JPH10318788A - Multiple rotation encoder - Google Patents

Multiple rotation encoder

Info

Publication number
JPH10318788A
JPH10318788A JP12553797A JP12553797A JPH10318788A JP H10318788 A JPH10318788 A JP H10318788A JP 12553797 A JP12553797 A JP 12553797A JP 12553797 A JP12553797 A JP 12553797A JP H10318788 A JPH10318788 A JP H10318788A
Authority
JP
Japan
Prior art keywords
rotation
magnetic
rotor
encoder
inner rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12553797A
Other languages
Japanese (ja)
Other versions
JP3852502B2 (en
Inventor
Ryuichiro Tominaga
竜一郎 富永
Kensho Iwabuchi
憲昭 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP12553797A priority Critical patent/JP3852502B2/en
Publication of JPH10318788A publication Critical patent/JPH10318788A/en
Application granted granted Critical
Publication of JP3852502B2 publication Critical patent/JP3852502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive multiple rotation encoder having long service life in which backup power supply is eliminated and gear noise is eliminated except the bearing. SOLUTION: The r.p.m. detection means for a multiple rotation encoder comprises an inner rotor 1 provided with a magnet 12 having poles equal to an integer of 2 arranged while altering the polarity on the outer circumference of a soft magnetic tube 11 being born rotatably, a plurality of outer rotors 21-23 supported rotatably and coaxially on the outside of the inner rotor through a magnetic modulation means while having a plurality of annular yokes 61-63 made of a soft magnetic material with a specified number of magnets 3, equal to an integer of 2, being arranged while altering the polarity on the inner circumference of each yoke having the outer circumference arranged with magnets being magnetized in M series, and a plurality of magnetic detection means 8 arranged through an air gap on the outer circumference of each outer rotor. Multiple number of revolutions are detected by combining a plurality of magnetic detection signals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ロボットや工作機
などに使用するサーボモータの多回転量を絶対角度で検
出する検出装置に関するものであり、特に外部電源が不
要なバッテリレス多回転エンコーダに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detecting device for detecting a multi-rotation amount of a servomotor used for a robot or a machine tool by an absolute angle, and more particularly to a battery-less multi-rotation encoder which does not require an external power supply. .

【0002】[0002]

