JPH10319176A - Neutron absorber alloy - Google Patents

Neutron absorber alloy

Info

Publication number
JPH10319176A
JPH10319176A JP9148705A JP14870597A JPH10319176A JP H10319176 A JPH10319176 A JP H10319176A JP 9148705 A JP9148705 A JP 9148705A JP 14870597 A JP14870597 A JP 14870597A JP H10319176 A JPH10319176 A JP H10319176A
Authority
JP
Japan
Prior art keywords
neutron
titanium
alloy
gadolinium
hafnium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9148705A
Other languages
Japanese (ja)
Other versions
JP3128620B2 (en
Inventor
Masayuki Hayashi
正之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP09148705A priority Critical patent/JP3128620B2/en
Publication of JPH10319176A publication Critical patent/JPH10319176A/en
Application granted granted Critical
Publication of JP3128620B2 publication Critical patent/JP3128620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and cheaply obtain neutron absorber material superior in neutron absorbing ability, relative strength, corrosion resistivity and processability by adding a specific amount of Hf and Gd in titanium as a parent material. SOLUTION: The neutron absorber alloy of this invention is obtained by adding hafnium and gadolinium of 2 to 40 wt.% so as to be the sum of them in the range of 4 to 50 wt.% in titanium or its alloy as a parent material. Since titanium is superior in relative strength, corrosion resistivity and fabrication capability, does not produce harmful intermetallic compound with hafnium or gadolinium and can contained a plenty of hafnium and gadolinium, a neutron absorber material having more superior neutron absorbing capability than before and superior also in relative strength, corrosion resistivity and processability can be produced easily and cheaply without using any special production method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば原子燃料加
工工場、再処理工場、発電所等の燃料貯蔵設備、燃料輸
送容器等に用いて好適な中性子吸収合金に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a neutron absorbing alloy suitable for use in a fuel storage facility such as a nuclear fuel processing plant, a reprocessing plant, a power plant, a fuel transport container, and the like.

【0002】[0002]

【従来の技術】使用済燃料を取り扱う施設の設備には、
使用済燃料の中性子を吸収するために、ステンレス鋼に
ボロンを1重量%程度添加したボロン入りステンレス鋼
やアルミとB4 Cの複合材であるボラールが用いられて
いる。
2. Description of the Related Art Facilities of a facility that handles spent fuel include:
In order to absorb neutrons of spent fuel, boron-containing stainless steel obtained by adding about 1% by weight of boron to stainless steel and boral, which is a composite material of aluminum and B 4 C, are used.

【0003】上記ボロン入りステンレス鋼では、ボロン
の含有率を上げるほど中性子吸収能力が高まるが、この
ボロン含有率が1重量%を越えるとステンレス鋼の延性
や靱性が大幅に低下する。具体的には製造時の熱間圧延
でクラックが生じ易く、また加工が著しく困難であるこ
とから歩留りが悪く、その結果、価格が高くなるという
問題がある。
[0003] In the above-mentioned boron-containing stainless steel, the neutron absorption capacity increases as the boron content increases. However, when the boron content exceeds 1% by weight, the ductility and toughness of the stainless steel are significantly reduced. Specifically, there is a problem that cracks are easily generated in hot rolling at the time of production, and the yield is low because the processing is extremely difficult. As a result, the price increases.

【0004】また、このボロン含有率を高めたステンレ
ス鋼は、上記の如く延性や靱性が小さいことから衝撃に
弱く、構造材として不適当であり、さらにボロン濃度が
上がると耐食性が悪くなり、水中での使用が困難になる
という問題を有している。
[0004] Further, the stainless steel having a high boron content is susceptible to impacts due to its low ductility and toughness as described above, and is unsuitable as a structural material. There is a problem that it becomes difficult to use such a device.

【0005】一方、前記ボラールは中性子吸収能力に優
れているが、粉末焼結体として用いるため、部材として
曲げなどの加工ができず、また強度や延性に劣るため構
造材として不適当であり、さらに耐食性にも劣ってい
る。
On the other hand, the above-mentioned boral is excellent in neutron absorption ability, but cannot be processed as a member because it is used as a powder sintered body, and is unsuitable as a structural material due to poor strength and ductility. Further, it has poor corrosion resistance.

