JPS6191542A - Direct connection type non-dispersion infrared gas analyzer - Google Patents

Direct connection type non-dispersion infrared gas analyzer

Info

Publication number
JPS6191542A
JPS6191542A JP59212584A JP21258484A JPS6191542A JP S6191542 A JPS6191542 A JP S6191542A JP 59212584 A JP59212584 A JP 59212584A JP 21258484 A JP21258484 A JP 21258484A JP S6191542 A JPS6191542 A JP S6191542A
Authority
JP
Japan
Prior art keywords
gas
sample gas
cell
sample
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59212584A
Other languages
Japanese (ja)
Other versions
JPH0412821B2 (en
Inventor
Toru Kodachi
小太刀 徹
Kihachiro Nishio
西尾 喜八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP59212584A priority Critical patent/JPS6191542A/en
Publication of JPS6191542A publication Critical patent/JPS6191542A/en
Publication of JPH0412821B2 publication Critical patent/JPH0412821B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8557Special shaping of flow, e.g. using a by-pass line, jet flow, curtain flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements

Abstract

PURPOSE:To improve the response, by integrating a gas ejector, a sample gas cell and a sample gas passage as suction unit for a sample gas to be directly connected to a flue. CONSTITUTION:As a compressed air is jetted into a main conduit 30 through a gas ejector nozzle 29, a part of combustion exhaust gas is introduced into a pipe 30 as ample gas, a part of which is introduced into a sample gas cell 24 through a filter 25. Then, infrared rays radiated from a light source 34 enters the cell 24 passing through a correlation filter 36 and one transmission window 21 of the cell 24 and after reflected repeatedly between reflectors 23 and 22, it leaves the cell 24 via the other transmission window 21 to be made incident into an infrared detector 39 via a reflector 37 and a condenser 38. The infrared energy incident into the detector 39 is converted to electric energy to be displayed by arithmetic processing.

Description

【発明の詳細な説明】 (技術分野) 本発明はサンプルガスの赤外線の吸収性を利用した赤外
線ガス分析計、特に光源からの赤外線を分散することな
くそのまま導く非分散形光外線ガス分析計に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an infrared gas analyzer that utilizes the absorption of infrared rays of a sample gas, and particularly relates to a non-dispersive type external optical gas analyzer that directly directs infrared rays from a light source without being dispersed. It is something.

(従来技術およびその問題点) 燃焼排ガス、雰凹気炉の雰囲気ガスなどに含まれるガス
、たとえばco 、 co  、 so、などのガス濃
度を知ることは、環境保護や省エネルギー製品の品質管
理上からも重要なことであり、従来から種々の計測装置
が提案されてきた。物理的ガス分析の1つである赤外線
ガス分析法もこの中の1つであり、サンプルガスの赤外
線の吸収性を利用し、ガス濃度を測定するものである。
(Prior art and its problems) Knowing the concentration of gases such as CO, CO, SO, etc. contained in combustion exhaust gas, atmospheric gas of an atmospheric furnace, etc. is important for environmental protection and quality control of energy-saving products. This is also an important point, and various measuring devices have been proposed in the past. Infrared gas analysis, which is one type of physical gas analysis, is one of these methods, and uses the infrared absorption of a sample gas to measure gas concentration.

赤外線ガス分析法はプリズムを用いて赤外線を分If!
i故させて入射させる分散形と、光源からの赤外線をそ
のまま導く非分散形とがあり、講造が簡単であるとの理
白により工業用には非分散形が主に利用されている。
Infrared gas analysis uses a prism to separate infrared rays!
There are two types: a dispersive type, in which the infrared rays from the light source are directly introduced, and a non-dispersive type, in which the infrared rays from the light source are directly introduced.The non-dispersive type is mainly used for industrial purposes because it is easy to manufacture.

しかしながら、従来既知の非分散形ガス分析計は、たと
えば第5図に模式的に示すように、吸引用のポンプ2を
用いてサンプルガスを吸引しドレンポット8,4にてサ
ンプルガス中の水分とガスとを分離しフィルタ5,6を
通過させてサンプルガス中のダストを除去した後ポンプ
7を経て分析部8に導いてガス濃度を検出する構成をし
ている。
However, conventionally known non-dispersive gas analyzers, for example, as schematically shown in FIG. The sample gas is separated from the gas, passed through filters 5 and 6 to remove dust in the sample gas, and then guided to an analysis section 8 via a pump 7 to detect the gas concentration.

