JPH10318922A - Infrared gas analyzer - Google Patents

Infrared gas analyzer

Info

Publication number
JPH10318922A
JPH10318922A JP12654097A JP12654097A JPH10318922A JP H10318922 A JPH10318922 A JP H10318922A JP 12654097 A JP12654097 A JP 12654097A JP 12654097 A JP12654097 A JP 12654097A JP H10318922 A JPH10318922 A JP H10318922A
Authority
JP
Japan
Prior art keywords
gas
infrared
sample cell
sample
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12654097A
Other languages
Japanese (ja)
Inventor
Katsuhiko Araya
克彦 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP12654097A priority Critical patent/JPH10318922A/en
Publication of JPH10318922A publication Critical patent/JPH10318922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure modulating-type infrared gas analyzer capable of performing stable measurements even when the intensity of infrared light changes, the sensitivity of a detector changes, or stain is present on the inner surface of a cell. SOLUTION: An infrared light source 3 is lighted to irradiate a sample cell 1 with infrared rays from the infrared light source 3, and in the state that a sample gas is in the sample cell 1 by the activation of a pump 9, a control circuit 13 executes the on-off control of a solenoid valve 7 to change the pressure in the sample cell 1. At this time, a motor 12 is driven to rotate in synchronization with the solenoid valve 7 by a.c. signals of the same period as the on-off period of the solenoid valve 7 to repeat the entrance and interruption of infrared rays to be entered into the sample cell 1 in synchronization with the solenoid valve 7. Then, a signal processing unit 5 to which the output of a detector 4 is inputted integrates each area of a positive part of every signal of detector signals in synchronization with the interruption of infrared rays, obtains the ratio of the integrated values, and computes the concentration of a gas from its value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、赤外線の吸収特性
を利用してガスに含まれる特定成分の濃度を測定する赤
外線ガス分析計、特に、試料セル内の試料ガスの圧力を
変化させる圧力変調方式の赤外線ガス分析計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared gas analyzer for measuring the concentration of a specific component contained in a gas by utilizing infrared absorption characteristics, and more particularly to a pressure modulation method for changing the pressure of a sample gas in a sample cell. It relates to an infrared gas analyzer of the type.

【0002】[0002]

【従来の技術】赤外線ガス分析計において、圧力変調方
式はチョッパ方式、流体切替方式とともに、交流信号を
取り出すための手段として良く知られており、チョッパ
方式等と比べて光学調整が不要でかつゼロガスを用いる
必要もないので極めて実用的である。
2. Description of the Related Art In an infrared gas analyzer, a pressure modulation method is well known as a means for extracting an AC signal together with a chopper method and a fluid switching method. It is very practical because it is not necessary to use.

【0003】この圧力変調方式の赤外線ガス分析計の従
来の一例を図4に示す。図4に示すように、試料ガスが
導入される試料セル21の一方の端面側に赤外光源22
を、他方の端面側には検出器23を設けている。試料セ
ル21は円筒状のセルであって、その側面内側を鏡面に
加工し、両端面に赤外光を透過するガラス窓を設けてい
る。また、この試料セル21には圧力センサ24が設け
られ、試料セル21内の圧力が検出される。試料セル2
1には試料ガスが流されるが、この試料ガスの圧力を変
化させるために試料ガスの導入路に電磁弁25が設けら
れている。
FIG. 4 shows an example of a conventional pressure modulation type infrared gas analyzer. As shown in FIG. 4, an infrared light source 22 is provided on one end face side of a sample cell 21 into which a sample gas is introduced.
And a detector 23 is provided on the other end face side. The sample cell 21 is a cylindrical cell whose inside surface is processed into a mirror surface, and glass windows that transmit infrared light are provided on both end surfaces. The sample cell 21 is provided with a pressure sensor 24, and detects the pressure in the sample cell 21. Sample cell 2
A sample gas is flowed through 1, and an electromagnetic valve 25 is provided in the sample gas introduction path in order to change the pressure of the sample gas.