【0006】[0006]

【発明が解決しようとする課題】ところで、中性子吸収
特性のすぐれた物質はRh、In、Hf、Ir、Sm、
Eu、Gd、Dy、Er、Cd、Hg及びBであるが、
このうちCd、Hgは人体への毒性が強いこと、Rh、
Irは貴金属で価格が高いこと等の理由で中性子吸収材
への使用は適さない。また、その他の元素でも大量に産
出しないか、或いは価格が高い等の理由で実用に供せな
いものもあり、中性子吸収材に適した材料はHf、S
m、Gd、Dy、Er及びBのみである。このうち、G
dは熱エネルギー群の中性子を極めて良く吸収するが、
高速エネルギーの中性子の吸収は極めて小さい。またH
fはこの逆である。そこで、この2種類を複合的に使用
することにより、極めて優れた中性子吸収能力を持つ合
金を製造することが可能となる。
The substances having excellent neutron absorption properties are Rh, In, Hf, Ir, Sm,
Eu, Gd, Dy, Er, Cd, Hg and B,
Among them, Cd and Hg are highly toxic to the human body, Rh,
Ir is not suitable for use as a neutron absorber because it is a noble metal and is expensive. In addition, some other elements do not produce in large quantities or cannot be put to practical use because of their high price. Materials suitable for the neutron absorber are Hf, S
m, Gd, Dy, Er and B only. Of these, G
d absorbs the neutrons of the thermal energy group very well,
Fast energy neutron absorption is extremely small. Also H
f is the opposite. Therefore, by using these two types in combination, it is possible to produce an alloy having an extremely excellent neutron absorption capacity.

【0007】しかしながら、これらGd及びHfをステ
ンレス鋼に含有させると、ステンレス鋼中のNiと結合
して低融点の金属間加工物を作り、ステンレス鋼の加工
性および耐食性が著しく悪化する。
However, when these Gd and Hf are contained in stainless steel, they combine with Ni in the stainless steel to form a low-melting intermetallic workpiece, and the workability and corrosion resistance of the stainless steel are significantly deteriorated.

【0008】本発明は叙上の如き実状に対処し、所要量
のHfとGdとを夫々チタンに含有させることにより、
優れた中性子吸収能力を備えると共に機械加工も容易で
構造材に適し、かつ耐食性に優れた中性子吸収材を簡便
かつ安価に得ることを目的とするものである。
[0008] The present invention addresses the above-described situation, and includes the required amounts of Hf and Gd in titanium, respectively,
An object of the present invention is to provide a neutron absorbing material having excellent neutron absorbing ability, easy to machine, suitable for a structural material, and excellent in corrosion resistance, easily and inexpensively.

【0009】[0009]

【課題を解決するための手段】すなわち、上記目的に適
合する本発明の中性子吸収合金の特徴は、チタンを母材
として、2〜40重量%のハフニウム(Hf)と2〜4
0重量%のガドリニウム(Gd)とを、これらハフニウ
ムとガドリニウムの合計が合金全体の4〜50重量%と
なる範囲で夫々添加せしめたところにある。
That is, the feature of the neutron absorbing alloy of the present invention that meets the above-mentioned object is that titanium is used as a base material, and that 2 to 40% by weight of hafnium (Hf) and 2 to 4% by weight are used.
0% by weight of gadolinium (Gd) is added in such a range that the sum of these hafnium and gadolinium is 4 to 50% by weight of the whole alloy.

【0010】[0010]

【作用】上記本発明の中性子吸収合金においては、母材
となるチタンが比強度、耐食性及び加工性に優れると共
に、HfおよびGdとの間に有害な金属間化合物を生成
せず、これらHf及びGdを多量に含有しうることか
ら、従来より優れた中性子吸収能力を備え、かつ比強
度、耐食性及び加工性に優れた中性子吸収材を通常の熱
間加工や冷間加工などにより簡便かつ安価に製造するこ
とが可能である。
In the neutron absorbing alloy of the present invention, titanium as a base material is excellent in specific strength, corrosion resistance and workability, and does not form harmful intermetallic compounds between Hf and Gd. Because it can contain a large amount of Gd, it is easy and inexpensive to provide a neutron absorbing material with superior neutron absorption capacity than before and excellent in specific strength, corrosion resistance and workability by ordinary hot working and cold working. It is possible to manufacture.

【0011】[0011]

【発明の実施の形態】以下さらに本発明の実施の形態を
説明する。
Embodiments of the present invention will be described below.

【0012】純チタンに対しハフニウム(Hf)および
ガドリニウム(Gd)の含有量を種々変化させたチタン
合金を夫々溶製して、各合金ごとに熱間圧延及び熱処理
により厚さ5mmの板材を製造し、これら板材の中性子
吸収能力、加工性、耐食性及び比強度について各々調査
した。その結果を下記表1に示す。なお、同表において
は、従来の1%ボロン含有ステンレス鋼を基準として、
これに比較し特に優れるものを◎、優れるものを○、同
等を△、劣るを×とした。 (以下余白)
[0012] Titanium alloys in which the content of hafnium (Hf) and gadolinium (Gd) are variously changed with respect to pure titanium are smelted, respectively, and a sheet material having a thickness of 5 mm is produced for each alloy by hot rolling and heat treatment. Then, the neutron absorption capacity, workability, corrosion resistance and specific strength of these sheet materials were examined. The results are shown in Table 1 below. In the table, based on the conventional stainless steel containing 1% boron,
In comparison with this, particularly excellent was evaluated as ◎, excellent was evaluated as ○, equivalent was evaluated as Δ, and poor was evaluated as ×. (Below)