また分析部8に一定量のガスを導入するために流量計9
も必要としていた。このようないわゆるガスサンプヘリ
ング装置を別途必要としたため、従来既知の非分散形ガ
ス分析計では、分析部8に到るまでのサンプルガスの導
管長が必然的に長くなり、分析部におけるガス置換が遅
くなり、ある時点での実際のガス濃度と分析計の測定結
果との間に遅れが生じ、雰囲気ガスなどの力1ス濃度の
コントロールを行なうのが困難であると言う問題があっ
た。また種々の構成要素よりなるサンプリング装置を必
要としたため、分析計自体の寸法が大きく分析計の設置
場所が限定されるだけでなく、価格的にも高価なものと
なり、その使用分野が限定されてしまうと言う問題もあ
った。さらにフィルタが目詰りしないようにするために
は頻繁にフィルタを点検、清掃しなければならず、点検
作業を行なう上でも改善すべき問題が数多く存在した。
In addition, a flow meter 9 is used to introduce a certain amount of gas into the analysis section 8.
was also needed. Since such a so-called gas sampling device is required separately, in conventional non-dispersive gas analyzers, the length of the sample gas conduit up to the analysis section 8 is inevitably long, and gas replacement in the analysis section is difficult. There is a problem that there is a delay between the actual gas concentration at a certain point and the measurement result of the analyzer, and that it is difficult to control the concentration of atmospheric gas or the like. In addition, since a sampling device consisting of various components was required, the analyzer itself was large in size, which not only limited the installation location of the analyzer, but also made it expensive, limiting its field of use. There was also the problem of putting it away. Furthermore, in order to prevent the filter from clogging, it is necessary to frequently inspect and clean the filter, and there are many problems that need to be improved in the inspection work.

(問題点を解決するための手段) これら上述した種々の問題点を解決するため、本発明の
分析計は、サンプルガスに含まれる固有のガス分子によ
り吸収される赤外線の変化を検出して固有のガスのガス
濃度を測定する非分散形ガス分析計において、サンプル
ガス導入口を有するプローブに接続された主導管と、こ
の主導管に横設されサンプルガスの少なくとも一部が流
入するサンプルガスセルと、このサンプルガスセルより
下流に位置しサンプルガスを吸引するガスエゼクタとを
具え、前記サンプルガスセルは、赤外線をサンプルガス
セル内に入光および出光するための少なくとも1個の透
過窓と、サンプルガスセル内に入光した赤外線を多重反
射させるための少なくとも1個の反射鏡とを具えてなる
(Means for Solving the Problems) In order to solve the above-mentioned various problems, the analyzer of the present invention detects changes in infrared rays absorbed by unique gas molecules contained in a sample gas. A non-dispersive gas analyzer that measures the gas concentration of a gas includes a main pipe connected to a probe having a sample gas inlet, and a sample gas cell installed horizontally to the main pipe and into which at least a part of the sample gas flows. , a gas ejector located downstream of the sample gas cell and sucking the sample gas, the sample gas cell having at least one transmission window for allowing infrared rays to enter and exit the sample gas cell; and at least one reflecting mirror for multiple reflection of the emitted infrared rays.

(作 用) 従って本発明の赤外線ガス分析計では、圧縮空気などの
エゼクタ駆動ガスをガスエゼクタのノズルより主導管内
に噴出させることによって、たとえば燃焼排ガスが通過
する煙道内に突出させたプローブ先端のサンプルガス導
入口よりサンプルガスをガスサンプリング装置などの特
別な装置を必要とすることなく主導管に直接導き、エゼ
クタ駆動ガスとともに主導管の他端部に設けたサンプル
ガス戻し口より煙道内に放出する。この時、主導管に導
かれたサンプルガスの一部は、フィルタを介してサンプ
ルガスセル内に侵入し、再び主導管に戻る。ところでサ
ンプルガスセルには、光源より放射された赤外線がカス
相関フィルタによって基準光および試料光に分かれ一定
周期で交互に入光するが、基準光は測定すべきガスの特
定の赤外線波長の光が吸収されたものであるのでサンプ
ルガスセル内の測定すべきガスにより吸収されることな
くサンプルガスセルより出光する。これに対し試料光は
サンプルガスセル内の測定ガスにより特定の赤外線波長
の光がガス濃度に応じて吸収される。従って基準光とサ
ンプルガスセル内を通過した試料光との光強度の差を比
較することによりガス濃度を知ることができる。またサ
ンプルガスセル内には互に難問して対向する凹面視を配
設し多重反射することによってサンプルガスセルの長さ
を増加することなくサンプルガスと赤外線との接触距離
が増加し測定感度が向上する。
(Function) Therefore, in the infrared gas analyzer of the present invention, by ejecting an ejector driving gas such as compressed air into the main pipe from the nozzle of the gas ejector, the sample at the tip of the probe is protruded into the flue through which combustion exhaust gas passes. The sample gas is guided directly into the main pipe from the gas inlet without the need for special equipment such as a gas sampling device, and released into the flue along with the ejector driving gas from the sample gas return port provided at the other end of the main pipe. . At this time, a part of the sample gas introduced into the main pipe enters the sample gas cell through the filter and returns to the main pipe again. By the way, the infrared rays emitted from the light source are divided into reference light and sample light by a Cas correlation filter and enter the sample gas cell alternately at a fixed period.The reference light is absorbed by light of a specific infrared wavelength of the gas to be measured. Therefore, the light is emitted from the sample gas cell without being absorbed by the gas to be measured in the sample gas cell. On the other hand, sample light having a specific infrared wavelength is absorbed by the measurement gas in the sample gas cell depending on the gas concentration. Therefore, the gas concentration can be determined by comparing the difference in light intensity between the reference light and the sample light that has passed through the sample gas cell. In addition, concave surfaces facing each other are arranged inside the sample gas cell, and multiple reflections occur, increasing the contact distance between the sample gas and infrared rays without increasing the length of the sample gas cell, improving measurement sensitivity. .

