvature), ε: quadric surface parameter, Ai: i-th order aspherical coefficient,

【0042】図6〜図10は実施例1〜実施例5にそれ
ぞれ対応する収差図であり、(W)はワイド端,(M)はミド
ル,(T)はテレ端における諸収差{左から順に、球面収差
等,非点収差,歪曲収差である。Y':最大像高(mm)}を示
している。球面収差図において、実線(d)はd線に対す
る球面収差(mm)、一点鎖線(g)はg線に対する球面収差
(mm)、破線(SC)は正弦条件(mm)を表している。非点収差
図において、破線(DM)はメリディオナル面でのd線に対
する非点収差(mm)を表しており、実線(DS)はサジタル面
でのd線に対する非点収差(mm)を表わしている。また、
歪曲収差図において実線はd線に対する歪曲(%)を表し
ている。
6 to 10 are aberration diagrams corresponding to Examples 1 to 5, respectively. (W) is the wide end, (M) is the middle, and (T) is the various aberrations at the tele end (from left to right). These are spherical aberration, astigmatism, and distortion, in that order. Y ': Maximum image height (mm)} is shown. In the spherical aberration diagram, the solid line (d) is the spherical aberration (mm) for the d line, and the alternate long and short dash line (g) is the spherical aberration for the g line.
(mm) and the broken line (SC) represent the sine condition (mm). In the astigmatism diagram, the broken line (DM) represents the astigmatism (mm) for the d line on the meridional surface, and the solid line (DS) represents the astigmatism (mm) for the d line on the sagittal surface. There is. Also,
In the distortion diagram, the solid line represents the distortion (%) for the d-line.

【0043】 《実施例1》 f=7.20〜22.00〜71.99 FNO=2.88〜3.50〜4.00 [曲率半径] [軸上面間隔] [屈折率] [アッベ数]・ (Gr1) r1= 62.384 d1= 1.500 N1= 1.84666 ν1= 23.83 r2= 44.899 d2= 0.904 r3= 44.899 d3= 6.474 N2= 1.49310 ν2= 83.58 r4= 882.301 d4= 0.700 r5= 40.084 d5= 3.914 N3= 1.60941 ν3= 55.85 r6= 95.077 d6= 1.000〜19.485〜39.961・ (Gr2) r7*= 62.723 d7= 0.900 N4= 1.85000 ν4= 40.04 r8= 9.935 d8= 5.409 r9= -29.008 d9= 0.900 N5= 1.85000 ν5= 40.04 r10= 30.898 d10= 1.913 r11= 30.898 d11= 2.584 N6= 1.84666 ν6= 23.83 r12= -42.503 d12= 2.333〜3.129〜8.217・ (Gr3) r13= -23.614 d13= 0.900 N7= 1.74400 ν7= 44.93 r14= 649.701 d14= 1.722 r15= 649.701 d15= 1.452 N8= 1.84666 ν8= 23.83 r16= -58.059 d16=30.839〜10.216〜1.000・ (Gr4) r17= ∞(ST) d17= 0.175・・ (Gr4F) r18= 21.057 d18= 2.253 N9= 1.58005 ν9= 60.09 r19= -137.117 d19= 0.700 r20= 13.176 d20= 6.000 N10=1.54238 ν10=67.49 r21= -31.796 d21= 0.010 N11=1.51400 ν11=42.83 r22= -31.796 d22= 1.000 N12=1.85000 ν12=40.04 r23= 13.570 d23= 1.366・・ (Gr4R) r24*= 29.222 d24= 1.750 N13=1.76743 ν13=49.48 r25= -51.638 d25= 0.700 r26= 45.443 d26= 3.100 N14=1.55537 ν14=43.59 r27= -19.114 d27= 0.809 r28= -33.491 d28= 1.602 N15=1.80518 ν15=25.46 r29= 19.773 d29= 7.799〜8.715〜26.307・ (Gr5) r30= 55.604 d30= 2.373 N16=1.84666 ν16=23.82 r31= 112.292 d31= 0.700 r32= 16.339 d32= 1.843 N17=1.49700 ν17=81.61 r33= 26.139 d33= 1.500〜13.792〜14.288・ (Gr6) r34= 19.603 d34= 1.843 N18=1.48749 ν18=70.44 r35= 63.932 d35= 1.034・ (PL) r36= ∞ d36= 3.000 N19=1.51680 ν19=64.20 r37= ∞[0043] << Example 1 >> f = 7.20 ~ 22.00 ~ 71.99 FNO = 2.88 ~ 3.50 ~ 4.00  [Radius of curvature] [Space between upper surfaces of axes] [Refractive index] [Abbe number] (Gr1) r1 = 62.384               d1 = 1.500 N1 = 1.84666 ν1 = 23.83 r2 = 44.899               d2 = 0.904 r3 = 44.899               d3 = 6.474 N2 = 1.49310 ν2 = 83.58 r4 = 882.301               d4 = 0.700 r5 = 40.084               d5 = 3.914 N3 = 1.60941 ν3 = 55.85 r6 = 95.077               d6 = 1.000 ~ 19.485 ~ 39.961 ・ (Gr2) r7 * = 62.723               d7 = 0.900 N4 = 1.85000 ν4 = 40.04 r8 = 9.935               d8 = 5.409 r9 = -29.008               d9 = 0.900 N5 = 1.85000 ν5 = 40.04 r10 = 30.898               d10 = 1.913 r11 = 30.898               d11 = 2.584 N6 = 1.84666 ν6 = 23.83 r12 = -42.503               d12 = 2.333-3.129-8.217 (Gr3) r13 = -23.614               d13 = 0.900 N7 = 1.74400 ν7 = 44.93 r14 = 649.701               d14 = 1.722 r15 = 649.701               d15 = 1.452 N8 = 1.84666 ν8 = 23.83 r16 = -58.059               d16 = 30.839 ~ 10.216 ~ 1.000 ・ (Gr4) r17 = ∞ (ST)               d17 = 0.175 ... (Gr4F) r18 = 21.057               d18 = 2.253 N9 = 1.58005 ν9 = 60.09 r19 = -137.117               d19 = 0.700 r20 = 13.176               d20 = 6.000 N10 = 1.54238 ν10 = 67.49 r21 = -31.796               d21 = 0.010 N11 = 1.51400 ν11 = 42.83 r22 = -31.796               d22 = 1.000 N12 = 1.85000 ν12 = 40.04 r23 = 13.570               d23 = 1.366 ... (Gr4R) r24 * = 29.222               d24 = 1.750 N13 = 1.76743 ν13 = 49.48 r25 = -51.638               d25 = 0.700 r26 = 45.443               d26 = 3.100 N14 = 1.55537 ν14 = 43.59 r27 = -19.114               d27 = 0.809 r28 = -33.491               d28 = 1.602 N15 = 1.80518 ν15 = 25.46 r29 = 19.773               d29 = 7.799 ~ 8.715 ~ 26.307 ・ (Gr5) r30 = 55.604               d30 = 2.373 N16 = 1.84666 ν16 = 23.82 r31 = 112.292               d31 = 0.700 r32 = 16.339               d32 = 1.843 N17 = 1.49700 ν17 = 81.61 r33 = 26.139               d33 = 1.500 ~ 13.792 ~ 14.288 ・ (Gr6) r34 = 19.603               d34 = 1.843 N18 = 1.48749 ν18 = 70.44 r35 = 63.932               d35 = 1.034 (PL) r36 = ∞               d36 = 3.000 N19 = 1.51680 ν19 = 64.20 r37 = ∞

