JP2004101312A - Magnetic encoder with original position, and bearing - Google Patents

Magnetic encoder with original position, and bearing Download PDF

Info

Publication number
JP2004101312A
JP2004101312A JP2002262261A JP2002262261A JP2004101312A JP 2004101312 A JP2004101312 A JP 2004101312A JP 2002262261 A JP2002262261 A JP 2002262261A JP 2002262261 A JP2002262261 A JP 2002262261A JP 2004101312 A JP2004101312 A JP 2004101312A
Authority
JP
Japan
Prior art keywords
detected
magnetic
origin
detected portion
magnetic encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002262261A
Other languages
Japanese (ja)
Inventor
Kenichi Iwamoto
岩本 憲市
Takashi Koike
小池 孝誌
Tomoumi Ishikawa
石河 智海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2002262261A priority Critical patent/JP2004101312A/en
Publication of JP2004101312A publication Critical patent/JP2004101312A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/008Identification means, e.g. markings, RFID-tags; Data transfer means

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic encoder, wherein the formation of a part to be detected for a rotating pulse signal and original position detection and magnetization are enabled simultaneously, manufacture is simple and cost is low. <P>SOLUTION: The magnetic encoder 7, having original position, is used for rotation detection and provided with a first part 7A to be detected and a second part 7B to be detected which are mutually concentric. The first part 7A has a constant thickness for each part in the circumferential direction and is a permanent magnet, wherein a plurality of magnetic poles N, S arranged in circumference direction are formed. The second part 7B is connected with the first part 7A. Only one part on the circumference has the same thickness as that of the first part 7A and is set as a wall thickness part 7Ba having a magnetic pole. The other part of the second part 7B is a thin wall part 7Bb which is thinner than the thick wall part 7Ba. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、モータの制御やロボットの関節等に用いることのできる原点付き磁気エンコーダ、およびこの磁気エンコーダを内蔵した回転検出機能付き軸受に関する。
【0002】
【従来の技術】
回転パルス信号と1回転に1回の原点信号とを出力するための磁気エンコーダの例として、例えば特許文献1に示すものがある。図9,図10に示すように、この例の磁気エンコーダ37では、回転パルス信号を得るために、円周方向に同一ピッチで多極着磁されている第1の被検出部37Aと、円周方向の1箇所にのみ、他の部分とは異なる磁極を配置し、原点信号を得る第2の被検出部37Bからなる構成とされている。第1の被検出部37Aに対向して2つの磁気センサ38A,38Bが、磁極ピッチの90°分の位相をずらせて配置され、回転方向の検出も可能とされている。磁気エンコーダ37は、軸受31における回転輪32に取付けられ、固定輪33に各磁気センサ38A〜38Cが設置されている。
【0003】
【特許文献1】
特開平11−194009号公報
【0004】
【発明が解決しようとする課題】
上記従来の磁気エンコーダ37では、パルス信号と原点検出のための被検出部37A,37Bの作成および着磁を別々に行うことになるため、製造が煩雑である。そのためコスト高になる。
【0005】
この発明の目的は、回転パルス信号と原点検出のための被検出部の作成および着磁が同時に行えて、製造が簡便であり、安価にできる原点付き磁気エンコーダ、および回転検出機能付き軸受を提供することである。
【0006】
【課題を解決するための手段】
この発明における第1の発明の原点付き磁気エンコーダは、回転検出に用いられる原点付き磁気エンコーダであって、互いに同心のリング状の第1の被検出部および第2の被検出部を有する。第1の被検出部は、円周方向の各部の厚さが一定で、円周方向に並ぶ複数の磁極が形成された永久磁石である。第2の被検出部は、第1の被検出部と繋がっていて、円周上の1箇所のみ第1の被検出部と厚さが同一でかつ磁極を有する厚肉部分とされ、他の部分が上記厚肉部分よりも薄い薄肉部分である。上記第1の被検出部および第2の被検出部は、例えば円筒状とされる。
この構成によると、第1の被検出部は円周方向に並ぶ磁極より回転パルス信号の検出が可能であり、第2の被検出部は円周上の1箇所の磁極により原点検出に用いられる。第1,第2の被検出部は互いに繋がっているため、着磁前までの作成が同時に行える。着磁についても、第2の被検出部は磁極形成部分が第1の被検出部と同じ厚肉部分であって、他の部分が薄肉部分とされているため、第1の被検出部と同時に全周に着磁のための磁界付与を行っても、薄肉部分はギャップが広くなることや、磁石となる部分の厚さが薄いことなどにより着磁強度が低くなる。そのため、薄肉部分は検出対象として無視できる着磁強度にでき、未着磁と同等に扱える。したがって、両被検出部の着磁が同時に行える。このように、回転パルス信号と原点検出のための被検出部の作成および着磁が同時に行えて、製造が簡便であり、安価にできる。また原点検出のための被検出部が独立した磁石でないため、芯金を用いる場合にその芯金への強固な接合が可能である。さらに、回転パルス信号と原点検出のための被検出部が一体であるため、コンパクトになる。