【従来の技術】従来、この種の回転数検出器には、回転
軸に減速ギヤを取り付け、減速後の回転角をエンコーダ
やポテンショメータで検出したり、エンコーダ信号から
回転数を検出しカウンタでカウントするなどの方法が用
いられている。また特開昭62−238414号公報に
示すように磁気バブル素子を用いて回転数を記憶する方
式などがある。
2. Description of the Related Art Conventionally, this kind of rotation speed detector has a reduction gear mounted on a rotation shaft, and detects the rotation angle after deceleration with an encoder or a potentiometer, or detects the rotation speed from an encoder signal and counts it with a counter. And other methods are used. Further, as disclosed in JP-A-62-238414, there is a method of storing the number of revolutions using a magnetic bubble element.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、減速ギ
ヤを用いる方式では機械的な回転伝達部を有するため、
ギヤによる騒音が発生し、バックラッシュなどの影警を
受けて高精度の検出が困難で、構造も複雑となり信頼性
が低下する。また、回転数をカウントする方式は電源が
遮断された状態でもカウントできるように予備電源を必
要とし、コントローラが大型化するとともに、予備電源
の寿命により電源遮断期間に制限を受けるなどの問題が
ある。また磁気バプルを用いた方式は非常に高価である
という問題点があった。本発明の目的は、従来技術の上
記欠点に鑑み、電源遮断時のバックアップ電源が不要で
あり、また軸受を除いて機械的な接触部がなく信頼性が
高く、ギヤ音などの騒音がない、長寿命で安価な多回転
エンコーダを提供することにある。
However, since the system using the reduction gear has a mechanical rotation transmitting unit,
Noise due to gears is generated, and it is difficult to detect with high accuracy due to the influence of backlash and the like, and the structure is complicated and reliability is reduced. In addition, the method of counting the number of revolutions requires a backup power supply so that counting can be performed even when the power supply is cut off, and there is a problem that the controller becomes larger and the power cutoff period is limited due to the life of the backup power supply. . In addition, there is a problem that the method using the magnetic bubble is very expensive. In view of the above disadvantages of the prior art, an object of the present invention is to eliminate the need for a backup power supply when power is cut off, and to provide high reliability without mechanical contact parts except for bearings and no noise such as gear noise. An object of the present invention is to provide an inexpensive multi-rotation encoder with a long life.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、一回転以内の絶対値角度を検出するため
の絶対値エンコーダと、回転量を検出するための手段と
を備えた多回転エンコーダにおいて、前記絶対値エンコ
ーダと同軸に軸支した円筒の外周に2の整数倍である極
数の異なる磁極が交互に配置されたインナーロータと、
インナーロータに対し磁気的変調手段を介して外側に同
軸で回転自在に支持され、磁性材料で構成された複数の
環状ヨークを有し、各ロータの内周には2の整数倍であ
る異なる所定数の磁極が相隣り合って互いに異極となる
よう配置され、また各ロータの外周に磁石を配置し、こ
の磁石がM系列となるような着磁をしたアウターロータ
により、インナーロータの回転に対して所定の減速比で
アウターロータが回転する複数の磁気ギヤを構成し、前
記各アウターロータの外周に空隙を介して複数の磁気検
出手段を設け、各アウターロータ外周の磁石とともにメ
モリホイールを構成し、メモリホイールの信号より多回
転量を検出すものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a multi-unit comprising an absolute value encoder for detecting an absolute value angle within one rotation and a means for detecting a rotation amount. In a rotary encoder, an inner rotor in which magnetic poles having a different number of poles that are an integral multiple of 2 are alternately arranged on the outer periphery of a cylinder that is coaxially supported with the absolute value encoder,
The inner rotor has a plurality of annular yokes that are coaxially and rotatably supported on the outer side via magnetic modulation means and are made of a magnetic material. The inner circumference of each rotor has a different predetermined number that is an integral multiple of two. A number of magnetic poles are arranged adjacent to each other and have different polarities, and a magnet is arranged on the outer periphery of each rotor, and the outer rotor is magnetized so that the magnet becomes an M series. In contrast, a plurality of magnetic gears in which the outer rotor rotates at a predetermined reduction ratio are provided, a plurality of magnetic detection means are provided on the outer periphery of each outer rotor via a gap, and a memory wheel is configured with magnets on the outer periphery of each outer rotor. Then, the multi-rotation amount is detected from the signal of the memory wheel.

【0005】上記構成により、回転軸と一体で回転する
磁気ギヤのインナーロータにより所定の異なる減速比を
以て複数のアウターロータが回転し、アウタロータの外
周に備えられたメモリーホイールにより回転数が検出で
きるので、電源遮断時のバックアップ電源が不要とな
り、また軸受を除いて機械的な接触部がなく信頼性が高
く、ギヤ音などの騒音がない、長寿命で安価な多回転エ
ンコーダを実現できる。
With the above structure, a plurality of outer rotors are rotated at predetermined different reduction ratios by the inner rotor of the magnetic gear rotating integrally with the rotating shaft, and the number of rotations can be detected by the memory wheel provided on the outer periphery of the outer rotor. This eliminates the need for a backup power supply when the power is cut off, and provides a highly reliable multi-rotation encoder that has no mechanical contact parts except for bearings, has no noise such as gear noise, and has a long life and is inexpensive.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施例について図
を参照して説明する。図1は本発明の実施例の構成を示
す図で、(A)は実施例構成の縦断面図、(B)は
(A)の点線における断面図である。図1において、イ
ンナーロータ1は、両側を軸受4で支持された軟磁性円
筒(ヨーク)11の外周に2の整数倍である極数の磁石
12を隣り合う磁極が交互に異極となるように配置し、
絶対値エンコーダ10と直結して回転するようにしてあ
る。インナーロータ1の外方位置には空隙を介して軟磁
性材料で構成された歯数λの磁気的変調手段であるイン
ダクタ5が固定されている。インダクタ5の歯は、イン
ナーロータ1の永久磁石12とアウターロータの永久磁
石3との間にあって、磁気的変調の役割を果たすもので
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1A and 1B are diagrams showing a configuration of an embodiment of the present invention. FIG. 1A is a longitudinal sectional view of the configuration of the embodiment, and FIG. 1B is a cross-sectional view taken along a dotted line of FIG. In FIG. 1, an inner rotor 1 has magnets 12 of an integral multiple of 2 on the outer circumference of a soft magnetic cylinder (yoke) 11 supported on both sides by bearings 4 so that adjacent magnetic poles alternately have different poles. Placed in
The rotation is directly connected to the absolute value encoder 10. At an outer position of the inner rotor 1, an inductor 5 which is a magnetic modulating means having a number of teeth λ and made of a soft magnetic material is fixed via a gap. The teeth of the inductor 5 are located between the permanent magnets 12 of the inner rotor 1 and the permanent magnets 3 of the outer rotor, and play a role of magnetic modulation.