【0044】[第7面(r7)の非球面データ] ε=1.0000,A4= 0.21110234×10-4,A6=-0.59014998×10
-7,A8=-0.18395653×10-9,A10= 0.11032347×10-11 [第24面(r24)の非球面データ] ε=1.0000,A4=-0.76991751×10-4,A6=-0.36705821×10
-7,A8=-0.38003419×10-8,A10= 0.66348057×10-10
[Aspherical surface data of seventh surface (r7)] ε = 1.0000, A4 = 0.21110234 × 10 −4 , A6 = −0.59014998 × 10
-7 , A8 = -0.18395653 × 10 -9 , A10 = 0.11032347 × 10 -11 [Aspherical data of 24th surface (r24)] ε = 1.0000, A4 = -0.76991751 × 10 -4 , A6 = -0.36705821 × 10
-7 , A8 = -0.38003419 × 10 -8 , A10 = 0.66348057 × 10 -10

【0045】 《実施例2》 f=7.20〜22.01〜72.07 FNO=2.88〜3.50〜4.00 [曲率半径] [軸上面間隔] [屈折率] [アッベ数]・ (Gr1) r1= 69.081 d1= 1.500 N1= 1.84666 ν1= 23.83 r2= 45.713 d2= 0.799 r3= 45.713 d3= 5.296 N2= 1.49700 ν2= 81.61 r4= 267.543 d4= 0.700 r5= 47.545 d5= 4.141 N3= 1.70164 ν3= 47.20 r6= 144.072 d6= 1.000〜15.198〜45.528・ (Gr2) r7*= 31.398 d7= 0.900 N4= 1.85000 ν4= 40.04 r8= 9.518 d8= 5.356 r9= -73.132 d9= 0.900 N5= 1.85000 ν5= 40.04 r10= 19.426 d10= 1.507 r11= 19.426 d11= 2.605 N6= 1.84666 ν6= 23.83 r12= -96.147 d12= 1.937〜1.501〜4.888・ (Gr3) r13= -18.477 d13= 0.900 N7= 1.74400 ν7= 44.93 r14= 62.836 d14= 0.709 r15= 62.836 d15= 1.557 N8= 1.84666 ν8= 23.83 r16= -87.822 d16=26.230〜5.472〜1.000・ (Gr4) r17= ∞(ST) d17= 0.175・・ (Gr4F) r18= 33.220 d18= 1.671 N9= 1.67003 ν9= 47.15 r19= -56.187 d19= 0.700 r20= 17.826 d20= 6.156 N10=1.58913 ν10=61.25 r21= -15.341 d21= 0.010 N11=1.51400 ν11=42.83 r22= -15.341 d22= 1.000 N12=1.85000 ν12=40.04 r23= 22.298 d23= 1.285・・ (Gr4R) r24*= 127.600 d24= 1.318 N13=1.76743 ν13=49.48 r25= -61.309 d25= 0.700 r26= 32.604 d26= 3.100 N14=1.49700 ν14=81.61 r27= -15.923 d27= 0.700 r28= 130.244 d28= 2.159 N15=1.80518 ν15=25.46 r29= 17.244 d29= 5.361〜5.920〜24.242・ (Gr5) r30= 48.958 d30= 3.500 N16=1.85000 ν16=40.04 r31= 323.276 d31= 0.807 r32= 23.924 d32= 3.000 N17=1.65420 ν17=50.98 r33= 40.183 d33= 1.500〜15.606〜13.370・ (PL) r34= ∞ d34= 3.000 N18=1.51680 ν18=64.20 r35= ∞[0045] << Example 2 >> f = 7.20 ~ 22.01 ~ 72.07 FNO = 2.88 ~ 3.50 ~ 4.00  [Radius of curvature] [Space between upper surfaces of axes] [Refractive index] [Abbe number] (Gr1) r1 = 69.081               d1 = 1.500 N1 = 1.84666 ν1 = 23.83 r2 = 45.713               d2 = 0.799 r3 = 45.713               d3 = 5.296 N2 = 1.49700 ν2 = 81.61 r4 = 267.543               d4 = 0.700 r5 = 47.545               d5 = 4.141 N3 = 1.70164 ν3 = 47.20 r6 = 144.072               d6 = 1.000 ~ 15.198 ~ 45.528 ・ (Gr2) r7 * = 31.398               d7 = 0.900 N4 = 1.85000 ν4 = 40.04 r8 = 9.518               d8 = 5.356 r9 = -73.132               d9 = 0.900 N5 = 1.85000 ν5 = 40.04 r10 = 19.426               d10 = 1.507 r11 = 19.426               d11 = 2.605 N6 = 1.84666 ν6 = 23.83 r12 = -96.147               d12 = 1.937 ~ 1.501 ~ 4.888 (Gr3) r13 = -18.477               d13 = 0.900 N7 = 1.74400 ν7 = 44.93 r14 = 62.836               d14 = 0.709 r15 = 62.836               d15 = 1.557 N8 = 1.84666 ν8 = 23.83 r16 = -87.822               d16 = 26.230-5.472-1.000 ・ (Gr4) r17 = ∞ (ST)               d17 = 0.175 ... (Gr4F) r18 = 33.220               d18 = 1.671 N9 = 1.67003 ν9 = 47.15 r19 = -56.187               d19 = 0.700 r20 = 17.826               d20 = 6.156 N10 = 1.58913 ν10 = 61.25 r21 = -15.341               d21 = 0.010 N11 = 1.51400 ν11 = 42.83 r22 = -15.341               d22 = 1.000 N12 = 1.85000 ν12 = 40.04 r23 = 22.298               d23 = 1.285 ... (Gr4R) r24 * = 127.600               d24 = 1.318 N13 = 1.76743 ν13 = 49.48 r25 = -61.309               d25 = 0.700 r26 = 32.604               d26 = 3.100 N14 = 1.49700 ν14 = 81.61 r27 = -15.923               d27 = 0.700 r28 = 130.244               d28 = 2.159 N15 = 1.80518 ν15 = 25.46 r29 = 17.244               d29 = 5.361 ~ 5.920 ~ 24.242 (Gr5) r30 = 48.958               d30 = 3.500 N16 = 1.85000 ν16 = 40.04 r31 = 323.276               d31 = 0.807 r32 = 23.924               d32 = 3.000 N17 = 1.65420 ν17 = 50.98 r33 = 40.183               d33 = 1.500 ~ 15.606 ~ 13.370 ・ (PL) r34 = ∞               d34 = 3.000 N18 = 1.51680 ν18 = 64.20 r35 = ∞