(実施例) 以下図面を参照して本発明の実施例を詳述する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明分析計の第1の実施例を示す図であり
、分析計20をたとえば燃焼排ガスが流れる煙道10の
煙道壁12に直接取り付ける。分析計20は、煙道内の
ガスの1部、をサンプルガスセル内に導くガス導入手段
と、光源より放射されサンプルガスセル内を通過した赤
外線を赤外線検出器39に導く光学手段とを具える。
FIG. 1 is a diagram showing a first embodiment of the analyzer of the present invention, in which an analyzer 20 is attached directly to, for example, a flue wall 12 of a flue 10 through which combustion exhaust gas flows. The analyzer 20 includes a gas introducing means for guiding a portion of the gas in the flue into the sample gas cell, and an optical means for guiding infrared rays emitted from a light source and passed through the sample gas cell to an infrared detector 39.

ガス導入手段は、略コの字形状をした主導管30と、主
導管80に横設したサンプルガスセル室24と、このサ
ンプルガスセルより下流に位置するガスエゼクタとを具
える。主導管30の一端は、煙道10内に突出したサン
プルガス導入口を有するプローブ82に接続し、他端は
プローブ32の下流の煙道に開口したサンプルガス戻し
口33に接続されている。それゆえ、たとえば圧縮空気
をエゼクタ駆動ガスとしてガスエゼクタノズル29より
主導管30内に噴出させると、図中矢印Aで示す流れが
生じ、燃焼排ガスの一部がサンプルガスとして主導管3
0内に導かれる。導入されたサンプルガスの一部は1.
フィルタ25を介して図中矢印Bで示すごとくサンプル
ガスセル24内に侵入し、再び主導管に戻るので導入し
たサンプルガスの処理を別途溝じる必要がない。
The gas introduction means includes a main pipe 30 having a substantially U-shape, a sample gas cell chamber 24 installed horizontally in the main pipe 80, and a gas ejector located downstream of the sample gas cell. One end of the main pipe 30 is connected to a probe 82 having a sample gas inlet protruding into the flue 10, and the other end is connected to a sample gas return port 33 opening into the flue downstream of the probe 32. Therefore, for example, when compressed air is ejected from the gas ejector nozzle 29 into the main pipe 30 as an ejector driving gas, a flow shown by arrow A in the figure is generated, and a part of the combustion exhaust gas is transferred to the main pipe 30 as a sample gas.
Guided within 0. A portion of the sample gas introduced is 1.
Since the sample gas enters the sample gas cell 24 through the filter 25 as shown by arrow B in the figure and returns to the main pipe again, there is no need to separately process the introduced sample gas.

光学手段は、赤外梅を放射する光源34と、放射された
赤外線を基準光と試料光とに分けるガス相関フィルタ3
6と、このガス相関フィルタ36を一定速度で回転する
同期モータ35と、サンプルガスセルより出光した赤外
線を集光する集光器38と、集光した赤外線を検出する
赤外線検出器39とを具える。なお主導管、サンプルガ
スセル等の配置、あるいは分析計自体をコンパクトにす
るため、赤外線の光路を変更した場合には反射鏡を用い
ればよく、本実施例では反射鏡37を用いてサンプルガ
スセル24より出光した光路を90゜変更している。
The optical means includes a light source 34 that emits infrared light, and a gas correlation filter 3 that divides the emitted infrared light into reference light and sample light.
6, a synchronous motor 35 that rotates the gas correlation filter 36 at a constant speed, a condenser 38 that condenses infrared light emitted from the sample gas cell, and an infrared detector 39 that detects the condensed infrared light. . Note that in order to arrange the main pipe, sample gas cell, etc., or to make the analyzer itself more compact, if the optical path of infrared rays is changed, a reflector may be used. In this embodiment, a reflector 37 is used to The path of the emitted light is changed by 90 degrees.

ここでサンプルガスセル24は、セル内に入光した赤外
線を多重反射、すなわち繰返して反射させセル内のサン
プルガスと赤外線との接触する距離を増加させるため、
互いに対向して配置された凹状の反射鏡22,2.3と
、相関フィルタ36を通過した赤夕)線をサンプルガス
セル内に入光および出光させるための透過窓21.21
とを具える。
Here, the sample gas cell 24 multiple-reflects the infrared rays that have entered the cell, that is, reflects them repeatedly to increase the contact distance between the sample gas in the cell and the infrared rays.
Concave reflecting mirrors 22, 2.3 arranged to face each other, and a transmission window 21.21 for allowing the red light beams that have passed through the correlation filter 36 to enter and exit the sample gas cell.
and.