【0007】21〜23は、インダクタ5の外周にイン
ナーロータに対して同軸で軸受71,72,73により
独立に回転自在に支持され、軟磁性材料で構成された複
数の環状ヨーク61、62、63を有し、各ヨークの内
周には2の整数倍である異なる所定数の磁石3を相隣り
合う磁極が互いに異極となるよう配置したアウターロー
タである。これら各環状ヨーク61〜63は、磁気的結
合を介してインナーロータ1の回転に対して所定の減速
比で回転する複数の磁気ギヤを構成している。軟磁性ヨ
ーク11や各環状ヨーク61〜63を構成する軟磁性材
料はソリッドの材料でも良いし、磁性鋼板を積層したも
のでも良い。いま、アウターロータ21〜23の極対数
をP0、インナーロータ1の極対数をPi、磁気ギヤの
減速比をχとすれば次式が成り立つ。
A plurality of annular yokes 61, 62, made of a soft magnetic material are supported on bearings 71, 72, 73 independently rotatably on the outer periphery of the inductor 5 coaxially with the inner rotor. 63 is an outer rotor in which a predetermined number of different magnets 3 each of which is an integral multiple of 2 are arranged on the inner periphery of each yoke such that adjacent magnetic poles are different from each other. Each of the annular yokes 61 to 63 constitutes a plurality of magnetic gears that rotate at a predetermined reduction ratio with respect to the rotation of the inner rotor 1 via magnetic coupling. The soft magnetic material forming the soft magnetic yoke 11 and the annular yokes 61 to 63 may be a solid material or a laminated magnetic steel plate. Now, if the number of pole pairs of the outer rotors 21 to 23 is P0, the number of pole pairs of the inner rotor 1 is Pi, and the reduction ratio of the magnetic gear is ギ ヤ, the following equation is established.

【0008】 P0=Pi・χ (1) λ=P0−Pi=Pi(χ−1) (2) また、各環状ヨーク61〜63の外周には、磁気的な突
起64がM系列パターンとなるよう配置されている。さ
らに、各環状ヨーク61〜63の磁気的な突起を検出す
るために、空隙を介して複数の磁気検出手段8が設けら
れている。M系列(Mーsequence)とは、繰り返しが起
こらないように数値を連続して並べるための計算手法
で、代表的な乱数発生の一つである。ここで、磁気的な
突起とは、磁性材に形成した物理的な突起、または磁石
化した部分をいう。つぎに、M系列について説明する。
図2は7ビットデータにM系列を適用した例を示す図で
ある。図2に見られるように、各7ビットデータは上の
7ビットデータに対して右に1ビットずらし、また新た
な1ビットデータを左から足したものである。加えるデ
ータを適切に繰り返すと、どの7ビットをとっても全て
異なる数値パターンを作ることができる。このパターン
と位置の関係をメモリーに記憶しておき、7ビットに相
当する範囲でデータを検出することで絶対位置が分か
る。このような検出手段をメモリーホイール方式と呼ぶ
ことにする。
P0 = Pi · χ (1) λ = P0−Pi = Pi (χ−1) (2) In addition, magnetic projections 64 form an M-sequence pattern on the outer periphery of each of the annular yokes 61 to 63. It is arranged as follows. Further, in order to detect magnetic protrusions of the respective annular yokes 61 to 63, a plurality of magnetic detecting means 8 are provided via a gap. An M-sequence is a calculation method for continuously arranging numerical values so that repetition does not occur, and is one of typical random number generation. Here, the magnetic projection refers to a physical projection formed on a magnetic material or a magnetized portion. Next, the M sequence will be described.
FIG. 2 is a diagram illustrating an example in which an M sequence is applied to 7-bit data. As can be seen in FIG. 2, each 7-bit data is one bit shifted to the right with respect to the upper 7-bit data, and new 1-bit data is added from the left. By properly repeating the data to be added, it is possible to create a different numerical pattern for any 7 bits. The relationship between the pattern and the position is stored in a memory, and the absolute position can be determined by detecting data in a range corresponding to 7 bits. Such a detecting means is called a memory wheel method.