【0007】
上記第2の被検出部における上記厚肉部分の円周方向の幅寸法は、磁極幅と概ね同等以上でかつ3倍よりも小さいものとするのが好ましい。幅寸法が磁極幅より狭くなると、磁極検出信号自体が低くなり、また幅寸法が磁極幅の3倍を超えると、1回転に2つ以上の原点信号が発生する可能性がある。そのため、この範囲の幅寸法が好ましい。
第2の被検出部における厚肉部分と薄肉部分との段差は0.5mm以上とすることが好ましい。この段差が0.5mm以上であると、第1,第2の被検出部の同時着磁で薄肉部分の着磁強度がセンサ出力に影響しないようにすることが容易である。
第1の被検出部および第2の被検出部はゴム磁石であっても良い。ゴム磁石はこの種の磁気エンコーダに製造上や性能上の種々の利点があるが、ゴム磁石においても、第2の被検出部を厚肉部分と薄肉部分とで構成したことによる同時作成,同時着磁が容易に行える。
【0008】
この発明における回転検出機能付き軸受は、転動体を介して互いに回転自在な回転輪および静止輪と、上記回転輪に設けられた磁気エンコーダとを備え、この磁気エンコーダにこの発明の上記いずれかの構成の原点付き磁気エンコーダを用いたものである。
この構成によると、回転数検出だけでなく、原点検出も可能でかつ回転方向も検出できる回転検出機能付き軸受でありながら、回転数検出センサと原点検出センサを個別に設置する必要がなく、組立が簡単で、簡素でコンパクトな構造とすることができる。また、この発明の原点付き磁気エンコーダにおける製造簡便の効果により、高機能で安価な軸受とできる。
【0009】
この軸受において、原点付き磁気エンコーダにおける第2の被検出部の厚肉部分と円周方向位置が一致する原点位置表示マークを回転輪に設け、上記第2の被検出部を検出するセンサの円周方向の取付位置を示すセンサ取付位置表示マークを静止輪に設けても良い。
このように各表示マークを施すと、磁気エンコーダやセンサが内蔵されて外部から見えなくても、原点位置表示マークおよびセンサ取付位置表示マークを見ることで、磁気エンコーダの原点位置およびセンサ位置を、軸やハウジングに正しく組み込むことができ、軸受の組み込み作業が容易に精度良く行える。
上記原点位置表示マークおよびセンサ取付位置表示マークは刻印であっても良い。刻印であると、容易に施すことができ、かつ消え難い。
また、この発明の回転検出機能付き軸受において、上記第1の被検出部を検出するセンサおよび第2の被検出部を検出するセンサをセンサケースに設け、このセンサケースに、第2の被検出部の円周方向位置を示す表示マークを設けても良い。センサケースに第2の被検出部の円周方向位置を示しておいた場合も、第2の被検出部が外部から直接に見えなくても、軸受のハウジングへの組み込みが、センサ位置が正しく、容易に行える。
【0010】
この発明の原点付き磁気エンコーダの製造方法は、回転検出に用いられる原点付き磁気エンコーダの製造方法であって、互いに同心のリング状の第1の被検出部および第2の被検出部を有し、第1の被検出部は円周方向の各部の厚さが一定であり、第2の被検出部は第1の被検出部と繋がっていて、円周上の1箇所のみ第1の被検出部と厚さが同一の厚肉部分とされ、他の部分が上記厚肉部分よりも薄い薄肉部分である未着磁エンコーダ素材を製造する過程と、この未着磁エンコーダ素材の第1の被検出部に円周方向に並べて設ける複数の磁極、および第2の被検出部の厚肉部分に設ける磁極を同時に着磁する過程とを含む方法である。
この製造方法によると、第1の被検出部に円周方向に並べて複数の磁極N,Sが着磁されると同時に、第2の被検出部にも円周方向に並べて複数の磁極N,Sが着磁されるが、第2の被検出部では、厚肉部分において第1の被検出部と同じ磁力の磁極が着磁されるのに対して、薄肉部分においては、肉厚が薄いこと、および着磁時のギャップが大きい等の理由により、着磁強度が第1の被検出部に比べてかなり小さくなり、検出対象として無視できる磁力となる。これにより、第2の被検出部では、厚肉部分にのみ磁極が着磁されたと同等の結果が得られ、第1の被検出部と第2の被検出部の着磁を同時に行うことができる。
【0011】
【発明の実施の形態】
この発明の第1の実施形態を図1ないし図5と共に説明する。図1は、この実施形態の原点付き磁気エンコーダを内蔵した回転検出機能付き軸受の断面図を示す。この回転検出機能付き軸受1は、転動体4を介して互いに回転自在な回転輪2および静止輪3を有するものであって、回転輪2に設けた原点付き磁気エンコーダ7と、静止輪3に設けた3つの磁気センサ8A,8B,8Cとで回転センサ6を構成している。回転輪2は内輪とされ、静止輪3は外輪とされている。内輪からなる回転輪2の外径面、および外輪からなる静止輪3の内径面には転動体4の軌道面2a,3aが形成されている。転動体4は保持器5で保持されている。回転輪2と静止輪3の間の環状空間は、回転センサ6の設置側とは反対側の端部がシール部材9で密封されている。
【0012】
回転センサ6を構成する磁気エンコーダ7はラジアル型のものであって、図2に示すように周方向に多極磁化された環状とされる。具体的には、環状のバックメタル10と、その外周側に設けられた2つの被検出部7A,7Bを有する。この磁気エンコーダ7はバックメタル10を介して回転輪2に固着されている。
上記両被検出部7A,7Bは、互いに同心のリング状、具体的には円筒状とされる。第1の被検出部7Aは円周方向の各部の厚さが一定で、円周方向に等間隔で交互に並ぶ複数の磁極N,Sが形成された永久磁石である。第2の被検出部7Bは第1の被検出部7Aと繋がっていて、円周上の1箇所のみ第1の被検出部7Aと厚さが同一で、かつ磁極を有する厚肉部分7Baとされ、他の部分が上記厚肉部分7Baよりも薄い薄肉部分7Bbとされている。ここでは、上記両被検出部7A,7Bはゴム磁石からなる。
【0013】
第2の被検出部7Bにおける上記厚肉部分7Baの円周方向の幅寸法Wは、磁極幅と概ね同等とされているが、図3(C)に示すように磁極幅の略3倍としても良い。厚肉部分7Baの円周方向の幅寸法Wが磁極幅より狭くなると、厚肉部分7Baの磁極の検出信号自体が低くなり、また上記幅寸法Wが磁極幅の3倍を超えると、回転輪2が1回転する間に2つ以上の原点信号が発生する可能性があるため、上記幅寸法Wは磁極幅と概ね同等以上でかつ3倍より小さくするのが好ましい。これにより、回転輪2が1回転する間に、第2の被検出部7Bが確実に1つの原点信号を発生することになり、原点位置の検出を正確に行うことができる。第2の被検出部7Bにおける厚肉部分7Baと薄肉部分7Bbとの段差dは0,5mm以上とするのが好ましい。
【0014】