従って相関フィルタ36を通過した赤外線は図中矢印C
で示すように一方の透過窓21を通過してセル内に入り
、反射鏡23および22の間で繰返し反射された後他方
の透過窓21を経てセル24から出光し、反射鏡37、
集光器38を経て赤外線検出器39に達する。そして検
出器39は入光する赤外線エネルギーを電気エネルギー
に変換する。これを演算処理し指示計に表示する。それ
ゆえ、本発明の分析計によればサンプルガスと赤外線と
の接触する距離を増加させ、サンプルガスセル24の全
長を短かくすると言う相反する条件が同時に解決される
ことになる。
Therefore, the infrared rays that have passed through the correlation filter 36 are shown by the arrow C in the figure.
As shown, the light passes through one transmission window 21 and enters the cell, is repeatedly reflected between reflection mirrors 23 and 22, passes through the other transmission window 21, exits from the cell 24, and is emitted from the reflection mirror 37,
The light passes through a condenser 38 and reaches an infrared detector 39 . The detector 39 then converts the incoming infrared energy into electrical energy. This is processed and displayed on the indicator. Therefore, according to the analyzer of the present invention, the contradictory conditions of increasing the contact distance between the sample gas and infrared rays and shortening the total length of the sample gas cell 24 can be solved at the same time.

さらに本実施例ではサンプルガスが流れる通路が結露す
るのを防止するため、主導管aOおよびサンプルガスセ
ル24の周囲に加熱ヒータ81を設けたが、結露の恐わ
がない場合には、この加熱ヒータ31を配設しなくとも
よい。
Furthermore, in this embodiment, a heater 81 is provided around the main pipe aO and the sample gas cell 24 in order to prevent dew condensation in the passage through which the sample gas flows. It is not necessary to provide .

符号40で示したのは、分析計を校正する際に必要な標
式へガスをサンプルガスセル24内に導くための校正ガ
ス管であり、校正時にはこのガス管を介してサンプルガ
スセル内に標準ガスを4き、セル24内を標準ガスで充
満して指示を校正する。
Reference numeral 40 indicates a calibration gas tube for guiding gas into the sample gas cell 24 to a standard required when calibrating the analyzer. During calibration, standard gas is introduced into the sample gas cell through this gas tube. 4 and fill the cell 24 with standard gas to calibrate the indication.

第2図および第4図に本発明の好適な他の実施例を示す
。なお、簡略のため第1図と同−又は同等な餉きをする
ものには同一符号を付す。
FIGS. 2 and 4 show other preferred embodiments of the present invention. For the sake of brevity, the same reference numerals are given to the same or equivalent parts as in Fig. 1.

第2図に示した実施例では、主導管80よりサンプルガ
スセル24内に侵入するサンプルガスの置換を容易にす
るため、サンプルガス分岐’lIl’26aの一端を、
主導管30に離間してサンプルガスセル24に接続し、
サンプルガス分岐管26の他端をサンプルガスセル24
の下流の主導管80に接続する構成とした。なお、簡略
のためサンプルガス分岐管の一部のみ図示するサンプル
ガス分岐管26の他端は、本実施例の如くサンプルガス
セル24の下流でガスエゼクタ29の上流の主導管30
に連通させることに限定されるものではないが、サンプ
ルガスセル内でのサンプルガスの流れが一定であること
、分岐管26の長さが増加することによるサンプルガス
セル24内へのサンプルガスの流入効率が低下すること
などを考慮したならば、本実施例の如く連通させるのが
よい。
In the embodiment shown in FIG. 2, in order to facilitate replacement of the sample gas entering the sample gas cell 24 from the main pipe 80, one end of the sample gas branch 'lIl' 26a is
connected to the sample gas cell 24 at a distance from the main pipe 30;
The other end of the sample gas branch pipe 26 is connected to the sample gas cell 24.
The configuration is such that the main pipe 80 is connected to the downstream main pipe 80. Note that the other end of the sample gas branch pipe 26, in which only a portion of the sample gas branch pipe is illustrated for simplicity, is connected to the main pipe 30 downstream of the sample gas cell 24 and upstream of the gas ejector 29, as in this embodiment.
Although not limited to, the flow of the sample gas within the sample gas cell is constant, and the efficiency of inflow of the sample gas into the sample gas cell 24 by increasing the length of the branch pipe 26 If consideration is given to the fact that the voltage decreases, it is better to communicate with each other as in this embodiment.

さらに本実施例では、サンプルガスセル24近くのサン
プルガス分岐管26内にサンプルガスの流量調整を行な
うガス量調整器27を配設する。
Further, in this embodiment, a gas amount regulator 27 for adjusting the flow rate of the sample gas is provided in the sample gas branch pipe 26 near the sample gas cell 24.

本実施例では、このガス量調整器27は分岐管26に合
致することのできる弁体よりなり、機械的あるいは電気
的に弁開度を?J:4整することができる。
In this embodiment, the gas amount regulator 27 is composed of a valve body that can fit into the branch pipe 26, and mechanically or electrically controls the valve opening. J: Can adjust 4 times.

従って本実施例ではサンプルガスセル内に侵入するガス
の置換が迅速に行なわれるので応答性の速い非分散赤外
線ガス分析計を得ることができる。
Therefore, in this embodiment, the gas entering the sample gas cell is quickly replaced, so that a non-dispersive infrared gas analyzer with quick response can be obtained.