【0009】3つの磁気ギヤの減速比が2以上の任意の
整数nに対して(n−1)、n、(n+1)と異なるよ
うに、インナーロータ1の極対数に対する環状ヨーク6
1,62,63の極対数をそれぞれ設定しておく。例え
ばn=31、インナーロータ1の極対数:Pi=1とす
れば、式(1)より環状ヨーク61,62,63の極対
数はそれぞれ30,31,32となる。また、これは3
つの磁気ギヤの減速比でもある。減速比をこのように非
常に近い整数としておけば、その最小公倍数は大きくで
きる。この例では最小公倍数は14880となる。アウ
ターロータの回転角度の組合せは最小公倍数に等しいか
ら14880回転まで回転数を検出できる。また減速比
(32=25 )からメモリーホイールにはそれぞれ5ビ
ットのデータが必要であるからデータ検出手段としてホ
ール素子8を環状ヨーク61,62,63の外周に空隙
を介して5個ずつ所定の間隔をあけて配置してある。ホ
ール素子8の外周にはバイアス磁界を与えるための永久
磁石9を配置しておく。
The annular yoke 6 with respect to the number of pole pairs of the inner rotor 1 so that the reduction ratio of the three magnetic gears is different from (n-1), n, (n + 1) for an arbitrary integer n of 2 or more.
The number of pole pairs of 1, 62 and 63 is set respectively. For example, if n = 31 and the number of pole pairs of the inner rotor 1: Pi = 1, the number of pole pairs of the annular yokes 61, 62, and 63 is 30, 31, and 32, respectively, according to equation (1). This is 3
It is also the reduction ratio of two magnetic gears. By setting the reduction ratio as an integer that is very close, the least common multiple can be increased. In this example, the least common multiple is 14880. Since the combination of the rotation angles of the outer rotor is equal to the least common multiple, the rotation number can be detected up to 14880 rotations. Further, since the memory wheel requires 5 bits of data from the reduction ratio (32 = 2 5 ), five Hall elements 8 are specified as data detecting means on the outer periphery of the annular yokes 61, 62, 63 via an air gap. Are arranged at intervals. A permanent magnet 9 for applying a bias magnetic field is arranged on the outer periphery of the Hall element 8.

【0010】実施例における作用について説明する。イ
ンナーロータ1の回転に伴って各環状ヨーク61〜63
が回転し、各環状ヨーク61〜63の外周に設けた磁気
的突起64によるM系列パターンにより、ホール素子8
にホール電圧が発生し、その組合せから5ビットの信号
を得る。この信号を図示していないROMに記憶された
データと参照して各アウターロータ21〜23の回転角
を求める。この回転角の組合せから図示していない演算
器を用いてインナーロータ1の回転角を求める。インナ
ーロータ1の回転角は図示していないROMに予めアウ
ターロータ21〜23の回転角の組合せに対応するイン
ナーロータ1の回転角を記憶しておき参照しても良い。
The operation of the embodiment will be described. With the rotation of the inner rotor 1, each of the annular yokes 61-63
Are rotated, and the Hall elements 8 are formed by the M-sequence pattern by the magnetic projections 64 provided on the outer periphery of each of the annular yokes 61 to 63.
, And a 5-bit signal is obtained from the combination. The rotation angles of the outer rotors 21 to 23 are obtained by referring to this signal and data stored in a ROM (not shown). From the combination of the rotation angles, the rotation angle of the inner rotor 1 is obtained using a calculator (not shown). The rotation angle of the inner rotor 1 may be stored in advance in a ROM (not shown) and the rotation angle of the inner rotor 1 corresponding to the combination of the rotation angles of the outer rotors 21 to 23 may be referred to.