磁気センサ8A,8B,8Cは例えばホール素子からなる。これらの磁気センサ8A,8B,8Cは、回転輪2の回転により、対向する磁気エンコーダ7の磁極N,Sの変化に対応して、インクリメンタルなパルス信号を出力する。1組となる2つの磁気センサ8A,8Bと他の1つの磁気センサ8Cとは、軸方向に分けて配置され、1組の磁気センサ8A,8Bとこれに対向する磁気エンコーダ7の第1の被検出部7Aとで第1の回転センサ部11が構成される。また、他の1つの磁気センサ8Cとこれに対向する第2の被検出部7Bとで第2の回転センサ部12が構成される。すなわち、1つの磁気エンコーダ7において、第1の被検出部7Aと第2の被検出部7Bが軸方向に並べた状態に配置される。このように1つの磁気エンコーダ7に2つの被検出部7A,7Bを軸方向に並べて配置し、また肉厚差を持たせることにより、両被検出部7A,7Bの着磁を同時に行うことができ、着磁のタクトタイムを短縮して、製造費用を削減することができる。また、第1の被検出部7Aと第2の被検出部7Bとは、磁極配列の繰り返し周期における位相を等しくしており、その着磁作業をより簡単に行うことができる。
【0015】
特に、第1の被検出部7Aは円周方向の各部の厚さが一定であり、第2の被検出部7Bは第1の被検出部7Aと繋がっていて、円周上の1箇所のみ第1の被検出部7Aと厚さが同一の厚肉部分7Baとされ、他の部分が上記厚肉部分7Baよりも薄い薄肉部分7Bbとされているので、両被検出部7A,7Bの着磁を以下のように1工程で同時に行うことができる。
すなわち、上記肉厚構造とした第1の被検出部7Aおよび第2の被検出部7Bを一体に有する未着磁エンコーダ素材に対して、複数の磁極N,Sを円周方向に並べて着磁する。これにより、第1の被検出部7Aに円周方向に並べて複数の磁極N,Sが着磁されると同時に、第2の被検出部7Bにも円周方向に並べて複数の磁極N,Sが着磁される。しかし、第2の被検出部7Bでは、厚肉部分7Baにおいて第1の被検出部7Aと同じ磁力の磁極が着磁されるのに対して、他の薄肉部分7Bbにおいては、肉厚が薄いこと、および着磁時のギャップが大きい等の理由により、着磁強度が第1の被検出部7Aに比べてかなり小さくなり、検出対象として無視できる磁力となる。これにより、第2の被検出部7Bでは、厚肉部分7Baにのみ磁極が着磁されたと同等の結果が得られる。このように、第1の被検出部7Aと第2の被検出部7Bの着磁を同時に行えるので、上記エンコーダ7を容易に製造できコスト低減が可能となる。また、第1の被検出部7Aと第2の被検出部7Bが分離独立していないので、バックメタル10への強固な接合も可能となるばかりか、コンパクトに磁気エンコーダ7を構成できる。
【0016】
上記3つの磁気センサ8A,8B,8Cは、樹脂ケース13内に挿入した後に樹脂モールドし、その樹脂ケース13を金属ケース14を介して静止輪3に固定することにより、静止輪3側に取り付けている。
【0017】
図3(A)は、第1の被検出部7Aと1組の磁気センサ8A,8Bとの位置関係を示し、図3(B)は第2の被検出部7Bと1つの磁気センサ8Cとの位置関係を示す。第2の被検出部7Bでは、その厚肉部分7Baに1つの磁極Nが着磁されている。また、磁気センサ8A,8Bの間では、磁極配列の繰り返し周期における位相の関係が、略90°の位相差を有する位置関係とされている。
図3(B)では、第2の被検出部7Bの厚肉部分7Baに1つの磁極Nが着磁された例を示しているが、厚肉部分7Bbの幅Wが磁極幅の3倍弱である場合には、図3(C)に示すように厚肉部分7Baにおいて、周方向に並ぶ3つの磁極(例えばS,N,S)が着磁されることになる。
【0018】
図4は、回転センサ6からの出力信号を示す波形図である。図4(A)は磁気センサ8Aからの出力信号波形を、図4(B)は磁気センサ8Bからの出力信号波形をそれぞれ示す。図4(C)は磁気センサ8Cからの出力信号波形である。これらのパルス信号により回転輪2の回転数、回転方向、および原点位置を検出することができる。すなわち、磁気センサ8A,8Bのいずれかの出力信号により回転数を検出することができる。また、磁気センサ8Aの出力信号と磁気センサ8Bの出力信号の位相差から回転方向を検出することができる。さらに、磁気センサ8Cの出力信号から原点位置を検出することができる。
【0019】
回転輪2における上記磁気エンコーダ7が設置される側の端面には、図5に示すように、磁気エンコーダ7の原点位置である第2の被検出部7Bの厚肉部分7Baと円周方向位置が一致する原点位置表示マーク15が刻印として設けられている。また、静止輪3における上記磁気センサ8A〜8Cが設置される側の端面には、磁気エンコーダ7における第2の被検出部7Bを検出する磁気センサ8Cの円周方向の取付位置を示すセンサ取付位置表示マーク16が刻印として設けられている。軸受1の組立時には、回転輪2の上記原点位置表示マーク15に上記第2の被検出部7Bの厚肉部分7Baが一致するように、磁気エンコーダ7が回転輪2に固定される。また、静止輪3の上記センサ取付位置表示マーク16に上記磁気センサ8Cが一致するように、磁気センサ8A,8B,8Cを内蔵する金属ケース14が静止輪3に固定される。
【0020】
このように、回転輪2および静止輪3に原点位置表示マーク15およびセンサ取付位置表示マーク16を設けることにより、この回転検出機能付き軸受1を回転軸およびハウジングに組み込む際に、磁気エンコーダ7の原点位置および原点位置検出用の磁気センサ8Cの位置を容易に確認できるので、軸受1の組込みを容易に行うことができる。
【0021】
なお、上記原点位置表示マーク15およびセンサ取付位置表示マーク16は、刻印によるものに限らず、回転輪2や静止輪3の円周上の1箇所に設けられたキー溝など外見で識別できるものをこれらのマークとして利用してもよい。また、上記原点位置表示マーク15およびセンサ取付位置表示マーク16は、回転輪2や静止輪3に設ける場合に限らず、原点位置表示マーク15は例えば磁気エンコーダ7のバックメタル10に設け、センサ取付位置表示マーク16は例えば樹脂ケース13や金属ケース14に設けても良い。
【0022】
この実施形態の回転検出機能付き軸受1によると、回転数検出だけでなく、原点検出も可能でかつ回転方向も検出できる回転センサ内蔵の軸受でありながら、回転数検出センサと原点検出センサを個別に設置する必要がない。そのため、組立が簡単で、簡素でコンパクトな構造になる。
【0023】
図6は、この発明の他の実施形態を示す断面図である。この実施形態にかかる回転検出機能付き軸受1は、図1〜図5に示した第1の実施形態において、回転センサ6を構成する磁気エンコーダ7をスラスト型としたものである。すなわち、磁気エンコーダ7は、断面L字状とされて内輪2の外径面に固定される環状のシール板20のフランジ状の立板部20aに設けられている。磁気エンコーダ7は、互いに同心のリング状の第1の被検出部7Aおよび第2の被検出部7Bを有し、第1の被検出部7Aは上記シール板20における立板部20aの外周側に設けられ、第2の被検出部7Bは第1の被検出部7Aの内周側に設けられる。図7に示すように、第1の被検出部7Aは、円周方向の各部の厚さが一定で、円周方向に並ぶ複数の磁極N,Sの形成された永久磁石とされている。第2の被検出部7Bは、第1の被検出部7Bと繋がっていて、円周上の1箇所のみ第1の被検出部7Aと厚さが同一で、かつ磁極(ここではN)を有する厚肉部分7Baとされ、他の部分が上記厚肉部分7Baよりも薄肉部分7Baとされている。
【0024】