【0046】[第7面(r7)の非球面データ] ε=1.0000,A4= 0.14812093×10-4,A6=-0.45404577×10
-7,A8= 0.50771426×10-1 0,A10=-0.31129968×10-12 [第24面(r24)の非球面データ] ε=1.0000,A4=-0.67055199×10-4,A6=-0.34856985×10
-9,A8=-0.20565582×10-8,A10= 0.20513919×10-10
[Aspherical surface data of the seventh surface (r7)] ε = 1.0000, A4 = 0.148 12093 × 10-Four, A6 = -0.45404577 × 10
-7, A8 = 0.50771426 × 10-1 0, A10 = -0.31129968 × 10-12 [Aspherical data of 24th surface (r24)] ε = 1.0000, A4 = -0.67055199 × 10-Four, A6 = -0.34856985 × 10
-9, A8 = -0.20565582 × 10-8, A10 = 0.20513919 × 10-Ten

【0047】 《実施例3》 f=7.20〜22.00〜72.00 FNO=2.88〜3.50〜4.00 [曲率半径] [軸上面間隔] [屈折率] [アッベ数]・ (Gr1) r1= 62.931 d1= 1.500 N1= 1.84666 ν1= 23.83 r2= 47.351 d2= 0.010 r3= 47.351 d3= 5.031 N2= 1.49700 ν2= 81.61 r4= 288.650 d4= 0.200 r5= 52.415 d5= 3.533 N3= 1.63854 ν3= 55.45 r6= 141.140 d6= 1.000〜21.405〜46.997・ (Gr2) r7= 48.087 d7= 1.000 N4= 1.85000 ν4= 40.04 r8= 11.824 d8= 5.183 r9*= 255.649 d9= 1.000 N5= 1.76743 ν5= 49.48 r10= 22.520 d10= 3.348 r11= -52.368 d11= 1.000 N6= 1.48749 ν6= 70.44 r12= 34.410 d12= 0.799 r13= 25.832 d13= 2.580 N7= 1.84666 ν7= 23.83 r14= -883.057 d14=13.785〜5.993〜1.744・ (Gr3) r15= -17.774 d15= 1.000 N8= 1.74400 ν8= 44.93 r16= -47.222 d16= 0.010 r17= -47.222 d17= 1.000 N9= 1.84666 ν9= 23.83 r18= -25.229 d18=18.469〜3.832〜1.000・ (Gr4) r19= ∞(ST) d19= 0.900・・ (Gr4F) r20= 34.154 d20= 1.803 N10=1.74400 ν10=44.93 r21= -60.159 d21= 0.200 r22= 17.857 d22= 6.000 N11=1.58913 ν11=61.25 r23= -23.555 d23= 0.010 N12=1.51400 ν12=42.83 r24= -23.555 d24= 1.000 N13=1.85000 ν13=40.04 r25= 17.050 d25= 1.539・・ (Gr4R) r26*= 50.493 d26= 1.403 N14=1.76743 ν14=49.48 r27= -108.576 d27= 0.900 r28= 16.466 d28= 3.100 N15=1.49700 ν15=81.61 r29= -19.582 d29= 1.000 r30=-1936.371 d30= 1.000 N16=1.80518 ν16=25.43 r31= 13.484 d31= 7.293〜4.602〜24.611・ (Gr5) r32= 52.524 d32= 2.000 N17=1.85000 ν17=40.04 r33= 74.607 d33= 1.525 r34= 36.371 d34= 2.233 N18=1.80610 ν18=40.72 r35= 129.700 d35= 1.500〜15.496〜12.694・ (Gr6) r36= 32.567 d36= 4.318 N19=1.84666 ν19=23.82 r37= 80.709 d37= 1.172・ (PL) r38= ∞ d38= 3.000 N20=1.51680 ν20=64.20 r39= ∞[0047] << Example 3 >> f = 7.20 ~ 22.00 ~ 72.00 FNO = 2.88 ~ 3.50 ~ 4.00  [Radius of curvature] [Space between upper surfaces of axes] [Refractive index] [Abbe number] (Gr1) r1 = 62.931               d1 = 1.500 N1 = 1.84666 ν1 = 23.83 r2 = 47.351               d2 = 0.010 r3 = 47.351               d3 = 5.031 N2 = 1.49700 ν2 = 81.61 r4 = 288.650               d4 = 0.200 r5 = 52.415               d5 = 3.533 N3 = 1.63854 ν3 = 55.45 r6 = 141.140               d6 = 1.000 ~ 21.405 ~ 46.997 ・ (Gr2) r7 = 48.087               d7 = 1.000 N4 = 1.85000 ν4 = 40.04 r8 = 11.824               d8 = 5.183 r9 * = 255.649               d9 = 1.000 N5 = 1.76743 ν5 = 49.48 r10 = 22.520               d10 = 3.348 r11 = -52.368               d11 = 1.000 N6 = 1.48749 ν6 = 70.44 r12 = 34.410               d12 = 0.799 r13 = 25.832               d13 = 2.580 N7 = 1.84666 ν7 = 23.83 r14 = -883.057               d14 = 13.785〜5.993〜1.744 ・ (Gr3) r15 = -17.774               d15 = 1.000 N8 = 1.74400 ν8 = 44.93 r16 = -47.222               d16 = 0.010 r17 = -47.222               d17 = 1.000 N9 = 1.84666 ν9 = 23.83 r18 = -25.229               d18 = 18.469〜3.832〜1.000 ・ (Gr4) r19 = ∞ (ST)               d19 = 0.900 ... (Gr4F) r20 = 34.154               d20 = 1.803 N10 = 1.74400 ν10 = 44.93 r21 = -60.159               d21 = 0.200 r22 = 17.857               d22 = 6.000 N11 = 1.58913 ν11 = 61.25 r23 = -23.555               d23 = 0.010 N12 = 1.51400 ν12 = 42.83 r24 = -23.555               d24 = 1.000 N13 = 1.85000 ν13 = 40.04 r25 = 17.050               d25 = 1.539 ... (Gr4R) r26 * = 50.493               d26 = 1.403 N14 = 1.76743 ν14 = 49.48 r27 = -108.576               d27 = 0.900 r28 = 16.466               d28 = 3.100 N15 = 1.49700 ν15 = 81.61 r29 = -19.582               d29 = 1.000 r30 = -1936.371               d30 = 1.000 N16 = 1.80518 ν16 = 25.43 r31 = 13.484               d31 = 7.293 ~ 4.602 ~ 24.611 (Gr5) r32 = 52.524               d32 = 2.000 N17 = 1.85000 ν17 = 40.04 r33 = 74.607               d33 = 1.525 r34 = 36.371               d34 = 2.233 N18 = 1.80610 ν18 = 40.72 r35 = 129.700               d35 = 1.500 ~ 15.496 ~ 12.694 ・ (Gr6) r36 = 32.567               d36 = 4.318 N19 = 1.84666 ν19 = 23.82 r37 = 80.709               d37 = 1.172 ・ (PL) r38 = ∞               d38 = 3.000 N20 = 1.51680 ν20 = 64.20 r39 = ∞