この様子を第3図に示す。ここでサンプルガス流量とは
プローブ32から主導管30に流入するガス流量をいい
、応答時間とはプローブ82のサンプルガス導入口41
でガスを切替だ場合、分析計20の出力が安定した状態
に達するまでの90%応答時間をいう。第3図から朗ら
かなように従来装置の如く別個にサンプリング装置を必
要とするものに比べ、本発明装置の分析計は、応答時間
が%以下であることがわかる。特に、分岐管を設けた装
置であってガス量調整器27を全開した場合には従来の
分析計の約%となり応答性が格段に向上することがわか
る。
This situation is shown in FIG. Here, the sample gas flow rate refers to the gas flow rate flowing into the main pipe 30 from the probe 32, and the response time refers to the sample gas inlet 41 of the probe 82.
When switching gases, this is the 90% response time until the output of the analyzer 20 reaches a stable state. As can be clearly seen from FIG. 3, the response time of the analyzer of the present invention is less than % of that of the conventional apparatus which requires a separate sampling device. In particular, when the gas amount regulator 27 is fully opened in an apparatus equipped with a branch pipe, the response is approximately % of that of a conventional analyzer, and it can be seen that the response is significantly improved.

なお、第2図に示した実施例では、ガスエゼクタノズル
29より上流の主導管、サンプルガスセル、フィルタ等
に付着した付着ダストを除去するためのパーシロ28を
、ガスエゼクタノズル29より上流の主導管30に設け
る。このパーシロ28を介して圧縮空気などの加圧流体
を主導管30内に噴出することにより付着ダストを分析
計内より除去する。更に、分析計異常時にはパージ口よ
り加圧流体を噴出して分析計内へのす゛ンブルガスの侵
入を阻止すると共に、サンプルガス中の水分が分析計内
で結露するのを阻止することもできる。なお、好適には
パーシロ28とサンプルガス導入口41とを直線上に配
置させることによ゛り付着ダストの除去効率を一段と向
上させることができる。
In the embodiment shown in FIG. 2, the Persil 28 for removing adhering dust attached to the main pipe, sample gas cell, filter, etc. upstream from the gas ejector nozzle 29 is installed in the main pipe upstream from the gas ejector nozzle 29. 30. By jetting pressurized fluid such as compressed air into the main pipe 30 through the persilo 28, attached dust is removed from the inside of the analyzer. Furthermore, when an abnormality occurs in the analyzer, pressurized fluid is ejected from the purge port to prevent the swarm gas from entering the analyzer, and also to prevent moisture in the sample gas from condensing within the analyzer. Preferably, by arranging the persilo 28 and the sample gas inlet 41 on a straight line, the efficiency of removing attached dust can be further improved.

従ってこのようなパージ口を有する分析計では、通常の
保守作業に際しては上述したように1.< −シロ28
から加圧流体を噴出して付着ダストを除去し、年に1回
程度機械的な清掃を行なえばよいので、保守点検作業を
従来の分析計に比べ大幅に簡素化することができる。
Therefore, in an analyzer having such a purge port, during normal maintenance work, 1. <-Shiro 28
Since it is only necessary to eject pressurized fluid from the analyzer to remove attached dust and perform mechanical cleaning about once a year, maintenance and inspection work can be greatly simplified compared to conventional analyzers.

第4図に示す本発明の他の好適な実施例は、サンプルガ
スセル24を主導管30に横設するに際し、互いに離間
する分岐管26b、26bを介して主導管80とサンプ
ルガスセル24とを接続連通したものである。従ってプ
ローブ32を通り主導管30に流入したサンプルガスの
一部は図中矢印Bで示すごとく、フィルタ25を介して
上流側の分岐管26bを通りサンプルガスセル内に流入
し下流側の分岐管261)を通り主導管30に致る。な
お、上流側の分岐管26bのフィルタ25近くにガス量
調整器27を配設し、サンプルガスセル24内に流入す
るサンプルガスの流量を調整できるようにするのがよい
Another preferred embodiment of the present invention, shown in FIG. 4, connects the main pipe 80 and the sample gas cell 24 via branch pipes 26b, 26b spaced apart from each other when the sample gas cell 24 is installed horizontally in the main pipe 30. It is connected. Therefore, a part of the sample gas that has passed through the probe 32 and flowed into the main pipe 30 passes through the filter 25, passes through the upstream branch pipe 26b, flows into the sample gas cell, and flows into the downstream branch pipe 261, as shown by arrow B in the figure. ) to the main pipe 30. Note that it is preferable to arrange the gas amount regulator 27 near the filter 25 of the upstream branch pipe 26b so that the flow rate of the sample gas flowing into the sample gas cell 24 can be adjusted.

さらに第2図に示した実施例と同様にパーシロ28をサ
ンプルガス導入口41に整列させて設は付着ダストの除
去効率を向上させることは勿論である。
Furthermore, as in the embodiment shown in FIG. 2, it is possible to improve the efficiency of removing attached dust by aligning the Persil 28 with the sample gas inlet 41.