前記磁気エンコーダ7の両被検出部7A,7Bを検出する磁気センサ8A〜8Cは、磁気エンコーダ7と軸方向に向けて対向するように配置される。すなわち、例えば樹脂モールドされて断面L字状の金属ケース24に取り付けられた磁気センサ8A〜8Cは、金属ケース24を静止輪3の外径面に固定することにより静止輪3側に取り付けられ、図8に示すように磁気センサ8A,8Bが第1の被検出部7Aに、磁気センサ8Cが第2の被検出部7Bに対向するように配置される。その他の構成および作用は第1の実施形態の場合と同様である。
【0025】
【発明の効果】
この発明の原点付き磁気エンコーダは、リング状の第1の被検出部および第2の被検出部を有し、第1の被検出部は円周方向の各部の厚さが一定で、円周方向に並ぶ複数の磁極の形成された永久磁石であり、第2の被検出部は第1の被検出部と繋がっていて、円周上の1箇所のみ第1の被検出部と厚さが同一でかつ磁極を有する厚肉部分とされ、他の部分が薄肉部分とされているため、回転パルス信号と原点検出のための被検出部の作成および着磁が同時に行えて、製造が簡便であり、安価に製造できる。
この発明の回転検出機能付き軸受は、この発明の原点付き磁気エンコーダを備えたものであるため、回転数検出および原点検出機能を備えながら、回転数検出センサと原点検出センサを個別に設置する必要がなく、組立が簡単で、簡素でコンパクトな構造とすることができる。しかも、この発明の原点付き磁気エンコーダにおける製造簡便の効果により、高機能で安価な軸受とできる。
この発明の原点付き磁気エンコーダの製造方法は、回転パルス信号と原点検出のための被検出部の作成および着磁が同時に行えるため、製造が簡便であり、安価に製造できる。
【図面の簡単な説明】
【図1】この発明の一実施形態にかかる原点付き磁気エンコーダを内蔵した回転検出機能付き軸受の断面図である。
【図2】同磁気エンコーダの斜視図である。
【図3】(A)は同磁気エンコーダの第1の被検出部と磁気センサの位置関係を示す説明図、(B)は同磁気エンコーダの第2の被検出部と磁気センサの位置関係を示す説明図、(C)は同磁気エンコーダの他の例の第2の被検出部と磁気センサの位置関係を示す説明図である。
【図4】(A)は第1の磁気センサの検出信号の波形図、(B)は第2の磁気センサの検出信号の波形図、(C)は第3の磁気センサの検出信号の波形図である。
【図5】上記回転検出機能付き軸受を一端側からみた部分正面図である。
【図6】この発明の他の実施形態にかかる原点付き磁気エンコーダを内蔵した回転検出機能付き軸受の断面図である。
【図7】同磁気エンコーダの一部を示す斜視図である。
【図8】同磁気エンコーダと磁気センサとの位置関係を示す説明図である。
【図9】従来の回転検出機能付き軸受の断面図である。
【図10】同軸受に内蔵された磁気エンコーダと磁気センサとの位置関係を示す説明図である。
【符号の説明】
1…回転検出機能付き軸受
2…回転輪
3…静止輪
4…転動体
7…原点付き磁気エンコーダ
7A…第1の被検出部
7B…第2の被検出部
7Ba…厚肉部分
7Bb…薄肉部分
15…原点位置表示マーク
16…センサ取付位置表示マーク
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic encoder with an origin that can be used for control of a motor, a joint of a robot, and the like, and a bearing with a rotation detection function incorporating the magnetic encoder.
[0002]
[Prior art]
An example of a magnetic encoder for outputting a rotation pulse signal and an origin signal once per rotation is disclosed in, for example, Japanese Patent Application Laid-Open Publication No. HEI 10-163556. As shown in FIGS. 9 and 10, in the magnetic encoder 37 of this example, in order to obtain a rotation pulse signal, a first detected portion 37 </ b> A that is multipolarly magnetized at the same pitch in the circumferential direction and a circular A magnetic pole different from that of the other portions is arranged only at one position in the circumferential direction, and is configured to include a second detected portion 37B for obtaining an origin signal. Two magnetic sensors 38A and 38B are arranged so as to face the first detected portion 37A with a phase shift of 90 ° of the magnetic pole pitch, and the rotation direction can be detected. The magnetic encoder 37 is attached to the rotating wheel 32 of the bearing 31, and the fixed wheel 33 is provided with magnetic sensors 38 </ b> A to 38 </ b> C.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 11-194008
[Problems to be solved by the invention]
In the above-mentioned conventional magnetic encoder 37, the production and the magnetization of the pulse signals and the detection portions 37A and 37B for detecting the origin are performed separately, so that the production is complicated. Therefore, the cost increases.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic encoder with an origin and a bearing with a rotation detection function, which can simultaneously produce and magnetize a rotation pulse signal and a portion to be detected for detecting the origin, which are simple and inexpensive to manufacture. It is to be.