【0048】[第9面(r9)の非球面データ] ε=1.0000,A4= 0.39348081×10-5,A6=-0.58622233×10
-7,A8= 0.20383117×10-9,A10=-0.10436439×10-11 [第26面(r26)の非球面データ] ε=1.0000,A4=-0.55782453×10-4,A6=-0.28645905×10
-6,A8= 0.21338814×10-8,A10=-0.64798953×10-10
[Aspherical surface data of 9th surface (r9)] ε = 1.0000, A4 = 0.39348081 × 10 −5 , A6 = −0.58622233 × 10
-7 , A8 = 0.20383117 × 10 -9 , A10 = -0.10436439 × 10 -11 [Aspherical data of 26th surface (r26)] ε = 1.0000, A4 = -0.55782453 × 10 -4 , A6 = -0.28645905 × 10
-6 , A8 = 0.21338814 × 10 -8 , A10 = -0.64798953 × 10 -10

【0049】 《実施例4》 f=7.20〜22.00〜71.999 FNO=2.88〜3.50〜4.00 [曲率半径] [軸上面間隔] [屈折率] [アッベ数]・ (Gr1) r1= 62.948 d1= 2.000 N1= 1.84666 ν1= 23.83 r2= 48.925 d2= 0.010 r3= 48.925 d3= 6.087 N2= 1.49700 ν2= 81.61 r4= 466.588 d4= 0.200 r5= 54.762 d5= 3.732 N3= 1.58061 ν3= 60.00 r6= 129.204 d6= 1.000〜24.959〜49.478・ (Gr2) r7= 59.018 d7= 1.000 N4= 1.85000 ν4= 40.04 r8= 11.951 d8= 4.890 r9*= 165.704 d9= 1.000 N5= 1.76743 ν5= 49.48 r10= 20.997 d10= 3.620 r11= -32.860 d11= 1.000 N6= 1.48749 ν6= 70.44 r12= 45.894 d12= 0.900 r13= 32.207 d13= 2.634 N7= 1.84666 ν7= 23.83 r14= -66.968 d14=11.362〜2.000〜1.717・ (Gr3) r15= -19.135 d15= 1.000 N8= 1.74400 ν8= 44.93 r16= -52.236 d16= 0.900 r17= -76.941 d17= 1.209 N9= 1.84666 ν9= 23.83 r18= -40.566 d18=16.592〜6.945〜1.000・ (Gr4) r19= ∞(ST) d19= 0.900・・ (Gr4F) r20= 26.564 d20= 2.151 N10=1.71700 ν10=47.86 r21= -47.612 d21= 0.200 r22= 13.383 d22= 5.602 N11=1.49700 ν11=81.61 r23= -29.265 d23= 0.010 N12=1.51400 ν12=42.83 r24= -29.265 d24= 1.000 N13=1.85000 ν13=40.04 r25= 13.708 d25= 1.397・・ (Gr4R) r26*= 28.083 d26= 1.257 N14=1.76743 ν14=49.48 r27= 88.284 d27= 0.900 r28= 17.144 d28= 3.100 N15=1.49700 ν15=81.61 r29= -22.352 d29= 0.900 r30= 78.400 d30= 1.000 N16=1.80518 ν16=25.43 r31= 12.447 d31= 2.627〜4.244〜23.711・ (Gr5) r32= 20.894 d32= 3.384 N17=1.85000 ν17=40.04 r33= 18.058 d33= 2.334 r34= 22.939 d34= 3.000 N18=1.80610 ν18=40.72 r35= 66.400 d35= 2.178〜11.343〜10.852・ (Gr6) r36= 37.177 d36= 2.994 N19=1.84666 ν19=23.82 r37= 665.908 d37= 0.933・ (PL) r38= ∞ d38= 3.000 N20=1.51680 ν20=64.20 r39= ∞[0049] << Example 4 >> f = 7.20 ~ 22.00 ~ 71.999 FNO = 2.88 ~ 3.50 ~ 4.00  [Radius of curvature] [Space between upper surfaces of axes] [Refractive index] [Abbe number] (Gr1) r1 = 62.948               d1 = 2.000 N1 = 1.84666 ν1 = 23.83 r2 = 48.925               d2 = 0.010 r3 = 48.925               d3 = 6.087 N2 = 1.49700 ν2 = 81.61 r4 = 466.588               d4 = 0.200 r5 = 54.762               d5 = 3.732 N3 = 1.58061 ν3 = 60.00 r6 = 129.204               d6 = 1.000 ~ 24.959 ~ 49.478 ・ (Gr2) r7 = 59.018               d7 = 1.000 N4 = 1.85000 ν4 = 40.04 r8 = 11.951               d8 = 4.890 r9 * = 165.704               d9 = 1.000 N5 = 1.76743 ν5 = 49.48 r10 = 20.997               d10 = 3.620 r11 = -32.860               d11 = 1.000 N6 = 1.48749 ν6 = 70.44 r12 = 45.894               d12 = 0.900 r13 = 32.207               d13 = 2.634 N7 = 1.84666 ν7 = 23.83 r14 = -66.968               d14 = 11.362 ~ 2.000 ~ 1.717 ・ (Gr3) r15 = -19.135               d15 = 1.000 N8 = 1.74400 ν8 = 44.93 r16 = -52.236               d16 = 0.900 r17 = -76.941               d17 = 1.209 N9 = 1.84666 ν9 = 23.83 r18 = -40.566               d18 = 16.592 ~ 6.945 ~ 1.000 ・ (Gr4) r19 = ∞ (ST)               d19 = 0.900 ... (Gr4F) r20 = 26.564               d20 = 2.151 N10 = 1.71700 ν10 = 47.86 r21 = -47.612               d21 = 0.200 r22 = 13.383               d22 = 5.602 N11 = 1.49700 ν11 = 81.61 r23 = -29.265               d23 = 0.010 N12 = 1.51400 ν12 = 42.83 r24 = -29.265               d24 = 1.000 N13 = 1.85000 ν13 = 40.04 r25 = 13.708               d25 = 1.397 ... (Gr4R) r26 * = 28.083               d26 = 1.257 N14 = 1.76743 ν14 = 49.48 r27 = 88.284               d27 = 0.900 r28 = 17.144               d28 = 3.100 N15 = 1.49700 ν15 = 81.61 r29 = -22.352               d29 = 0.900 r30 = 78.400               d30 = 1.000 N16 = 1.80518 ν16 = 25.43 r31 = 12.447               d31 = 2.627 ~ 4.244 ~ 23.711 ・ (Gr5) r32 = 20.894               d32 = 3.384 N17 = 1.85000 ν17 = 40.04 r33 = 18.058               d33 = 2.334 r34 = 22.939               d34 = 3.000 N18 = 1.80610 ν18 = 40.72 r35 = 66.400               d35 = 2.178 ~ 11.343 ~ 10.852 ・ (Gr6) r36 = 37.177               d36 = 2.994 N19 = 1.84666 ν19 = 23.82 r37 = 665.908               d37 = 0.933 ・ (PL) r38 = ∞               d38 = 3.000 N20 = 1.51680 ν20 = 64.20 r39 = ∞