(効 果) 以上詳述したように本発明の直結形非分散赤外線ガス分
析計によれば、サンプルガス吸引装置としてのガスエゼ
クタ、サンプルガスセル、サンプルガス流路を煙道に直
結する一体構造としたので、従来の非分成形赤外線ガス
分析計に欠くことのできない、サンプルガス吸引用のポ
ンプ、水分除去用のドレンポンプ等の前処理装置を省く
ことができる。しかも煙道に直結する構造であるのでサ
ンプルガス流路が短かくなり、サンプルガスセルでのガ
ス置換が容易となるから分析計の応答性が向上する。さ
らにサンプルガスセルにガス量調整器を具えた分岐管を
接続することにより応答性を一段と向上させることがで
き、しかもガス量調整器を調整することにより分析計の
応答時間を変更することができる。従ってダスト付着に
よるフィルタの圧力損失が大きくなった場合にも応答時
間を補正することができ、常にほぼ一定の応答性を得る
ことができる7レキシビリテイに富んだ分析計である。
(Effects) As detailed above, according to the direct-coupled non-dispersive infrared gas analyzer of the present invention, the gas ejector as a sample gas suction device, the sample gas cell, and the sample gas flow path are integrated into an integrated structure directly connected to the flue. Therefore, pretreatment devices such as a pump for sucking sample gas and a drain pump for removing water, which are indispensable for conventional non-separating infrared gas analyzers, can be omitted. Furthermore, since the structure is directly connected to the flue, the sample gas flow path is shortened, and gas replacement in the sample gas cell is facilitated, thereby improving the responsiveness of the analyzer. Furthermore, by connecting a branch pipe equipped with a gas volume regulator to the sample gas cell, the response can be further improved, and by adjusting the gas volume regulator, the response time of the analyzer can be changed. Therefore, even if the pressure loss of the filter due to dust adhesion becomes large, the response time can be corrected, and the analyzer has a high degree of flexibility as it can always maintain a substantially constant response.

また、サンプルガスセル内に凹面状の反射鏡を互いに対
向し離間して配置し、これら反射鏡の間で光源から放射
された赤外線を多重反射させた後に赤外線検出器に入光
さ゛せる’e:’t ’成としたので、サンプルガスセ
ルの長さを短かくすることができ、分析計を小型軽量な
ものとすることができる。しかもサンプルガスと赤外線
との接触距離は充分確保できるので測定感度が損なわれ
ることはない。
In addition, concave reflecting mirrors are placed in the sample gas cell so as to face each other and are spaced apart, and the infrared rays emitted from the light source are reflected multiple times between these mirrors, and then enter the infrared detector. Since the 't' configuration is adopted, the length of the sample gas cell can be shortened, and the analyzer can be made smaller and lighter. Furthermore, since a sufficient contact distance between the sample gas and the infrared rays can be ensured, measurement sensitivity is not impaired.

さらにパージ口より圧縮空気などの加圧気体を噴出させ
ることによりサンプルガスセル、フィルタ、主導管に付
着した付着ダストを容易に除去することができるので保
守点検作業をmt略化できる。
Further, by blowing out pressurized gas such as compressed air from the purge port, adhering dust adhering to the sample gas cell, filter, and main pipe can be easily removed, so maintenance and inspection work can be simplified.

サンプルガス流路の周囲に加熱ヒータを設ければサンプ
ルガス中の水分が結露するのを確実に防止することがで
きる。、分析計異常時には圧縮空気等をパージ口より噴
出することにより分析計内へのサンプルガスの侵入を阻
止しサンプルガスに含まれる水分が分析計内で結露する
のを防止することができる。
By providing a heater around the sample gas flow path, it is possible to reliably prevent moisture in the sample gas from condensing. When an abnormality occurs in the analyzer, compressed air or the like is jetted out from the purge port to prevent the sample gas from entering the analyzer, thereby preventing moisture contained in the sample gas from condensing inside the analyzer.