[0006]
[Means for Solving the Problems]
A magnetic encoder with a reference point according to a first aspect of the present invention is a magnetic encoder with a reference point used for rotation detection, and has a first detection target portion and a second detection target portion which are concentric with each other in a ring shape. The first portion to be detected is a permanent magnet in which the thickness of each portion in the circumferential direction is constant and a plurality of magnetic poles arranged in the circumferential direction are formed. The second portion to be detected is connected to the first portion to be detected, and is a thick portion having the same thickness and the same magnetic pole as the first portion to be detected only at one location on the circumference. The portion is a thin portion thinner than the thick portion. The first detected portion and the second detected portion are, for example, cylindrical.
According to this configuration, the first detected portion can detect the rotation pulse signal from the magnetic poles arranged in the circumferential direction, and the second detected portion is used for detecting the origin by one magnetic pole on the circumference. . Since the first and second detected portions are connected to each other, they can be simultaneously created before magnetization. Regarding the magnetization, the second detected part has the same magnetic pole forming portion as the first detected part in the same thick part and the other part is the thin part. At the same time, even when a magnetic field for magnetizing is applied to the entire circumference, the magnetizing strength is reduced due to the wide gap in the thin portion and the small thickness of the portion to be a magnet. For this reason, the thin portion can have a negligible magnetization strength as a detection target, and can be treated as if it were not magnetized. Therefore, the magnetization of both detected parts can be performed simultaneously. As described above, the rotation pulse signal and the detection target portion for detecting the origin can be simultaneously formed and magnetized, so that the manufacturing is simple and inexpensive. In addition, since the detected portion for detecting the origin is not an independent magnet, when a core is used, it is possible to make a strong connection to the core. Further, since the rotation pulse signal and the detected part for detecting the origin are integrated, the size is reduced.
[0007]
It is preferable that the circumferential width of the thick portion in the second detection portion is substantially equal to or larger than the magnetic pole width and smaller than three times. When the width is smaller than the magnetic pole width, the magnetic pole detection signal itself becomes low. When the width exceeds three times the magnetic pole width, two or more origin signals may be generated in one rotation. Therefore, a width dimension in this range is preferable.
It is preferable that the step between the thick portion and the thin portion in the second detected portion is 0.5 mm or more. When this step is 0.5 mm or more, it is easy to prevent the magnetization intensity of the thin portion from affecting the sensor output by simultaneous magnetization of the first and second detected portions.
The first detected portion and the second detected portion may be rubber magnets. Rubber magnets have various advantages in manufacturing and performance of this type of magnetic encoder. However, in the case of rubber magnets as well, simultaneous formation and simultaneous formation of the second detected portion by forming the second portion to be detected with a thick portion and a thin portion are also possible. Magnetization can be performed easily.
[0008]
A bearing with a rotation detecting function according to the present invention includes a rotating wheel and a stationary wheel that are rotatable with each other via a rolling element, and a magnetic encoder provided on the rotating wheel. This uses a magnetic encoder with an origin having a configuration.
According to this configuration, it is possible to detect not only the rotation speed but also the origin, and the rotation detection function can also detect the rotation direction.However, there is no need to separately install the rotation speed detection sensor and the origin detection sensor. However, a simple, compact structure can be achieved. In addition, the high-performance and inexpensive bearing can be obtained by the effect of the simple manufacturing of the magnetic encoder with origin of the present invention.
[0009]
In this bearing, an origin position indicating mark whose circumferential direction coincides with the thick portion of the second detected portion of the magnetic encoder with the origin is provided on the rotating wheel, and the circle of the sensor for detecting the second detected portion is provided. A sensor mounting position display mark indicating the mounting position in the circumferential direction may be provided on the stationary wheel.
By applying each display mark in this way, even if the magnetic encoder and sensor are built in and cannot be seen from the outside, the origin position and sensor position of the magnetic encoder can be determined by looking at the origin position display mark and the sensor mounting position display mark. The bearing can be correctly assembled into a shaft or a housing, and the work of assembling the bearing can be easily and accurately performed.
The origin position display mark and the sensor mounting position display mark may be engraved marks. If it is a stamp, it can be easily applied and is not easily erased.
In the bearing with a rotation detecting function according to the present invention, a sensor for detecting the first detected portion and a sensor for detecting the second detected portion are provided in a sensor case, and the second detected portion is provided in the sensor case. A display mark indicating the circumferential position of the portion may be provided. Even when the circumferential position of the second detected portion is indicated in the sensor case, even if the second detected portion is not directly visible from the outside, the incorporation of the bearing into the housing can correct the sensor position. Easy to do.
[0010]
A method of manufacturing a magnetic encoder with an origin according to the present invention is a method of manufacturing a magnetic encoder with an origin used for rotation detection, comprising a first detected portion and a second detected portion which are concentric with each other and are in a ring shape. The thickness of each part in the circumferential direction of the first detected part is constant, and the second detected part is connected to the first detected part. A process of manufacturing an unmagnetized encoder material in which the detection portion is a thick portion having the same thickness as the other portion, and the other portion is a thin portion thinner than the thick portion; And a step of simultaneously magnetizing a plurality of magnetic poles provided in the detected portion in the circumferential direction and a magnetic pole provided in a thick portion of the second detected portion.