【0050】[第9面(r9)の非球面データ] ε=1.0000,A4= 0.11496557×10-4,A6=-0.87729925×10
-7,A8= 0.19528359×10-9,A10= 0.56304151×10-12 [第26面(r26)の非球面データ] ε=1.0000,A4=-0.65853373×10-4,A6=-0.21049688×10
-6,A8= 0.55298402×10-8,A10=-0.85314238×10-10
[Aspherical surface data of 9th surface (r9)] ε = 1.0000, A4 = 0.11496557 × 10 −4 , A6 = -0.87729925 × 10
-7 , A8 = 0.19528359 × 10 -9 , A10 = 0.56304151 × 10 -12 [Aspherical data of 26th surface (r26)] ε = 1.0000, A4 = -0.65853373 × 10 -4 , A6 = -0.21049688 × 10
-6 , A8 = 0.55298402 × 10 -8 , A10 = -0.85314238 × 10 -10

【0051】 《実施例5》 f=7.20〜22.00〜72.02 FNO=2.88〜3.50〜4.00 [曲率半径] [軸上面間隔] [屈折率] [アッベ数]・ (Gr1) r1= 78.595 d1= 1.500 N1= 1.84666 ν1= 23.83 r2= 58.945 d2= 0.010 N2= 1.51400 ν2= 42.83 r3= 58.945 d3= 6.142 N3= 1.49700 ν3= 81.61 r4= -425.411 d4= 0.200 r5= 43.638 d5= 3.382 N4= 1.61847 ν4= 54.73 r6= 71.157 d6= 1.000〜21.987〜48.062・ (Gr2) r7= 54.427 d7= 1.000 N5= 1.85000 ν5= 40.04 r8= 10.271 d8= 3.022 r9*= 18.665 d9= 1.000 N6= 1.76743 ν6= 49.48 r10= 15.083 d10= 5.512 r11= -15.457 d11= 1.000 N7= 1.48749 ν7= 70.44 r12= 80.830 d12= 0.315 r13= 41.653 d13= 2.175 N8= 1.84666 ν8= 23.83 r14= -89.102 d14=11.107〜3.727〜1.000・ (Gr3) r15= 48.130 d15= 1.000 N9= 1.74400 ν9= 44.93 r16= 22.275 d16= 0.996 r17= 24.623 d17= 1.450 N10=1.84666 ν10=23.83 r18= 55.569 d18=16.222〜4.193〜1.000・ (Gr4) r19= ∞(ST) d19= 0.900・・ (Gr4F) r20= 24.029 d20= 1.996 N11=1.71700 ν11=47.86 r21= -64.036 d21= 0.200 r22= 12.943 d22= 3.472 N12=1.49700 ν12=81.61 r23= -32.987 d23= 0.010 N13=1.51400 ν13=42.83 r24= -32.991 d24= 1.000 N14=1.85000 ν14=40.04 r25= 16.981 d25= 1.342・・ (Gr4R) r26*= 34.855 d26= 1.300 N15=1.76743 ν15=49.48 r27= 1395.303 d27= 0.900 r28= 24.804 d28= 2.300 N16=1.49700 ν16=81.61 r29= -20.520 d29= 0.900 r30= 142.156 d30= 1.000 N17=1.80518 ν17=25.43 r31= 11.535 d31= 4.709〜4.399〜27.529・ (Gr5) r32= 55.519 d32= 3.000 N18=1.85000 ν18=40.04 r33= 388.612 d33= 0.982 r34= 19.880 d34= 4.461 N19=1.80610 ν19=40.72 r35= 22.029 d35= 1.500〜12.146〜9.946・ (Gr6) r36= 36.979 d36= 1.561 N20=1.84666 ν20=23.82 r37= 286.599 d37= 0.985・ (PL) r38= ∞ d38= 3.000 N21=1.51680 ν21=64.20 r39= ∞[0051] << Example 5 >> f = 7.20 ~ 22.00 ~ 72.02 FNO = 2.88 ~ 3.50 ~ 4.00  [Radius of curvature] [Space between upper surfaces of axes] [Refractive index] [Abbe number] (Gr1) r1 = 78.595               d1 = 1.500 N1 = 1.84666 ν1 = 23.83 r2 = 58.945               d2 = 0.010 N2 = 1.51400 ν2 = 42.83 r3 = 58.945               d3 = 6.142 N3 = 1.49700 ν3 = 81.61 r4 = -425.411               d4 = 0.200 r5 = 43.638               d5 = 3.382 N4 = 1.61847 ν4 = 54.73 r6 = 71.157               d6 = 1.000 ~ 21.987 ~ 48.062 (Gr2) r7 = 54.427               d7 = 1.000 N5 = 1.85000 ν5 = 40.04 r8 = 10.271               d8 = 3.022 r9 * = 18.665               d9 = 1.000 N6 = 1.76743 ν6 = 49.48 r10 = 15.083               d10 = 5.512 r11 = -15.457               d11 = 1.000 N7 = 1.48749 ν7 = 70.44 r12 = 80.830               d12 = 0.315 r13 = 41.653               d13 = 2.175 N8 = 1.84666 ν8 = 23.83 r14 = -89.102               d14 = 11.107 ~ 3.727 ~ 1.000 ・ (Gr3) r15 = 48.130               d15 = 1.000 N9 = 1.74400 ν9 = 44.93 r16 = 22.275               d16 = 0.996 r17 = 24.623               d17 = 1.450 N10 = 1.84666 ν10 = 23.83 r18 = 55.569               d18 = 16.222-4.193-1.000 (Gr4) r19 = ∞ (ST)               d19 = 0.900 ... (Gr4F) r20 = 24.029               d20 = 1.996 N11 = 1.71700 ν11 = 47.86 r21 = -64.036               d21 = 0.200 r22 = 12.943               d22 = 3.472 N12 = 1.49700 ν12 = 81.61 r23 = -32.987               d23 = 0.010 N13 = 1.51400 ν13 = 42.83 r24 = -32.991               d24 = 1.000 N14 = 1.85000 ν14 = 40.04 r25 = 16.981               d25 = 1.342 ... (Gr4R) r26 * = 34.855               d26 = 1.300 N15 = 1.76743 ν15 = 49.48 r27 = 1395.303               d27 = 0.900 r28 = 24.804               d28 = 2.300 N16 = 1.49700 ν16 = 81.61 r29 = -20.520               d29 = 0.900 r30 = 142.156               d30 = 1.000 N17 = 1.80518 ν17 = 25.43 r31 = 11.535               d31 = 4.709-4.399-27.529 ・ (Gr5) r32 = 55.519               d32 = 3.000 N18 = 1.85000 ν18 = 40.04 r33 = 388.612               d33 = 0.982 r34 = 19.880               d34 = 4.461 N19 = 1.80610 ν19 = 40.72 r35 = 22.029               d35 = 1.500 ~ 12.146 ~ 9.946 ・ (Gr6) r36 = 36.979               d36 = 1.561 N20 = 1.84666 ν20 = 23.82 r37 = 286.599               d37 = 0.985 (PL) r38 = ∞               d38 = 3.000 N21 = 1.51680 ν21 = 64.20 r39 = ∞