【0004】この従来の圧力変調方式の赤外線ガス分析
計において、光源22からの赤外光が、試料セル21の
一端から投射され、試料セル21内の試料ガスを通過し
た後、検出器23によって受光される。検出器23では
試料ガスに含まれる測定対象成分に対応する吸収波長帯
の赤外光(透過光強度)が検出されるが、この透過光強
度は試料ガスに含まれる特定成分の密度に応じて変化す
る。このとき、試料セル21の入口前に設けられた電磁
弁25をオンオフ制御することにより、図5(a)に示
すように試料セル21内の圧力がサイクリックに変調さ
れ、検出器23より図5(b)に示すような交流信号を
得ることができる。
In this conventional pressure modulation type infrared gas analyzer, infrared light from a light source 22 is projected from one end of a sample cell 21 and passes through a sample gas in the sample cell 21, and then is detected by a detector 23. Received. The detector 23 detects infrared light (transmitted light intensity) in an absorption wavelength band corresponding to the component to be measured contained in the sample gas, and the transmitted light intensity varies depending on the density of the specific component contained in the sample gas. Change. At this time, the pressure in the sample cell 21 is cyclically modulated as shown in FIG. 5A by turning on / off the electromagnetic valve 25 provided in front of the entrance of the sample cell 21, and An AC signal as shown in FIG. 5 (b) can be obtained.

【0005】[0005]

【発明が解決しようとする課題】従来の圧力変調方式の
赤外線ガス分析計は以上のように構成されているが、通
常検出器としてコンデンサマイクロフォン型赤外線検出
器が使用されており、この検出器は微分型で光強度の変
化があった場合に検出信号が出力され、図5(b)に示
すように電磁弁の開閉周期と同じ周期の交流信号が得ら
れる。この交流信号の振幅から試料ガスの特定成分の濃
度が測定できるが、この交流信号の振幅は、試料濃度が
一定であっても、赤外光源の経時的な強度変化、検出器
の感度変化、セル内面の汚れなどによって変化するの
で、安定性に欠けるという問題があった。
The conventional pressure-modulated infrared gas analyzer is constructed as described above, but a condenser microphone type infrared detector is usually used as a detector. When there is a change in light intensity in the differential type, a detection signal is output, and as shown in FIG. 5B, an AC signal having the same cycle as the opening and closing cycle of the solenoid valve is obtained. The concentration of a specific component of the sample gas can be measured from the amplitude of the AC signal.The amplitude of the AC signal is such that the intensity of the infrared light source changes over time, the sensitivity of the detector changes, There is a problem that the stability is lacking because it changes depending on the stain on the inner surface of the cell.

【0006】本発明は、このような事情に鑑みてなされ
たものであって、赤外光の強度変化、検出器の感度変
化、セル内面の汚れなどがあっても安定して測定を行う
ことができる圧力変調方式の赤外線ガス分析計を提供す
ることを目的とする。
[0006] The present invention has been made in view of such circumstances, and it is intended to stably measure even if there is a change in the intensity of infrared light, a change in the sensitivity of a detector, or a stain on the inner surface of a cell. It is an object of the present invention to provide a pressure modulation type infrared gas analyzer capable of performing the above-mentioned steps.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の赤外線ガス分析計は、試料ガスによる赤外
線の吸収特性を利用してガス中に含まれる特定成分の濃
度を測定する赤外線ガス分析計において、試料ガスが入
る試料セルと、試料セルに赤外光を投射する光源と、試
料セルを通過した光の強度を検出する検出手段と、試料
セル内の試料ガスの圧力を変化させ二つの異なる圧力を
設定することができる圧力制御手段と、赤外光を圧力変
化と同期して断続して入射させる光断続手段と、二つの
異なる圧力における検出値の比に基づき、試料ガスに含
まれる特定成分の濃度を算出する算出手段とを備えるこ
とを特徴とする。
In order to achieve the above object, an infrared gas analyzer according to the present invention is an infrared gas analyzer for measuring the concentration of a specific component contained in a gas by utilizing the infrared absorption characteristics of a sample gas. In a gas analyzer, a sample cell into which a sample gas enters, a light source that projects infrared light onto the sample cell, a detection unit that detects the intensity of light that has passed through the sample cell, and changes the pressure of the sample gas in the sample cell Pressure control means capable of setting two different pressures, light intermittent means for intermittently inputting infrared light in synchronization with a pressure change, and a sample gas based on a ratio of detection values at two different pressures. And a calculating means for calculating the concentration of the specific component contained in.