According to this manufacturing method, the plurality of magnetic poles N and S are magnetized in the first detected portion in the circumferential direction, and the plurality of magnetic poles N, S are also arranged in the second detected portion in the circumferential direction. S is magnetized. In the second detected portion, the magnetic pole having the same magnetic force as that of the first detected portion is magnetized in the thick portion, whereas in the thin portion, the thickness is small. Because of this, and because the gap at the time of magnetization is large, the magnetization strength is considerably smaller than that of the first detected portion, and the magnetic force is negligible as a detection target. As a result, in the second detected portion, the same result as when the magnetic pole is magnetized only in the thick portion can be obtained, and the magnetization of the first detected portion and the second detected portion can be performed simultaneously. it can.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view of a bearing with a rotation detecting function which incorporates a magnetic encoder with an origin according to this embodiment. The bearing 1 with a rotation detecting function has a rotating wheel 2 and a stationary wheel 3 that are rotatable with respect to each other via a rolling element 4, and includes a magnetic encoder 7 with an origin provided on the rotating wheel 2 and a stationary wheel 3. The rotation sensor 6 is constituted by the provided three magnetic sensors 8A, 8B and 8C. The rotating wheel 2 is an inner wheel, and the stationary wheel 3 is an outer wheel. The raceway surfaces 2a, 3a of the rolling elements 4 are formed on the outer diameter surface of the rotating wheel 2 formed of the inner ring and on the inner diameter surface of the stationary wheel 3 formed of the outer ring. The rolling elements 4 are held by a holder 5. An end of the annular space between the rotating wheel 2 and the stationary wheel 3 on the side opposite to the side where the rotation sensor 6 is installed is sealed with a seal member 9.
[0012]
The magnetic encoder 7 constituting the rotation sensor 6 is of a radial type, and has an annular shape with multipolar magnetization in the circumferential direction as shown in FIG. Specifically, it has an annular back metal 10 and two detected parts 7A and 7B provided on the outer peripheral side thereof. The magnetic encoder 7 is fixed to the rotating wheel 2 via a back metal 10.
The two detected parts 7A and 7B are formed in a concentric ring shape, specifically, in a cylindrical shape. The first portion to be detected 7A is a permanent magnet in which a plurality of magnetic poles N and S alternately arranged at equal intervals in the circumferential direction are formed, with the thickness of each portion in the circumferential direction being constant. The second portion to be detected 7B is connected to the first portion to be detected 7A, and the thick portion 7Ba having the same thickness as the first to be detected portion 7A and having a magnetic pole at only one location on the circumference. The other portion is a thin portion 7Bb thinner than the thick portion 7Ba. Here, both the detected parts 7A and 7B are made of rubber magnets.
[0013]
The circumferential width W of the thick portion 7Ba in the second detected portion 7B is substantially equal to the magnetic pole width, but is set to be approximately three times the magnetic pole width as shown in FIG. Is also good. When the width W of the thick portion 7Ba in the circumferential direction is smaller than the magnetic pole width, the detection signal itself of the magnetic pole of the thick portion 7Ba becomes low, and when the width W exceeds three times the magnetic pole width, the rotating wheel Since there is a possibility that two or more origin signals are generated during one rotation of 2, the width W is preferably substantially equal to or larger than the magnetic pole width and smaller than three times. Thus, while the rotating wheel 2 makes one rotation, the second detected portion 7B surely generates one origin signal, and the origin position can be accurately detected. It is preferable that the step d between the thick portion 7Ba and the thin portion 7Bb in the second detected portion 7B is 0.5 mm or more.
[0014]
The magnetic sensors 8A, 8B, 8C are, for example, Hall elements. These magnetic sensors 8A, 8B, and 8C output incremental pulse signals in response to changes in the magnetic poles N and S of the magnetic encoder 7 facing the rotation of the rotating wheel 2. One set of two magnetic sensors 8A and 8B and another one of the magnetic sensors 8C are arranged separately in the axial direction, and the first set of the magnetic sensors 8A and 8B and the first magnetic encoder 7 opposed thereto is arranged. The first rotation sensor unit 11 is configured by the detected unit 7A. Further, a second rotation sensor unit 12 is constituted by another magnetic sensor 8C and a second detection unit 7B opposed thereto. That is, in one magnetic encoder 7, the first detected portion 7A and the second detected portion 7B are arranged in a state of being arranged in the axial direction. By arranging the two detected portions 7A and 7B in the axial direction in one magnetic encoder 7 and providing a difference in wall thickness, the two detected portions 7A and 7B can be simultaneously magnetized. As a result, the tact time for magnetization can be shortened, and the manufacturing cost can be reduced. In addition, the first detected portion 7A and the second detected portion 7B have the same phase in the repetition period of the magnetic pole arrangement, so that the magnetization operation can be performed more easily.
[0015]
In particular, the first detected portion 7A has a uniform thickness at each portion in the circumferential direction, and the second detected portion 7B is connected to the first detected portion 7A, and only one portion on the circumference is provided. Since the thick portion 7Ba has the same thickness as the first detected portion 7A and the other portion is a thin portion 7Bb thinner than the thick portion 7Ba, the two detected portions 7A and 7B are attached. Magnetization can be performed simultaneously in one step as follows.
That is, a plurality of magnetic poles N and S are arranged in a circumferential direction on a non-magnetized encoder material integrally including the first detected portion 7A and the second detected portion 7B having the above-mentioned thick structure. I do. Thereby, the plurality of magnetic poles N and S are magnetized in the first detected portion 7A in the circumferential direction, and the plurality of magnetic poles N and S are also arranged in the second detected portion 7B in the circumferential direction. Is magnetized. However, in the second detected portion 7B, the magnetic pole having the same magnetic force as that of the first detected portion 7A is magnetized in the thick portion 7Ba, whereas the other thin portion 7Bb is thin. Because of this, and because the gap at the time of magnetization is large, the magnetization strength is considerably smaller than that of the first detected portion 7A, and the magnetic force is negligible as a detection target. As a result, in the second detected portion 7B, the same result as when the magnetic pole is magnetized only in the thick portion 7Ba is obtained. In this manner, the first detected portion 7A and the second detected portion 7B can be simultaneously magnetized, so that the encoder 7 can be easily manufactured and the cost can be reduced. In addition, since the first detected portion 7A and the second detected portion 7B are not separated and independent from each other, it is possible not only to firmly join the back metal 10 but also to configure the magnetic encoder 7 compactly.