【0011】なお、本発明は、これまでの記載に限定さ
れることなく、各環状ヨークの外周に磁極を設けること
なく、磁性体に突起を形成し、この突起の配列によりM
系列を構成するようにしてもよい。また、各環状ヨーク
の外周に配置される磁石は、リング状、円弧状磁石でも
よいし、また磁石の製法はスパッタによって形成された
磁性体に着磁してもよいことは言うまでもない。
It should be noted that the present invention is not limited to the above description, and that a protrusion is formed on a magnetic body without providing a magnetic pole on the outer periphery of each annular yoke, and the M
A series may be configured. Further, the magnets arranged on the outer periphery of each annular yoke may be ring-shaped or arc-shaped magnets, and it goes without saying that the magnet may be manufactured by magnetizing a magnetic material formed by sputtering.

【0012】[0012]

【発明の効果】以上述べたように、本発明によればイン
ナーロータの回転に対して所定の減速比で回転する複数
の磁気ギヤを構成し、アウターロータの環状ヨーク外周
面にリング状に磁石を配置し、この磁石がM系列となる
ような着磁を行い、前記アウターロータの外周に空隙を
介して複数の磁気検出手段を設け、各磁気ギヤの外周に
メモリホイールを構成し、メモリホイールの信号より多
回転量を検出するようにしたので、停電などで電源が遮
断された場合でもインナーロータが回転すればアウター
ロータも回転し、電源再投入時に現在の位置が正確にわ
かるのでバッテリーバックアップなどは不要となる。ギ
ヤが非接触なのでギヤ音やギヤの摩耗の心配がなく、長
寿命となる。磁気ギヤを複数構成してもインナーロータ
は1つで良いので機械式のギヤに比ベ、構造が簡単とな
り、小型化できるなどの特徴を有する多回転形エンコー
ダを実現できる。
As described above, according to the present invention, a plurality of magnetic gears which rotate at a predetermined reduction ratio with respect to the rotation of the inner rotor are formed, and a ring-shaped magnet is formed on the outer peripheral surface of the annular yoke of the outer rotor. Are arranged, and the magnets are magnetized so as to form an M series. A plurality of magnetic detecting means are provided on the outer periphery of the outer rotor via a gap, and a memory wheel is formed on the outer periphery of each magnetic gear. The multi-rotation amount is detected from the signal of, so even if the power is cut off due to a power failure, the outer rotor will rotate if the inner rotor rotates, and the current position will be accurately known when the power is turned on again, so battery backup Are not required. Since the gears are not in contact with each other, there is no need to worry about gear noise or gear wear, and the life is extended. Even if a plurality of magnetic gears are configured, only one inner rotor is required, so that a multi-rotation encoder having features such as a simpler structure, smaller size, and the like than mechanical gears can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の構成を示す図で、(A)は実
施例構成の縦断面図、(B)は(A)の点線における断
面図
1A and 1B are diagrams showing a configuration of an embodiment of the present invention, wherein FIG. 1A is a longitudinal sectional view of the embodiment, and FIG. 1B is a cross-sectional view taken along a dotted line of FIG.

【図2】7ビットデータにM系列を適用した例を示す図FIG. 2 is a diagram showing an example in which an M sequence is applied to 7-bit data.