【0013】[0013]

【表1】 [Table 1]

【0014】表中の中性子吸収能力は熱〜高速中性子領
域での吸収能力、加工性は熱間加工時の割れの程度、耐
食性は高温ホウ酸水中での腐食量、比強度は常温条件で
の強度を夫々従来の1%ボロン含有ステンレス鋼と比較
した結果である。
The neutron absorption capacity in the table is the absorption capacity in the thermal to high-speed neutron range, the workability is the degree of cracking during hot working, the corrosion resistance is the amount of corrosion in high-temperature boric acid water, and the specific strength is the value at room temperature. It is the result which compared each strength with the conventional stainless steel containing 1% boron.

【0015】本発明の各実施例によれば、従来の1%ボ
ロン含有ステンレス鋼に比較して、優れた中性子吸収能
力、加工性、耐食性及び比強度を備えた中性子吸収材用
チタン合金が得られることがわかる。
According to the embodiments of the present invention, a titanium alloy for a neutron absorbing material having excellent neutron absorbing ability, workability, corrosion resistance and specific strength as compared with the conventional 1% boron-containing stainless steel is obtained. It is understood that it is possible.

【0016】なお、Hfが2〜40重量%、Gdが2〜
40重量%とするのは、これらHfおよびGdが各々2
重量%未満では表に示すように中性子吸収能力が不充分
となり、40重量%を越えると逆に加工性と耐食性が悪
化するとの理由による。また、上記HfとGdの合計に
ついても同様であり、これらの合計が4重量%未満では
中性子吸収能力が不充分となり、50重量%を越えると
加工性と耐食性が悪化する。
Incidentally, Hf is 2 to 40% by weight and Gd is 2 to 40% by weight.
The reason why the content of Hf and Gd is 2 wt% is 40 wt%.
If the amount is less than 40% by weight, the neutron absorption capacity becomes insufficient as shown in the table, and if the amount exceeds 40% by weight, workability and corrosion resistance deteriorate. The same applies to the sum of Hf and Gd. If the sum is less than 4% by weight, the neutron absorption capacity will be insufficient, and if it exceeds 50% by weight, workability and corrosion resistance will deteriorate.

【0017】以上、本発明の実施形態について説明した
が、本発明の中性子吸収合金においては板材などへの加
工が一般の熱間加工や冷間加工で簡便に行えると共に、
使用形態もこの板材を曲げ加工しそのまま構造材として
用いたり、薄板状にして例えばステンレス鋼の表面に貼
り複合材として用いることも可能である。また、母材と
してのチタンは、特にその純度を規定するものではない
が、少なくとも工業用純チタンと同等の純度が望まし
い。また、用途に応じてチタン合金を用いることも可能
である。
Although the embodiment of the present invention has been described above, the neutron absorbing alloy of the present invention can be easily processed into a sheet material by general hot working or cold working, and
In use, it is also possible to bend this plate material and use it as it is as a structural material, or to form a thin plate and attach it to, for example, the surface of stainless steel and use it as a composite material. The purity of titanium as a base material is not particularly limited, but it is preferable that the purity is at least equivalent to that of pure titanium for industrial use. Further, it is also possible to use a titanium alloy depending on the application.

【0018】[0018]

【発明の効果】以上説明したように、本発明の中性子吸
収合金は、チタンまたはその合金を母材として、2〜4
0重量%のハフニウムとガドリニウムとを、これらの合
計が4〜50重量%となる範囲で夫々添加せしめたもの
であり、上記チタンが比強度や耐食性および加工性に優
れると共にハフニウムやガドリニウムとの間に有害な金
属間化合物を生成せず、これらハフニウムおよびガドリ
ニウムを多量に含有しうることから、従来よりも優れた
中性子吸収能力を有し、かつ比強度、耐食性および加工
性に優れた中性子吸収材を、特殊な製造方法によらず簡
便かつ安価に製造せしめるとの顕著な効果を奏するもの
である。
As described above, the neutron absorbing alloy of the present invention uses titanium or its alloy as a base material,
0% by weight of hafnium and gadolinium are added to each other in a range of a total of 4 to 50% by weight, and the titanium has excellent specific strength, corrosion resistance and workability, and has a good balance between hafnium and gadolinium. A neutron absorbing material that does not generate harmful intermetallic compounds and can contain a large amount of these hafnium and gadolinium, so that it has a better neutron absorbing ability than before and has excellent specific strength, corrosion resistance and workability Has a remarkable effect that it can be simply and inexpensively manufactured without using a special manufacturing method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チタンを母材として、2〜40重量%の
ハフニウムと2〜40重量%のガドリニウムとを、これ
らハフニウムとガドリニウムの合計が合金全体の4〜5
0重量%となる範囲で夫々添加せしめたことを特徴とす
る中性子吸収合金。
1. Using titanium as a base material, 2 to 40% by weight of hafnium and 2 to 40% by weight of gadolinium, and the total of hafnium and gadolinium is 4 to 5% of the entire alloy.
A neutron-absorbing alloy, characterized by being added in an amount of 0% by weight.
JP09148705A 1997-05-21 1997-05-21 Neutron absorbing alloy Expired - Fee Related JP3128620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09148705A JP3128620B2 (en) 1997-05-21 1997-05-21 Neutron absorbing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09148705A JP3128620B2 (en) 1997-05-21 1997-05-21 Neutron absorbing alloy