【0052】[第9面(r9)の非球面データ] ε=1.0000,A4= 0.36078097×10-4,A6= 0.75248188×10
-7,A8= 0.82251522×10-9,A10=-0.31563427×10-11 [第26面(r26)の非球面データ] ε=1.0000,A4=-0.76834175×10-4,A6=-0.28806358×10
-6,A8= 0.68470900×10-8,A10=-0.89994473×10-10
[Aspherical surface data of 9th surface (r9)] ε = 1.0000, A4 = 0.36078097 × 10 −4 , A6 = 0.75248188 × 10
-7 , A8 = 0.82251522 × 10 -9 , A10 = -0.31563427 × 10 -11 [Aspherical data of 26th surface (r26)] ε = 1.0000, A4 = -0.76834175 × 10 -4 , A6 = -0.28806358 × 10
-6 , A8 = 0.68470900 × 10 -8 , A10 = -0.89994473 × 10 -10

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【発明の効果】以上説明したように本発明によれば、高
性能で小型・高変倍のズームレンズ系を備えた撮像レン
ズ装置を実現することができる。そして本発明を、デジ
タルカメラ;ビデオカメラ;デジタルビデオユニット,
パーソナルコンピュータ,モバイルコンピュータ,携帯
電話,携帯情報端末(PDA)等に内蔵又は外付けされる
カメラに適用すれば、これらの機器のコンパクト化,高
変倍化及び高性能化に寄与することができる。
As described above, according to the present invention, it is possible to realize an image pickup lens device having a high-performance, compact and highly variable zoom lens system. The present invention can be applied to a digital camera; a video camera; a digital video unit,
When applied to a camera built in or attached to a personal computer, a mobile computer, a mobile phone, a personal digital assistant (PDA), etc., it can contribute to downsizing, high zooming and high performance of these devices. .

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施の形態(実施例1)のレンズ構成図。FIG. 1 is a lens configuration diagram of a first embodiment (Example 1).

【図2】第2の実施の形態(実施例2)のレンズ構成図。FIG. 2 is a lens configuration diagram of a second embodiment (Example 2).

【図3】第3の実施の形態(実施例3)のレンズ構成図。FIG. 3 is a lens configuration diagram of a third embodiment (Example 3).

【図4】第4の実施の形態(実施例4)のレンズ構成図。FIG. 4 is a lens configuration diagram of a fourth embodiment (Example 4).

【図5】第5の実施の形態(実施例5)のレンズ構成図。FIG. 5 is a lens configuration diagram of a fifth embodiment (Example 5).

【図6】実施例1の収差図。FIG. 6 is an aberration diagram of Example 1.

【図7】実施例2の収差図。FIG. 7 is an aberration diagram of Example 2.

【図8】実施例3の収差図。FIG. 8 is an aberration diagram of Example 3.

【図9】実施例4の収差図。FIG. 9 is an aberration diagram of Example 4.

【図10】実施例5の収差図。FIG. 10 is an aberration diagram of Example 5.

【図11】本発明に係る撮像レンズ装置の概略光学構成
を示す模式図。
FIG. 11 is a schematic diagram showing a schematic optical configuration of an imaging lens device according to the present invention.