[0016]
The three magnetic sensors 8A, 8B and 8C are mounted on the stationary wheel 3 by inserting the resin into the resin case 13 and then molding the resin, and fixing the resin case 13 to the stationary wheel 3 via the metal case 14. ing.
[0017]
FIG. 3A shows the positional relationship between the first detected portion 7A and a pair of magnetic sensors 8A and 8B, and FIG. 3B shows the second detected portion 7B and one magnetic sensor 8C. The positional relationship of is shown. In the second detected portion 7B, one magnetic pole N is magnetized on the thick portion 7Ba. The phase relationship between the magnetic sensors 8A and 8B in the repetition period of the magnetic pole arrangement is a positional relationship having a phase difference of about 90 °.
FIG. 3B shows an example in which one magnetic pole N is magnetized in the thick portion 7Ba of the second detected portion 7B, but the width W of the thick portion 7Bb is slightly less than three times the magnetic pole width. In the case of, three magnetic poles (for example, S, N, and S) arranged in the circumferential direction are magnetized in the thick portion 7Ba as shown in FIG. 3C.
[0018]
FIG. 4 is a waveform diagram showing an output signal from the rotation sensor 6. FIG. 4A shows an output signal waveform from the magnetic sensor 8A, and FIG. 4B shows an output signal waveform from the magnetic sensor 8B. FIG. 4C shows an output signal waveform from the magnetic sensor 8C. With these pulse signals, the rotation speed, rotation direction, and origin position of the rotating wheel 2 can be detected. That is, the rotation speed can be detected from the output signal of either of the magnetic sensors 8A and 8B. Further, the rotation direction can be detected from the phase difference between the output signal of the magnetic sensor 8A and the output signal of the magnetic sensor 8B. Further, the origin position can be detected from the output signal of the magnetic sensor 8C.
[0019]
As shown in FIG. 5, a thick portion 7Ba of the second detected portion 7B which is an origin position of the magnetic encoder 7 and a circumferential position are provided on an end surface of the rotating wheel 2 on the side where the magnetic encoder 7 is installed. Is provided as an engraved mark. A sensor mounting indicating a circumferential mounting position of a magnetic sensor 8C for detecting the second detected portion 7B of the magnetic encoder 7 is provided on an end surface of the stationary wheel 3 on a side where the magnetic sensors 8A to 8C are installed. A position display mark 16 is provided as an engraving. At the time of assembling the bearing 1, the magnetic encoder 7 is fixed to the rotating wheel 2 such that the thick portion 7Ba of the second detected portion 7 </ b> B coincides with the reference mark 15 of the rotating wheel 2. Further, the metal case 14 containing the magnetic sensors 8A, 8B, 8C is fixed to the stationary wheel 3 so that the magnetic sensor 8C matches the sensor mounting position display mark 16 of the stationary wheel 3.
[0020]
By providing the origin position indicating mark 15 and the sensor mounting position indicating mark 16 on the rotating wheel 2 and the stationary wheel 3 in this way, when the bearing 1 with the rotation detecting function is incorporated into the rotating shaft and the housing, the magnetic encoder 7 Since the origin position and the position of the magnetic sensor 8C for detecting the origin position can be easily confirmed, the bearing 1 can be easily assembled.
[0021]
In addition, the origin position display mark 15 and the sensor mounting position display mark 16 are not limited to those by engraving, but can be identified by appearance such as a keyway provided at one place on the circumference of the rotating wheel 2 or the stationary wheel 3. May be used as these marks. Further, the origin position display mark 15 and the sensor mounting position display mark 16 are not limited to being provided on the rotating wheel 2 and the stationary wheel 3, but the origin position display mark 15 is provided on, for example, the back metal 10 of the magnetic encoder 7, and the sensor mounting The position display mark 16 may be provided on the resin case 13 or the metal case 14, for example.
[0022]
According to the bearing 1 with the rotation detecting function of this embodiment, not only the rotation speed detection but also the origin detection and the rotation sensor built-in bearing capable of detecting the rotation direction can be performed. There is no need to install it. Therefore, it is easy to assemble, and has a simple and compact structure.
[0023]
FIG. 6 is a sectional view showing another embodiment of the present invention. The bearing 1 with a rotation detecting function according to this embodiment is the same as the first embodiment shown in FIGS. 1 to 5 except that the magnetic encoder 7 constituting the rotation sensor 6 is a thrust type. That is, the magnetic encoder 7 is provided on the flange-shaped upright portion 20 a of the annular seal plate 20 having an L-shaped cross section and fixed to the outer diameter surface of the inner race 2. The magnetic encoder 7 has a first detected portion 7A and a second detected portion 7B which are concentric with each other in a ring shape. The first detected portion 7A is located on the outer peripheral side of the upright portion 20a of the seal plate 20. And the second detected portion 7B is provided on the inner peripheral side of the first detected portion 7A. As shown in FIG. 7, the first detected portion 7A is a permanent magnet in which the thickness of each portion in the circumferential direction is constant and a plurality of magnetic poles N and S arranged in the circumferential direction are formed. The second detected portion 7B is connected to the first detected portion 7B, has the same thickness as the first detected portion 7A at only one position on the circumference, and has a magnetic pole (N here). The thick portion 7Ba is provided, and the other portion is a thin portion 7Ba thinner than the thick portion 7Ba.
[0024]
The magnetic sensors 8A to 8C for detecting both the detected parts 7A and 7B of the magnetic encoder 7 are disposed so as to face the magnetic encoder 7 in the axial direction. That is, for example, the magnetic sensors 8A to 8C which are mounted on the metal case 24 having an L-shaped cross section by resin molding are mounted on the stationary wheel 3 side by fixing the metal case 24 to the outer diameter surface of the stationary wheel 3. As shown in FIG. 8, the magnetic sensors 8A and 8B are arranged so as to face the first detected portion 7A, and the magnetic sensor 8C is arranged so as to face the second detected portion 7B. Other configurations and operations are the same as those in the first embodiment.
[0025]
【The invention's effect】
A magnetic encoder with an origin according to the present invention has a ring-shaped first detected portion and a second detected portion, wherein the first detected portion has a constant thickness in each of the circumferential portions, and has a circular shape. The second detected portion is connected to the first detected portion, and the thickness of the first detected portion and the first detected portion is only one point on the circumference. It is the same thick part with magnetic poles and the other parts are thin parts, so the rotation pulse signal and the part to be detected for detecting the origin can be created and magnetized at the same time. Yes, and can be manufactured at low cost.