なお、本発明は上述した実施例に限定されるものではな
く、種々の変更が可能であり、たとえばパージ口より噴
出する加圧気体を供給する管路に電磁弁を介装し、この
電磁弁をサンプルガスセルの温度信号、分析計の異常信
号、あるいは分析計点検信号などに応じて開閉する構成
とすることもできる。
Note that the present invention is not limited to the embodiments described above, and various modifications are possible. For example, a solenoid valve may be interposed in a conduit for supplying pressurized gas ejected from a purge port, and this solenoid valve It is also possible to open and close in response to a temperature signal from a sample gas cell, an abnormality signal from an analyzer, a check signal from an analyzer, or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は体発明直結形非分散赤外線ガス分析計の実施例
を示す略断面図、 第2図は、本発明の分析計の好適な他の実施例を示す略
断面図、 第3図は、本発明の分析計と従来の分析計との応答時間
を比較して示す図、 第4図は、本発明の分析計の好適な別の実施例を示す略
断面図、 第5図は、従来既知の分析計の構成を模式的に示した図
である。 2.7・・・吸引ポンプ   3,4・・・ドレインポ
ット5.6・・・フィルタ    8・・・分析部20
、・・分析計      21・・・透過窓22.28
.27・・・反射鏡   24・・・サンプルガスセル
25・・・フィルタ     26a、26b 、・・
分岐管27・・・ガス量調整8328・・・パーシロ2
9・・・ガスエゼクタノズル  3o・・・主28管3
1・・・加熱ヒータ    32・・・プローブ38・
・・サンプルガス戻し口 34・・・赤外線光源    a5・・・同期モータ3
6・・・ガス相関フィルタ 88・・・集光器89・・
・赤外線検出器   40・・・校正ガス管41・・・
サンプルガス導入口
FIG. 1 is a schematic cross-sectional view showing an embodiment of the direct-coupled non-dispersive infrared gas analyzer of the present invention, FIG. 2 is a schematic cross-sectional view showing another preferred embodiment of the analyzer of the present invention, and FIG. , a diagram showing a comparison of response times between the analyzer of the present invention and a conventional analyzer, FIG. 4 is a schematic cross-sectional view showing another preferred embodiment of the analyzer of the present invention, and FIG. 1 is a diagram schematically showing the configuration of a conventionally known analyzer. 2.7...Suction pump 3,4...Drain pot 5.6...Filter 8...Analysis section 20
,...Analyzer 21...Transmission window 22.28
.. 27...Reflector 24...Sample gas cell 25...Filter 26a, 26b,...
Branch pipe 27...Gas amount adjustment 8328...Persillo 2
9...Gas ejector nozzle 3o...Main 28 pipe 3
1... Heater 32... Probe 38.
...Sample gas return port 34...Infrared light source a5...Synchronous motor 3
6... Gas correlation filter 88... Concentrator 89...
・Infrared detector 40...Calibration gas tube 41...
Sample gas inlet

Claims (1)

【特許請求の範囲】 1 サンプルガスに含まれる固有のガス分子により吸収
される赤外線の変化を検出して固有のガスのガス濃度を
測定する非分散形ガス分析計において、 サンプルガス導入口を有するプローブに接 続された主導管と、この主導管に横設されサンプルガス
の少なくとも一部が流入するサンプルガスセルと、この
サンプルガスセルより下流に位置し加圧流体を噴出する
ことによりサンプルガスを吸引するガスエゼクタとを具
え、前記サンプルガスセルは、赤外線をサンプルセル内
に入光および出光するための少なくとも1個の透過窓と
、サンプルガスセル内に入光した赤外線を多重反射させ
るための少なくとも1個の反射鏡とを具えてなることを
特徴とする直結形非分散赤外線ガス分析計。 2、特許請求の範囲第1項に記載の赤外線ガス分析計に
おいて、前記サンプルガスセルと前記サンプルガスセル
より下流の前記主導管とをサンプルガス分岐管を介して
連通させた直結形非分散赤外線ガス分析計。 3、特許請求の範囲第1項に記載の赤外線ガス分析計に
おいて、前記サンプルガスセルを、互いに離間する分岐
管を介して前記主導管に連通させた直結形非分散赤外線
ガス分析計。 4、特許請求の範囲第2項又は第3項に記載の赤外線ガ
ス分析計において、前記分岐管およびサンプルガス分岐
管はガス流量を調整するガス量調整器を具える直結形非
分散赤外線ガス分析計。 5、特許請求の範囲第1〜第4項のいずれか1項に記載
の赤外線ガス分析計において、前記エゼクタより上流側
の前記主導管にパージ口を設け、このパージ口よりパー
ジガスを噴出して前記主導管およびサンプルガスセル等
に付着したダストを除去する直結形非分散赤外線ガス分
析計。 6、特許請求の範囲第1〜第5項のいずれか1項に記載
の赤外線ガス分析計において、前記ガス分析計内のサン
プルガスの流路をサンプルガスの露点温度以上に保持す
るための加熱手段を前記流路の少なくとも一部に設けた
直結形非分散ガス赤外線分析計。
[Claims] 1. A non-dispersive gas analyzer that measures the gas concentration of a specific gas by detecting changes in infrared rays absorbed by specific gas molecules contained in a sample gas, comprising: a sample gas inlet; A main pipe connected to the probe, a sample gas cell installed horizontally in the main pipe into which at least a portion of the sample gas flows, and a sample gas cell located downstream of the sample gas cell that sucks the sample gas by ejecting pressurized fluid. a gas ejector; the sample gas cell includes at least one transmission window for allowing infrared rays to enter and exit the sample cell; and at least one reflection window for multiple reflection of the infrared rays that have entered the sample gas cell. A direct-coupled non-dispersive infrared gas analyzer characterized by comprising a mirror. 2. The infrared gas analyzer according to claim 1, in which the sample gas cell and the main pipe downstream of the sample gas cell are communicated via a sample gas branch pipe for direct-coupled non-dispersive infrared gas analysis. Total. 3. The infrared gas analyzer according to claim 1, wherein the sample gas cell is connected to the main pipe through branch pipes separated from each other. 4. In the infrared gas analyzer according to claim 2 or 3, the branch pipe and the sample gas branch pipe are equipped with a gas amount regulator for adjusting the gas flow rate. Total. 5. In the infrared gas analyzer according to any one of claims 1 to 4, a purge port is provided in the main pipe upstream of the ejector, and purge gas is spouted from the purge port. A direct-coupled non-dispersive infrared gas analyzer that removes dust attached to the main pipe, sample gas cell, etc. 6. In the infrared gas analyzer according to any one of claims 1 to 5, heating for maintaining the sample gas flow path in the gas analyzer at a temperature equal to or higher than the dew point temperature of the sample gas. A direct-coupled non-dispersive gas infrared analyzer, wherein a means is provided in at least a portion of the flow path.
JP59212584A 1984-10-12 1984-10-12 Direct connection type non-dispersion infrared gas analyzer Granted JPS6191542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212584A JPS6191542A (en) 1984-10-12 1984-10-12 Direct connection type non-dispersion infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212584A JPS6191542A (en) 1984-10-12 1984-10-12 Direct connection type non-dispersion infrared gas analyzer