【0008】本発明の赤外線ガス分析計は上記のように
構成されており、赤外光を周期的に遮る光断続手段と試
料セル内の試料ガスの圧力を変化させる圧力制御手段と
の同期をとることによって、二つの圧力状態でそれぞれ
赤外光をパルス状に入射させてそれぞれの出力を分離し
て取り出し、この二つの出力の比よりガス濃度を測定す
るので、安定した測定値を得ることができる。
The infrared gas analyzer of the present invention is configured as described above, and synchronizes the light interrupting means for periodically blocking infrared light with the pressure control means for changing the pressure of the sample gas in the sample cell. By taking infrared light in a pulsed manner at each of the two pressure states, the output is separated and taken out, and the gas concentration is measured from the ratio of these two outputs. Can be.

【0009】[0009]

【発明の実施の形態】本発明の赤外線ガス分析計の一実
施例を図1により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the infrared gas analyzer of the present invention will be described with reference to FIG.

【0010】図1において、1は円筒状の試料セルで、
その側面内側は鏡面に加工されており、両端は赤外光透
過性材料よりなる窓材で封止されている。また、この試
料セル1にはガスの導入口1a、導出口1bが開設され
ているとともに、試料セル1内の圧力を検出するために
圧力センサ2が設けられている。3は試料セル1の一側
に設けられる赤外光源、4は試料セル1の他側に設けら
れる赤外線検出器で、その出力は信号処理回路5に入力
される。
In FIG. 1, reference numeral 1 denotes a cylindrical sample cell,
The inside of the side surface is processed into a mirror surface, and both ends are sealed with a window material made of an infrared light transmitting material. The sample cell 1 has a gas inlet 1a and a gas outlet 1b, and a pressure sensor 2 for detecting the pressure in the sample cell 1. Reference numeral 3 denotes an infrared light source provided on one side of the sample cell 1, and 4 denotes an infrared detector provided on the other side of the sample cell 1, the output of which is input to the signal processing circuit 5.

【0011】6はガス導入口1aに接続部材を介して接
続される試料ガスの供給流路で、その途中に電磁弁7が
設けられている。8はガス導出口1bに接続部材を介し
て接続される試料ガスの排出流路で、その途中にポンプ
9及びニードル弁10が配置されている。11は図2に
示すような回転セクタであり、モータ12により回転駆
動される。13は制御回路であり、信号処理回路5、電
磁弁7及びモータ12を制御する。
Reference numeral 6 denotes a sample gas supply passage connected to the gas inlet 1a via a connecting member, and an electromagnetic valve 7 is provided in the middle thereof. Reference numeral 8 denotes a sample gas discharge passage connected to the gas outlet 1b via a connection member, and a pump 9 and a needle valve 10 are arranged in the middle thereof. Reference numeral 11 denotes a rotating sector as shown in FIG. A control circuit 13 controls the signal processing circuit 5, the solenoid valve 7, and the motor 12.