【符号の説明】[Explanation of symbols]

TL …撮影レンズ系(ズームレンズ系) Gr1 …第1群 Gr2 …第2群 Gr3 …第3群 ST …絞り Gr4 …第4群 Gr5 …第5群 Gr6 …第6群 PL …平行平面板 SR …撮像素子 AX …光軸 TL ... Shooting lens system (zoom lens system) Gr1 ... 1st group Gr2 ... Second group Gr3 ... 3rd group ST… Aperture Gr4 ... 4th group Gr5 ... 5th group Gr6 ... 6th group PL: Parallel plane plate SR: Image sensor AX ... optical axis

フロントページの続き (72)発明者 広瀬 直樹 大阪市中央区安土町二丁目3番13号 大阪 国際ビル ミノルタ株式会社内 (72)発明者 有本 哲也 大阪市中央区安土町二丁目3番13号 大阪 国際ビル ミノルタ株式会社内 (72)発明者 岩澤 嘉人 大阪市中央区安土町二丁目3番13号 大阪 国際ビル ミノルタ株式会社内 (72)発明者 河野 哲生 大阪市中央区安土町二丁目3番13号 大阪 国際ビル ミノルタ株式会社内 Fターム(参考) 2H087 KA03 MA16 PA15 PA18 PB16 PB17 PB18 PB19 QA02 QA06 QA17 QA21 QA25 QA32 QA41 QA45 QA46 RA05 RA12 RA36 RA42 SA43 SA47 SA50 SA52 SA55 SA57 SA62 SA63 SA64 SA65 SA66 SB04 SB14 SB23 SB31 SB37 SB43 Continued front page    (72) Inventor Naoki Hirose             2-3-3 Azuchi-cho, Chuo-ku, Osaka             Kokusai Building Minolta Co., Ltd. (72) Inventor Tetsuya Arimoto             2-3-3 Azuchi-cho, Chuo-ku, Osaka             Kokusai Building Minolta Co., Ltd. (72) Inventor Yoshito Iwasawa             2-3-3 Azuchi-cho, Chuo-ku, Osaka             Kokusai Building Minolta Co., Ltd. (72) Inventor Tetsuo Kono             2-3-3 Azuchi-cho, Chuo-ku, Osaka             Kokusai Building Minolta Co., Ltd. F term (reference) 2H087 KA03 MA16 PA15 PA18 PB16                       PB17 PB18 PB19 QA02 QA06                       QA17 QA21 QA25 QA32 QA41                       QA45 QA46 RA05 RA12 RA36                       RA42 SA43 SA47 SA50 SA52                       SA55 SA57 SA62 SA63 SA64                       SA65 SA66 SB04 SB14 SB23                       SB31 SB37 SB43

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の群から成り各群の間隔を変化させ
ることにより変倍を行うズームレンズ系と、そのズーム
レンズ系により形成された光学像を電気的な信号に変換
する撮像素子と、を備えた撮像レンズ装置であって、 前記ズームレンズ系が、物体側から順に、正のパワーを
有する第1群と、負のパワーを有する第2群と、第3群
と、正のパワーを有する第4群と、正のパワーを有する
第5群と、を備え、変倍の際に少なくとも前記第1群が
移動し、以下の条件式(1)を満足することを特徴とする
撮像レンズ装置; -3.0<f23W/fW<-0.9 …(1) ただし、 f23W:ワイド端での第2群と第3群との合成系の焦点距
離、 fW:ワイド端でのズームレンズ系全体の焦点距離、 である。
1. A zoom lens system comprising a plurality of groups for changing the magnification by changing the distance between the groups, and an image pickup device for converting an optical image formed by the zoom lens system into an electrical signal. In the imaging lens device, the zoom lens system includes, in order from the object side, a first group having a positive power, a second group having a negative power, a third group, and a positive power. An imaging lens comprising: a fourth group having: and a fifth group having a positive power, wherein at least the first group moves during zooming, and the following conditional expression (1) is satisfied. Device: -3.0 <f23W / fW <-0.9 (1) where f23W: focal length of the combined system of the second group and the third group at the wide end, fW: focus of the entire zoom lens system at the wide end The distance is.
【請求項2】 前記第5群の移動によりフォーカシング
を行うことを特徴とする請求項1記載の撮像レンズ装
置。
2. The imaging lens device according to claim 1, wherein focusing is performed by moving the fifth lens unit.
【請求項3】 複数の群から成り各群の間隔を変化させ
ることにより変倍を行うズームレンズ系と、そのズーム
レンズ系により形成された光学像を電気的な信号に変換
する撮像素子と、を備えた撮像レンズ装置であって、 前記ズームレンズ系が、物体側から順に、正のパワーを
有する第1群と、負のパワーを有する第2群と、負のパ
ワーを有する第3群と、変倍の際に固定の最終群と、を
備え、変倍の際に少なくとも前記第1群が移動し、以下
の条件式(1)を満足することを特徴とする撮像レンズ装
置; -3.0<f23W/fW<-0.9 …(1) ただし、 f23W:ワイド端での第2群と第3群との合成系の焦点距
離、 fW:ワイド端でのズームレンズ系全体の焦点距離、 である。
3. A zoom lens system comprising a plurality of groups for varying the magnification by changing the distance between the groups, and an image pickup device for converting an optical image formed by the zoom lens system into an electrical signal. An image pickup lens device comprising: a first group having positive power, a second group having negative power, and a third group having negative power, in order from the object side. , An image pickup lens device characterized by comprising: a fixed final lens unit upon zooming, wherein at least the first lens unit moves upon zooming, and the following conditional expression (1) is satisfied: <F23W / fW <-0.9 (1) where f23W is the focal length of the combined system of the second group and the third group at the wide end, and fW is the focal length of the entire zoom lens system at the wide end. .
【請求項4】 さらに以下の条件式(2)を満足すること
を特徴とする請求項1,2又は3記載の撮像レンズ装
置; 0.03<fW/f1<0.14 …(2) ただし、 f1:第1群の焦点距離、 である。
4. The imaging lens device according to claim 1, wherein the following conditional expression (2) is further satisfied: 0.03 <fW / f1 <0.14 (2) where f1: The focal length of the first group,
【請求項5】 さらに以下の条件式(3)を満足すること
を特徴とする請求項1,2,3又は4記載の撮像レンズ
装置; -0.285<f23W/|f3|<-0.001 …(3) ただし、 f3:第3群の焦点距離、 である。
5. The imaging lens device according to claim 1, 2, 3 or 4, further satisfying the following conditional expression (3): -0.285 <f23W / | f3 | <-0.001 ... (3 ) However, f3 is the focal length of the third lens group.
JP2002090302A 2002-03-28 2002-03-28 Image pickup lens device Pending JP2003287680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002090302A JP2003287680A (en) 2002-03-28 2002-03-28 Image pickup lens device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002090302A JP2003287680A (en) 2002-03-28 2002-03-28 Image pickup lens device

Publications (1)

Publication Number Publication Date
JP2003287680A true JP2003287680A (en) 2003-10-10

Family

ID=29235636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002090302A Pending JP2003287680A (en) 2002-03-28 2002-03-28 Image pickup lens device

Country Status (1)