【符号の説明】[Explanation of symbols]

1:インナーロータ 21、22、23:アウターロータ 3:永久磁石 4:軸受 5:インダクタ 61、62、63:環状ヨーク 64:突起 71、72、73:軸受 8:ホール素子 9:永久磁石 10:絶対値エンコーダ 11:軟磁性ヨーク 12:永久磁石 1: inner rotor 21, 22, 23: outer rotor 3: permanent magnet 4: bearing 5: inductor 61, 62, 63: annular yoke 64: projection 71, 72, 73: bearing 8: Hall element 9: permanent magnet 10: Absolute encoder 11: Soft magnetic yoke 12: Permanent magnet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一回転以内の絶対値角度を検出するため
の絶対値エンコーダと、回転量を検出するための手段と
を備えた多回転エンコーダにおいて、 前記絶対値エンコーダと同軸に軸支した円筒の外周に2
の整数倍である極数の、異なる磁極が交互に配置された
インナーロータと、 インナーロータに対し磁気的変調手段を介して外側に同
軸で回転自在に支持され、磁性材料で構成された複数の
環状ヨークを有し、各環状ヨークの内周には2の整数倍
である異なる所定数の磁極が相隣り合って互いに異極と
なるよう配置され、また各環状ヨークの外周に磁石を配
置し、この磁石がM系列となるような着磁をしたアウタ
ーロータにより、インナーロータの回転に対して所定の
減速比でアウターロータが回転する複数の磁気ギヤを構
成し、 前記各アウターロータの外周に空隙を介して複数の磁気
検出手段を設け、各アウターロータ外周の磁石とともに
メモリホイールを構成し、メモリホイールの信号より多
回転量を検出することを特徴とする多回転エンコー。
1. A multi-rotation encoder including an absolute value encoder for detecting an absolute value angle within one rotation and a means for detecting a rotation amount, wherein a cylinder coaxially supported with the absolute value encoder. 2 around
An inner rotor in which different magnetic poles are arranged alternately, the number of poles being an integral multiple of the same, and a plurality of magnetic materials that are coaxially rotatably supported on the outer side of the inner rotor via magnetic modulation means and are rotatably supported. It has an annular yoke, and a predetermined number of different magnetic poles, each being an integral multiple of 2, are arranged on the inner periphery of each annular yoke so as to be adjacent to each other and have different polarities, and a magnet is arranged on the outer periphery of each annular yoke. An outer rotor that is magnetized such that the magnets are in the M series forms a plurality of magnetic gears in which the outer rotor rotates at a predetermined reduction ratio with respect to the rotation of the inner rotor. A plurality of magnetic detecting means are provided through an air gap, a memory wheel is configured with magnets on the outer periphery of each outer rotor, and a multi-rotation amount is detected from a signal of the memory wheel. Code.
【請求項2】 一回転以内の絶対値角度を検出するため
の絶対値エンコーダと回転量を検出するための手段を備
えた多回転エンコーダにおいて前記絶対値エンコーダと
同軸に円筒の外周にN,S磁極が交互に配置され、2の
整数倍である極数を構成したインナーロータを設け、イ
ンナーロータの外周には磁気的変調手段を介してインナ
ーロータと同軸にインナーロータに対して回転自在に支
持された複数のアウターロータを備え、アウタロータの
内周には2の整数倍である所定数の磁極を相隣り合って
互いに異極となるよう配置し、インナーロータの回転に
対してアウターロータが所定の減速比で回転する複数の
磁気ギヤを構成し、 前記アウターロータの外周に磁性材料で構成された突起
を設けこの突起の配列によりM系列を構成し、 前記アウターロータの外周に空隙を介して複数の磁気検
出手段を設け、この磁気検出手段の外周に永久磁石を配
置してメモリホイールを構成し、メモリホイールの信号
より多回転量を検出することを特徴とした多回転エンコ
ーダ。
2. A multi-rotation encoder comprising an absolute value encoder for detecting an absolute value angle within one rotation and a means for detecting an amount of rotation, wherein N, S is provided on the outer periphery of a cylinder coaxially with said absolute value encoder. Magnetic poles are alternately arranged, and an inner rotor having an integral multiple of 2 is provided. The inner rotor is rotatably supported on the outer periphery of the inner rotor coaxially with the inner rotor via magnetic modulation means. A predetermined number of magnetic poles, which is an integral multiple of 2, are arranged adjacent to each other and have different polarities on the inner periphery of the outer rotor, and the outer rotor is rotated by a predetermined distance with respect to the rotation of the inner rotor. A plurality of magnetic gears rotating at a reduction ratio of: a projection made of a magnetic material is provided on the outer periphery of the outer rotor; A plurality of magnetic detecting means are provided on the outer circumference of the rotor with a gap therebetween, and a permanent magnet is arranged on the outer circumference of the magnetic detecting means to constitute a memory wheel, and a multi-rotation amount is detected from a signal of the memory wheel. Multi-rotation encoder.
【請求項3】 請求項1の多回転エンコーダにおいて、
アウターロータの外周に配置される磁石をリング磁石と
したことを特徴とする多回転エンコーダ。
3. The multi-rotation encoder according to claim 1, wherein
A multi-rotation encoder, wherein a magnet arranged on the outer periphery of the outer rotor is a ring magnet.
【請求項4】 請求項3の多回転エンコーダにおいて、
アウターロータの外周に配置されるリング磁石をスパッ
タにより構成したことを特徴とする多回転エンコーダ。
4. The multi-rotation encoder according to claim 3, wherein
A multi-rotation encoder, wherein a ring magnet arranged on an outer periphery of an outer rotor is formed by sputtering.
【請求項5】 請求項1の多回転エンコーダにおいて、
アウターロータの外周に配置される磁石を円弧状磁石と
したことを特徴とする多回転エンコーダ。
5. The multi-rotation encoder according to claim 1, wherein
A multi-rotation encoder, wherein a magnet arranged on the outer periphery of the outer rotor is an arc-shaped magnet.
JP12553797A 1997-05-15 1997-05-15 Multi-turn encoder Expired - Fee Related JP3852502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12553797A JP3852502B2 (en) 1997-05-15 1997-05-15 Multi-turn encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12553797A JP3852502B2 (en) 1997-05-15 1997-05-15 Multi-turn encoder