【0012】次に、図1の赤外線ガス分析計の動作を説
明する。赤外光源3を点灯して赤外光源3からの赤外線
を試料セル1に照射するとともに、ポンプ9を作動させ
て試料ガスを試料セル1に流通させた状態で、制御回路
13によって電磁弁7を例えば1Hzの周期でオンオフ
させると、流体変調が行われ、試料セル1内の圧力は図
3(a)のように変化する。このとき、モータ12が制
御回路13によって電磁弁7のオンオフ周期と同じ周期
の交流信号によって電磁弁7と同期して回転駆動される
ので、試料セル1に入射する赤外線が図3(b)に示す
ように、電磁弁7と同期して入射、遮断を繰り返す。
Next, the operation of the infrared gas analyzer of FIG. 1 will be described. While the infrared light source 3 is turned on to irradiate the sample cell 1 with infrared light from the infrared light source 3, the pump 9 is operated to allow the sample gas to flow through the sample cell 1. Is turned on and off at a cycle of, for example, 1 Hz, fluid modulation is performed, and the pressure in the sample cell 1 changes as shown in FIG. At this time, the motor 12 is rotationally driven by the control circuit 13 in synchronization with the electromagnetic valve 7 by an AC signal having the same cycle as the ON / OFF cycle of the electromagnetic valve 7, so that the infrared light incident on the sample cell 1 is as shown in FIG. As shown, the incidence and cutoff are repeated in synchronization with the electromagnetic valve 7.

【0013】一方、測定対象成分に対応する吸収波長の
赤外光を検出する検出器4では、試料ガスに含まれる特
定成分(測定対象成分)に対応する吸収波長帯の赤外光
(透過光強度)が検出されるので、検出器4の出力に
は、図3(c)に示すように、赤外線の断続に同期して
その時の測定対象成分の濃度に応じた出力が得られる。
この信号が入力される信号処理回路5は制御回路13か
らの制御信号により赤外線の断続に同期して検出器信号
の信号毎の正の部分の面積をそれぞれ積分して求めるこ
とにより、二つの圧力状態の信号を分離して取り出す。
そして、信号処理回路5はこれらの信号の比を求め、そ
の値よりガス濃度を演算する。
On the other hand, the detector 4 for detecting infrared light having an absorption wavelength corresponding to the component to be measured has infrared light (transmitted light) in an absorption wavelength band corresponding to a specific component (component to be measured) contained in the sample gas. 3), an output corresponding to the concentration of the component to be measured at that time is obtained from the output of the detector 4 in synchronization with the intermittent infrared rays, as shown in FIG.
The signal processing circuit 5, to which this signal is input, integrates and calculates the area of the positive portion of each signal of the detector signal in synchronization with the intermittent infrared rays according to the control signal from the control circuit 13, thereby obtaining two pressures. Separate and extract the state signal.
Then, the signal processing circuit 5 calculates the ratio of these signals and calculates the gas concentration from the value.

【0014】ここで、試料セル1の透過光強度は試料ガ
スに含まれる特定成分の密度(単位体積中に含まれる特
定成分の量)に応じた値となっているが、密度は試料ガ
スの温度や圧力によって変化するものであり、ガス分析
で最終的に求めたいのは温度や圧力に依存しない体積濃
度である。試料セル1への入射光の強度をI0 、セル長
をL、測定波長と測定対象成分によって定まる吸光度係
数をK、測定対象成分の密度をρとするとき、セル1を
透過した光の強度Iは、 I=I0 ・exp(−K・ρ・L) ・・・(1) なる式で与えられる。
Here, the transmitted light intensity of the sample cell 1 has a value corresponding to the density of the specific component contained in the sample gas (the amount of the specific component contained in a unit volume). It depends on temperature and pressure, and what is ultimately desired by gas analysis is a volume concentration independent of temperature and pressure. When the intensity of light incident on the sample cell 1 is I 0 , the cell length is L, the absorbance coefficient determined by the measurement wavelength and the component to be measured is K, and the density of the component to be measured is ρ, the intensity of light transmitted through the cell 1 I is given by the following equation: I = I 0 · exp (−K · ρ · L) (1)

【0015】一方、密度ρは、標準の温度及び圧力にお
ける密度をρ0 、比例定数をk、その時の圧力をPとす
ると、 ρ=k・ρ0 ・P ・・・(2) であり、体積濃度cは、標準の温度及び圧力における純
ガス(測定対象成分のみからなるガス)の密度をρp
すると c=ρ0 /ρp ・・・(3) となり、(1)式は I=I0 ・exp(−K・k・ρp ・c・P・L) ・・・(4) となる。
On the other hand, assuming that the density at a standard temperature and pressure is ρ 0 , the proportionality constant is k, and the pressure at that time is P, ρ = k · ρ 0 · P (2) volume concentration c is a pure gas density of (measurement target component only gas consisting of) When ρ p c = ρ 0 / ρ p ··· (3) next to the standard temperature and pressure, (1) formula I = I 0 · exp (−K · k · ρ p · c · P · L) (4)