Country Link
JP (1) JP2003287680A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033867A (en) * 2009-08-03 2011-02-17 Canon Inc Zoom lens and image pickup apparatus including the same
US8023814B2 (en) 2009-01-30 2011-09-20 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8120850B2 (en) 2009-01-30 2012-02-21 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8130453B2 (en) 2009-01-30 2012-03-06 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8190011B2 (en) 2009-01-30 2012-05-29 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
JP2013083930A (en) * 2011-09-30 2013-05-09 Olympus Corp Zoom lens, imaging apparatus using the same, video transmission device and video transmission system
US8471946B2 (en) 2009-01-30 2013-06-25 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
WO2014077120A1 (en) * 2012-11-14 2014-05-22 株式会社ニコン Variable power optical assembly, optical device, and variable power optical assembly fabrication method
JP2014098794A (en) * 2012-11-14 2014-05-29 Nikon Corp Variable power optical system, optical device, and method for manufacturing the variable power optical system
US8891174B2 (en) 2012-09-14 2014-11-18 Canon Kabushiki Kaisha Zoom lens and projector using the same
US8958161B2 (en) 2012-09-14 2015-02-17 Canon Kabushiki Kaisha Zoom lens and projector using the same
JP2015206892A (en) * 2014-04-21 2015-11-19 株式会社ニコン Variable power optical system, optical device, and method for manufacturing the variable power optical system
WO2017094664A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
WO2017094662A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
WO2017094663A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
JP2019113609A (en) * 2017-12-21 2019-07-11 キヤノン株式会社 Zoom lens and image capturing device
US10451858B2 (en) 2014-04-21 2019-10-22 Nikon Corporation Zoom optical system, optical device and method for manufacturing the zoom optical system

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8023814B2 (en) 2009-01-30 2011-09-20 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8120850B2 (en) 2009-01-30 2012-02-21 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8130453B2 (en) 2009-01-30 2012-03-06 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8190011B2 (en) 2009-01-30 2012-05-29 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8471946B2 (en) 2009-01-30 2013-06-25 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
JP2011033867A (en) * 2009-08-03 2011-02-17 Canon Inc Zoom lens and image pickup apparatus including the same
JP2016157140A (en) * 2011-09-30 2016-09-01 オリンパス株式会社 Zoom lens, imaging apparatus using the same, video transmission device, and video transmission system
JP2013083930A (en) * 2011-09-30 2013-05-09 Olympus Corp Zoom lens, imaging apparatus using the same, video transmission device and video transmission system
US8958161B2 (en) 2012-09-14 2015-02-17 Canon Kabushiki Kaisha Zoom lens and projector using the same
US8891174B2 (en) 2012-09-14 2014-11-18 Canon Kabushiki Kaisha Zoom lens and projector using the same
CN104769476A (en) * 2012-11-14 2015-07-08 株式会社尼康 Variable power optical assembly, optical device, and variable power optical assembly fabrication method
JP2014098794A (en) * 2012-11-14 2014-05-29 Nikon Corp Variable power optical system, optical device, and method for manufacturing the variable power optical system
CN107884917B (en) * 2012-11-14 2020-09-15 株式会社尼康 Variable magnification optical system and optical device
WO2014077120A1 (en) * 2012-11-14 2014-05-22 株式会社ニコン Variable power optical assembly, optical device, and variable power optical assembly fabrication method
CN104769476B (en) * 2012-11-14 2017-12-22 株式会社尼康 The manufacture method of variable-power optical system, Optical devices and variable-power optical system
CN107884917A (en) * 2012-11-14 2018-04-06 株式会社尼康 Variable-power optical system and Optical devices
US9983391B2 (en) 2012-11-14 2018-05-29 Nikon Corporation Variable power optical assembly, optical device, and variable power optical assembly fabrication method
US10451858B2 (en) 2014-04-21 2019-10-22 Nikon Corporation Zoom optical system, optical device and method for manufacturing the zoom optical system
JP2015206892A (en) * 2014-04-21 2015-11-19 株式会社ニコン Variable power optical system, optical device, and method for manufacturing the variable power optical system
US11385446B2 (en) 2014-04-21 2022-07-12 Nikon Corporation Zoom optical system, optical device and method for manufacturing the zoom optical system
WO2017094663A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
CN108369327A (en) * 2015-11-30 2018-08-03 株式会社尼康 The manufacturing method of variable-power optical system, optical device and variable-power optical system
JPWO2017094662A1 (en) * 2015-11-30 2018-09-13 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JPWO2017094663A1 (en) * 2015-11-30 2018-09-13 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JPWO2017094664A1 (en) * 2015-11-30 2018-09-13 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
CN108292028A (en) * 2015-11-30 2018-07-17 株式会社尼康 The manufacturing method of variable-power optical system, optical device and variable-power optical system
US10761306B2 (en) 2015-11-30 2020-09-01 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
US10761304B2 (en) 2015-11-30 2020-09-01 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
WO2017094662A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
US10831006B2 (en) 2015-11-30 2020-11-10 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
WO2017094664A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
JP2019113609A (en) * 2017-12-21 2019-07-11 キヤノン株式会社 Zoom lens and image capturing device
US10969564B2 (en) 2017-12-21 2021-04-06 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus

Similar Documents

Publication Publication Date Title
JP3391342B2 (en) Imaging lens device
JP3433734B2 (en) Imaging lens device
JP4845502B2 (en) Optical system and optical apparatus having the same
JP4898410B2 (en) Zoom lens and imaging apparatus having the same
US7864445B2 (en) Zoom lens and image pickup apparatus including the same
US6456443B2 (en) Zoom lens system
US7408583B2 (en) Taking lens apparatus
US7777951B2 (en) Zoom lens and image pickup apparatus including the same
JP3417396B2 (en) Imaging lens device
JP2002098893A (en) Imaging lens device
JP4829586B2 (en) Zoom lens and imaging apparatus having the same
JP5043471B2 (en) Zoom lens and optical apparatus having the same
JP2001350093A (en) Image pickup lens device
JP2001343588A (en) Image pickup lens device
JP4928165B2 (en) Zoom lens and imaging apparatus having the same
JP2007316288A (en) Zoom lens and imaging apparatus using the same
US20080165428A1 (en) Zoom lens and image capture apparatus
JP2003287680A (en) Image pickup lens device
JPH11119101A (en) Zoom lens system
US20180267279A1 (en) Variable magnification optical system and image pickup apparatus using the same
US20050013016A1 (en) Imaging lens device
JP2009037037A (en) Zoom lens and image pickup device having it
JP4708734B2 (en) Zoom lens and imaging apparatus having the same
JP4908887B2 (en) Fish eye attachment
US6373638B1 (en) Image taking optical system and reduction optical system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20050615

Free format text: JAPANESE INTERMEDIATE CODE: A712

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20051018