Publications (2)

Publication Number Publication Date
JPS6191542A true JPS6191542A (en) 1986-05-09
JPH0412821B2 JPH0412821B2 (en) 1992-03-05

Family

ID=16625118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212584A Granted JPS6191542A (en) 1984-10-12 1984-10-12 Direct connection type non-dispersion infrared gas analyzer

Country Status (1)

Country Link
JP (1) JPS6191542A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308020A (en) * 1993-04-20 1994-11-04 Japan Radio Co Ltd Sample cell
JP2005147962A (en) * 2003-11-18 2005-06-09 Takao Tsuda Optical gas concentration detector
JP2006126132A (en) * 2004-11-01 2006-05-18 Riken Keiki Co Ltd Infrared type carbon dioxide detector and zero calibration method of infrared type carbon dioxide detector
JP2015105892A (en) * 2013-11-29 2015-06-08 株式会社四国総合研究所 Gas concentration measuring facility, and gas concentration measuring method
CN110208283A (en) * 2019-05-22 2019-09-06 惠州高视科技有限公司 A kind of method and device detecting battery core surface defect
JP2019203752A (en) * 2018-05-22 2019-11-28 株式会社堀場製作所 Optical cell and gas analyzer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308020A (en) * 1993-04-20 1994-11-04 Japan Radio Co Ltd Sample cell
JP2005147962A (en) * 2003-11-18 2005-06-09 Takao Tsuda Optical gas concentration detector
JP2006126132A (en) * 2004-11-01 2006-05-18 Riken Keiki Co Ltd Infrared type carbon dioxide detector and zero calibration method of infrared type carbon dioxide detector
JP2015105892A (en) * 2013-11-29 2015-06-08 株式会社四国総合研究所 Gas concentration measuring facility, and gas concentration measuring method
JP2019203752A (en) * 2018-05-22 2019-11-28 株式会社堀場製作所 Optical cell and gas analyzer
US11506603B2 (en) 2018-05-22 2022-11-22 Horiba, Ltd. Optical cell and gas analyzer
CN110208283A (en) * 2019-05-22 2019-09-06 惠州高视科技有限公司 A kind of method and device detecting battery core surface defect

Also Published As

Publication number Publication date
JPH0412821B2 (en) 1992-03-05

Similar Documents

Publication Publication Date Title
JPH0795019B2 (en) Method for calibrating an exhaust gas mass flow measuring device for an internal combustion engine, device therefor and proportional sampling method
JP7412511B2 (en) Method and apparatus for monitoring the quality of gas phase media
CN106290209A (en) A kind of minimum discharge flue gas analyzer based on ultraviolet multiple reflections pool technology
FI95322C (en) Spectroscopic measuring sensor for analyzing media
CA2164249A1 (en) Measuring apparatus for gas analysis
JPH09257667A (en) Dust-concentration measuring device
JP2012507734A5 (en)
JPS6191542A (en) Direct connection type non-dispersion infrared gas analyzer
US10094771B2 (en) Device and method for determining the concentration of at least one gas in a sample gas stream by means of infrared absorption spectroscopy
EP0414446A2 (en) Gas analysis
CN112857961A (en) Classification measurement method and system for atmospheric organic nitrate
CN201344933Y (en) Smoke gas on-line monitoring global calibrating device
JPS60231137A (en) Optical gas densitometer
JP2001289783A (en) Method and device for measuring so3 concentration in exhaust gas
US11442005B2 (en) Gas analyser system
JP3924013B2 (en) Ammonia concentration continuous measurement device
CN112051231A (en) Method and device for preventing water from entering optical cavity ring-down closed-loop flux analyzer
JPH01165939A (en) Apparatus for measuring foreign matter contained in fluidizing liquid
CN211856349U (en) Heat and humidity method gas monitoring system based on laser absorption spectrum
EP0064980B1 (en) System and process for measuring the concentration of a gas in a flowing stream of gases
JPS60231140A (en) Optical gas densitometer
WO2023120015A1 (en) Exhaust gas analysis device, exhaust gas analysis method, and exhaust gas analysis program
CN209979488U (en) Detection of SO by ultraviolet fluorescence2Device for the preparation of
JP3216698U (en) Infrared gas analyzer
CN206411003U (en) A kind of dock multi-pass in-situ heat wet flue gas body detector