【0016】測定対象成分の体積濃度がc1 の試料ガス
を測定した場合、圧力がP1 のときに透過光強度が
1 、圧力がP2 のときに透過光強度がI2 であったと
すると、(4)式より I1 =I0 ・exp(−K・k・ρP ・c1 ・P1
L) I2 =I0 ・exp(−K・k・ρP ・c1 ・P2
L) となる。したがって、 ln(I2 /I1 )=−K・k・ρP ・c1 ・L・(P
2 −P1 ) となり、 c1 =−ln(I2 /I1 )/{K・k・ρp ・L・(P2 −P1 )} ・・・ (5) が得られる。この(5)式において、右辺のI2 /I1
は圧力P1 及びP2 における検出器4の出力の比であ
り、圧力P1 及びP2 は既知の値であるので、二つの圧
力状態での検出出力の比から測定対象成分の体積濃度c
1 を求めることができる。
[0016] If the volume concentration of the measurement target component is measured sample gas c 1, the transmitted light intensity I 1 at pressure P 1, the pressure is transmitted light intensity when the P 2 was I 2 Then, from equation (4), I 1 = I 0 · exp (−K · k · ρ P · c 1 · P 1 ·
L) I 2 = I 0 · exp (−K · k · ρ P · c 1 · P 2 ·
L) Therefore, ln (I 2 / I 1 ) = − K · k · ρ P · c 1 · L · (P
2 −P 1 ), and c 1 = −ln (I 2 / I 1 ) / {K · k · ρ p · L · (P 2 −P 1 )} (5) is obtained. In the equation (5), I 2 / I 1 on the right side
Is the ratio of the output of the detector 4 at a pressure P 1 and P 2, the pressure P 1 and P 2 is a known value, the volume concentration of the measurement target component from the ratio of the detection output of the two pressure conditions c
You can ask for one .

【0017】このように、二つの圧力状態の出力の比を
取ることによって、光源の光強度変化、検出器の感度変
化、セル内面の汚れがあっても、その影響が相殺される
ので、安定した測定が可能となる。
As described above, by taking the ratio between the outputs in the two pressure states, even if there is a change in the light intensity of the light source, a change in the sensitivity of the detector, or a stain on the inner surface of the cell, the effects thereof are canceled out, so that the stability is maintained. Measurement can be performed.

【0018】なお、圧力センサ2は試料セル1内の圧力
をモニタし、二つの圧力状態での圧力が所定の値から変
動した場合には、ニードル弁10の開度を調整すること
により所定の圧力状態を維持することができる。また、
ニードル弁10を調整せず、圧力センサ2の出力を常時
信号処理回路5に取り込み、(5)式の演算に使用して
もよい。
The pressure sensor 2 monitors the pressure in the sample cell 1, and when the pressure in the two pressure states fluctuates from a predetermined value, the pressure sensor 2 adjusts the opening of the needle valve 10 to thereby control the predetermined degree. A pressure state can be maintained. Also,
The output of the pressure sensor 2 may be constantly taken into the signal processing circuit 5 without adjusting the needle valve 10, and used for the calculation of the equation (5).

【0019】さらに、上記実施例では圧力制御手段とし
て電磁弁を用いた例を説明したが、ダイヤフラムポンプ
やレシプロポンプを用いることもできる。
Further, in the above-described embodiment, an example in which an electromagnetic valve is used as the pressure control means has been described. However, a diaphragm pump or a reciprocating pump may be used.

【0020】また、上記実施例では、光断続手段として
回転セクターを用いているが、光源への電源の遮断によ
り光を断続してもよい。
In the above embodiment, the rotating sector is used as the light interrupting means. However, the light may be interrupted by shutting off the power to the light source.