Publications (2)

Publication Number Publication Date
JPH10319176A true JPH10319176A (en) 1998-12-04
JP3128620B2 JP3128620B2 (en) 2001-01-29

Family

ID=15458761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09148705A Expired - Fee Related JP3128620B2 (en) 1997-05-21 1997-05-21 Neutron absorbing alloy

Country Status (1)

Country Link
JP (1) JP3128620B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483132C2 (en) * 2011-04-21 2013-05-27 Общество с ограниченной ответственностью "МетИнвест" Titanium-based alloy for absorption of heat neutrons
CN115011839A (en) * 2022-06-16 2022-09-06 上海大学 Titanium-gadolinium alloy material for nuclear shielding, and preparation method and application thereof
WO2024019408A1 (en) * 2022-07-19 2024-01-25 한국원자력연구원 Alloy composition of titanium-gadolinium alloy with excellent neutron absorption ability and tensile properties and neutron absorbing structural material manufactured by using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483132C2 (en) * 2011-04-21 2013-05-27 Общество с ограниченной ответственностью "МетИнвест" Titanium-based alloy for absorption of heat neutrons
CN115011839A (en) * 2022-06-16 2022-09-06 上海大学 Titanium-gadolinium alloy material for nuclear shielding, and preparation method and application thereof
WO2024019408A1 (en) * 2022-07-19 2024-01-25 한국원자력연구원 Alloy composition of titanium-gadolinium alloy with excellent neutron absorption ability and tensile properties and neutron absorbing structural material manufactured by using same

Also Published As

Publication number Publication date
JP3128620B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
CN102605213B (en) Germanium-containing Zr-Sn-Nb alloy for fuel cladding of nuclear power station
EP0225226B1 (en) Aluminum alloy with superior thermal neutron absorptivity
US4963323A (en) Highly corrosion-resistant zirconium alloy for use as nuclear reactor fuel cladding material
US3261682A (en) Zirconium alloys containing cerium and yttrium
US3677723A (en) Composite material of vanadium alloys and iron or nickel alloys
US5196163A (en) Highly corrosion-resistant zirconium alloy for use as nuclear reactor fuel cladding material
US4865645A (en) Nuclear radiation metallic absorber
JP3128620B2 (en) Neutron absorbing alloy
JP2013024566A (en) Radiation shield material and radiation-shielded structure
JPH01168833A (en) Boron-containing titanium alloy
KR910007461B1 (en) Nuclear - radiation absorber
US3015559A (en) Oxidation resistant chromium alloy
DuPont et al. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications-Part I: stainless steel alloys
JP4086331B2 (en) Alloys to improve the corrosion resistance of nuclear reactor components
EP0770694A1 (en) Super heat-resisting Mo-based alloy and method of producing same
CN103451473A (en) Zirconium alloy containing copper and germanium for nuclear power plant fuel cladding
Geanta et al. Hafnium influence on the microstructure of FeCrAl alloys
CN103643083A (en) Zr-Sn alloy containing copper and germanium for nuclear power station fuel cladding
RU2688086C1 (en) Alloy for absorption of thermal neutrons based on zirconium
US20050135960A1 (en) Material including beryllium intermetallic compound and having excellent high-temperature property applied to nuclear fusion reactor
RU2698309C1 (en) Aluminum-based composite material (versions) and article made therefrom
Davis et al. The impact of hydrogen in a fusion reactor environment on titanium alloys
JPH066767B2 (en) Ti-based alloy with excellent neutron absorption
Saad et al. Fabrication, microstructural modifications, elastic properties and radiation attenuation performance of ZnO nano-sized particles-reinforced Pb-based alloys for radiation shielding applications
CN105018794A (en) Zirconium/niobium/copper/bismuth alloy for fuel cladding of nuclear power plant

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000926

LAPS Cancellation because of no payment of annual fees