Publications (2)

Publication Number Publication Date
JPH10318788A true JPH10318788A (en) 1998-12-04
JP3852502B2 JP3852502B2 (en) 2006-11-29

Family

ID=14912654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12553797A Expired - Fee Related JP3852502B2 (en) 1997-05-15 1997-05-15 Multi-turn encoder

Country Status (1)

Country Link
JP (1) JP3852502B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116057A (en) * 2000-10-06 2002-04-19 Yaskawa Electric Corp Multi-rotational absolute value encoder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116057A (en) * 2000-10-06 2002-04-19 Yaskawa Electric Corp Multi-rotational absolute value encoder

Also Published As

Publication number Publication date
JP3852502B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
KR100913631B1 (en) Multirotation type encoder
US4984474A (en) Torque sensor
KR900007794B1 (en) A magnetic rotary sensor
JP2002116057A (en) Multi-rotational absolute value encoder
US20180278186A1 (en) Axial flux motor with built-in optical encoder
JP2004343921A (en) Permanent magnet motor and x-ray computerized tomography equipment
JP2005172721A (en) Absolute magnetic encoder
JP2004101312A (en) Magnetic encoder with original position, and bearing
JPH10318788A (en) Multiple rotation encoder
JP2000065599A (en) Multi-rotational absolute value encoder
JP2004271504A5 (en)
JP2005083487A (en) Magnetic geneva toothed gear mechanism
JP2007221877A (en) Magnet rotor
JPH02162211A (en) Relative displacement detecting apparatus
JP2007093420A (en) Rotation angle sensor
JP2000092805A (en) Servo motor
JP2008309618A (en) Redundant system rotary type finite angle detector
JP2008058027A (en) Rotation sensor
JP4218290B2 (en) Rotation angle detector
JPS62185120A (en) Resolver
JP2004258028A (en) Apparatus for coding rotation parameter, anti-friction bearing and electric motor having the apparatus
WO2022249795A1 (en) Rotation detector and rotation detection method
JP2004020548A (en) Rolling bearing with rotating condition detecting device
JP4161248B2 (en) Combined detector
JPS63115009A (en) Absolute encoder

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040506

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Effective date: 20060524

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060721

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110915

LAPS Cancellation because of no payment of annual fees