【0021】[0021]

【発明の効果】本発明の赤外線ガス分析計は上記のよう
に構成されており、赤外光を周期的に遮る回転セクタを
回転させるモータと電磁弁の同期を取ることにより、二
つの圧力状態でそれぞれ赤外光をパルス状に入射させて
それぞれの出力を分離して取り出してそれぞれ積分し、
その積分値の比より試料ガスの濃度を演算するので、赤
外光の強度変化、検出器の感度変化、セル内面の汚れな
どがあっても安定した測定値を得ることができる。
The infrared gas analyzer of the present invention is constructed as described above, and the two pressure states are obtained by synchronizing a motor for rotating a rotating sector which periodically blocks infrared light and a solenoid valve. Infrared light is incident on each in the form of a pulse, each output is separated and taken out and integrated,
Since the concentration of the sample gas is calculated from the ratio of the integrated values, a stable measurement value can be obtained even if there is a change in the intensity of the infrared light, a change in the sensitivity of the detector, or a stain on the inner surface of the cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の赤外線ガス分析計の一実施例を示す図
である。
FIG. 1 is a diagram showing one embodiment of an infrared gas analyzer of the present invention.

【図2】図1の赤外線ガス分析計に使用する回転セクタ
の形状を示す図である。
FIG. 2 is a view showing a shape of a rotating sector used in the infrared gas analyzer of FIG. 1;

【図3】図1の赤外線ガス分析計の動作を説明するため
の図である。
FIG. 3 is a diagram for explaining the operation of the infrared gas analyzer of FIG. 1;

【図4】従来の赤外線ガス分析計を示す図である。FIG. 4 is a diagram showing a conventional infrared gas analyzer.

【図5】図4の赤外線ガス分析計の動作を説明するため
の図である。
FIG. 5 is a diagram for explaining the operation of the infrared gas analyzer of FIG.

【符号の説明】[Explanation of symbols]

1 試料セル 2 圧力センサ 3 光源 4 検出器 5 信号処理回路 6 ガス供給流路 7 電磁弁 8 ガス排出流路 9 ポンプ 10 ニードル弁 11 セクタ 12 モータ 13 制御回路 DESCRIPTION OF SYMBOLS 1 Sample cell 2 Pressure sensor 3 Light source 4 Detector 5 Signal processing circuit 6 Gas supply channel 7 Solenoid valve 8 Gas exhaust channel 9 Pump 10 Needle valve 11 Sector 12 Motor 13 Control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料ガスによる赤外線の吸収特性を利用
してガス中に含まれる特定成分の濃度を測定する赤外線
ガス分析計において、試料ガスが入る試料セルと、試料
セルに赤外光を投射する光源と、試料セルを通過した光
の強度を検出する検出手段と、試料セル内の試料ガスの
圧力を変化させ二つの異なる圧力を設定することができ
る圧力制御手段と、赤外光を圧力変化と同期して断続し
て入射させる光断続手段と、二つの異なる圧力における
検出値の比に基づき、試料ガスに含まれる特定成分の濃
度を算出する算出手段とを備えることを特徴とする赤外
線ガス分析計。
1. An infrared gas analyzer for measuring the concentration of a specific component contained in a gas by utilizing the infrared absorption characteristics of a sample gas, and a sample cell into which a sample gas enters, and infrared light being projected onto the sample cell. A light source, a detecting means for detecting the intensity of light passing through the sample cell, a pressure control means capable of changing the pressure of the sample gas in the sample cell to set two different pressures, and Infrared light characterized by comprising an optical intermittent means for intermittently inputting light in synchronization with a change, and a calculating means for calculating a concentration of a specific component contained in the sample gas based on a ratio of detection values at two different pressures. Gas analyzer.
JP12654097A 1997-05-16 1997-05-16 Infrared gas analyzer Pending JPH10318922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12654097A JPH10318922A (en) 1997-05-16 1997-05-16 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12654097A JPH10318922A (en) 1997-05-16 1997-05-16 Infrared gas analyzer

Publications (1)

Publication Number Publication Date
JPH10318922A true JPH10318922A (en) 1998-12-04

Family

ID=14937724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12654097A Pending JPH10318922A (en) 1997-05-16 1997-05-16 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JPH10318922A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1720001A1 (en) * 2005-05-04 2006-11-08 Tyco Electronics Raychem GmbH Gas sensor arrangement with improved long-term stability and measuring method
KR101256381B1 (en) 2011-11-11 2013-04-25 서울시립대학교 산학협력단 Gas density measurement device for variable optical path
CN104034699A (en) * 2014-06-19 2014-09-10 同济大学 Device for automatically detecting transmissivity of collected sample
KR20160077088A (en) * 2013-10-11 2016-07-01 엠케이에스 인스트루먼츠, 인코포레이티드 Systems and methods for pressure differential molecular spectroscopy of compressible fluids

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1720001A1 (en) * 2005-05-04 2006-11-08 Tyco Electronics Raychem GmbH Gas sensor arrangement with improved long-term stability and measuring method
US7332719B2 (en) 2005-05-04 2008-02-19 Tyco Electronics Raychem Gmbh Gas sensor arrangement with improved long term stability and measuring method
KR101256381B1 (en) 2011-11-11 2013-04-25 서울시립대학교 산학협력단 Gas density measurement device for variable optical path
KR20160077088A (en) * 2013-10-11 2016-07-01 엠케이에스 인스트루먼츠, 인코포레이티드 Systems and methods for pressure differential molecular spectroscopy of compressible fluids
JP2016532858A (en) * 2013-10-11 2016-10-20 エムケイエス インストゥルメンツ, インコーポレイテッド System and method for pressure differential molecular spectroscopy of compressible fluids
JP2018194563A (en) * 2013-10-11 2018-12-06 エムケイエス インストゥルメンツ, インコーポレイテッド System and method for pressure differential molecular spectroscopy of compressible fluid
CN104034699A (en) * 2014-06-19 2014-09-10 同济大学 Device for automatically detecting transmissivity of collected sample

Similar Documents

Publication Publication Date Title
US5282473A (en) Sidestream infrared gas analyzer requiring small sample volumes
US4500207A (en) Non-dispersive optical determination of gas concentration
PL1549932T3 (en) Gas detection method and gas detector device
JPH01145548A (en) Photoelectric apparatus for deciding material that absorbs light at spectrally different state in sample
EP0480753A3 (en) Optical analytical instrument and method
JPS5847657B2 (en) Ryu Taibun Sekiki
US3727050A (en) Gas analyzer
CA1224944A (en) Infrared fluid analyzer
US4975582A (en) Pressure-modulated infrared gas analyzer and method
US3659452A (en) Laser excited spectrophone
JPH10318922A (en) Infrared gas analyzer
RU2095789C1 (en) Method designed to determine the concentration of substances in gases and device for nondispersed gas analysis
JP4158314B2 (en) Isotope gas measuring device
US4591268A (en) Accumulative absorption-dispersion spectrophotometer
CN114112956A (en) Gas detection method and device
NO300346B1 (en) Photo-acoustic measuring device
US4900152A (en) Apparatus for measuring foreign substance content in a flowing liquid
EP1967842A9 (en) Method and device for measuring the concentration of exhaust gases of a boiler
JP3726691B2 (en) Infrared gas analyzer
JPS6191542A (en) Direct connection type non-dispersion infrared gas analyzer
JPH05223735A (en) Differential amount gas analysis
JPS63218842A (en) Method and apparatus for measuring concentration of ozone
JPH08313438A (en) Fluid modulation type ultraviolet gas analyzer
KR20010077451A (en) Apparatus for detecting the concentration of gas using aerometric chamber
JPH07159323A (en) Fluid-modulated gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

A131 Notification of reasons for refusal

Effective date: 20050621

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20051018

Free format text: JAPANESE INTERMEDIATE CODE: A02