Since the bearing with the rotation detecting function of the present invention includes the magnetic encoder with the origin of the present invention, it is necessary to separately install the rotational speed detecting sensor and the origin detecting sensor while providing the rotational speed detecting and the origin detecting functions. And a simple and compact structure that is easy to assemble. In addition, a high-performance and inexpensive bearing can be provided by the simple manufacturing effect of the magnetic encoder with origin of the present invention.
In the method of manufacturing a magnetic encoder with an origin according to the present invention, the rotation pulse signal and the detection target portion for detecting the origin can be simultaneously formed and magnetized, so that the manufacturing is simple and inexpensive.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a bearing with a rotation detection function incorporating a magnetic encoder with an origin according to an embodiment of the present invention.
FIG. 2 is a perspective view of the magnetic encoder.
3A is an explanatory diagram showing a positional relationship between a first detected portion of the magnetic encoder and the magnetic sensor, and FIG. 3B is a diagram showing a positional relationship between a second detected portion of the magnetic encoder and the magnetic sensor; FIG. 7C is an explanatory diagram showing a positional relationship between a second detected portion and a magnetic sensor in another example of the magnetic encoder.
4A is a waveform diagram of a detection signal of a first magnetic sensor, FIG. 4B is a waveform diagram of a detection signal of a second magnetic sensor, and FIG. 4C is a waveform diagram of a detection signal of a third magnetic sensor; FIG.
FIG. 5 is a partial front view of the bearing with a rotation detecting function as viewed from one end side.
FIG. 6 is a cross-sectional view of a bearing with a rotation detection function incorporating a magnetic encoder with an origin according to another embodiment of the present invention.
FIG. 7 is a perspective view showing a part of the magnetic encoder.
FIG. 8 is an explanatory diagram showing a positional relationship between the magnetic encoder and a magnetic sensor.
FIG. 9 is a cross-sectional view of a conventional bearing with a rotation detection function.
FIG. 10 is an explanatory diagram showing a positional relationship between a magnetic encoder and a magnetic sensor incorporated in the bearing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Bearing 2 with rotation detection function 2 ... Rotating wheel 3 ... Stationary wheel 4 ... Rolling element 7 ... Magnetic encoder 7A with origin ... 1st detected part 7B ... 2nd detected part 7Ba ... Thick part 7Bb ... Thin part 15 ... Origin position display mark 16 ... Sensor mounting position display mark

Claims (10)

回転検出に用いられる原点付き磁気エンコーダであって、互いに同心のリング状の第1の被検出部および第2の被検出部を有し、第1の被検出部は円周方向の各部の厚さが一定で、円周方向に並ぶ複数の磁極の形成された永久磁石であり、第2の被検出部は第1の被検出部と繋がっていて、円周上の1箇所のみ第1の被検出部と厚さが同一でかつ磁極を有する厚肉部分とされ、他の部分が上記厚肉部分よりも薄い薄肉部分であることを特徴とする原点付き磁気エンコーダ。A magnetic encoder with an origin used for rotation detection, comprising a ring-shaped first detected part and a second detected part concentric with each other, wherein the first detected part has a thickness of each part in a circumferential direction. The second detected part is connected to the first detected part, and the first detected part is connected to the first detected part only at one position on the circumference. A magnetic encoder with an origin, characterized in that it is a thick part having the same thickness as the part to be detected and having a magnetic pole, and the other part is a thin part thinner than the thick part. 請求項1において、第1の被検出部および第2の被検出部が円筒状である原点付き磁気エンコーダ。2. The magnetic encoder with an origin according to claim 1, wherein the first detected portion and the second detected portion are cylindrical. 請求項1または請求項2において、第2の被検出部における上記厚肉部分の円周方向の幅寸法が、磁極幅と概ね同等以上でかつ3倍よりも小さい原点付き磁気エンコーダ。3. The magnetic encoder with an origin according to claim 1, wherein a circumferential width of the thick portion in the second detected portion is substantially equal to or larger than a magnetic pole width and smaller than three times. 請求項1ないし請求項3のいずれかにおいて、第2の被検出部における厚肉部分と薄肉部分との段差が0.5mm以上である原点付き磁気エンコーダ。4. The magnetic encoder with an origin according to claim 1, wherein a step between the thick portion and the thin portion in the second detected portion is 0.5 mm or more. 請求項1ないし請求項4のいずれかにおいて、第1の被検出部および第2の被検出部がゴム磁石である原点付き磁気エンコーダ。5. The magnetic encoder with an origin according to claim 1, wherein the first detected portion and the second detected portion are rubber magnets. 転動体を介して互いに回転自在な回転輪および静止輪と、上記回転輪に設けられた磁気エンコーダとを備え、この磁気エンコーダが請求項1ないし請求項5のいずれかに記載の原点付き磁気エンコーダであることを特徴とする回転検出機能付き軸受。6. A magnetic encoder with an origin according to claim 1, further comprising: a rotating wheel and a stationary wheel rotatable with respect to each other via a rolling element; and a magnetic encoder provided on the rotating wheel. A bearing with a rotation detecting function, characterized in that: 請求項6において、上記原点付き磁気エンコーダにおける第2の被検出部の厚肉部分と円周方向位置が一致する原点位置表示マークを回転輪に設け、上記第2の被検出部を検出するセンサの円周方向の取付位置を示すセンサ取付位置表示マークを静止輪に設けた回転検出機能付き軸受。7. The sensor according to claim 6, wherein an origin position indicating mark whose circumferential direction coincides with the thick portion of the second detected portion in the magnetic encoder with the origin is provided on the rotating wheel, and the second detected portion is detected. A bearing with a rotation detecting function provided with a sensor mounting position indicating mark indicating the mounting position in the circumferential direction of the stationary wheel. 請求項7において、上記原点位置表示マークおよびセンサ取付位置表示マークが刻印である回転検出機能付き軸受。The bearing with a rotation detecting function according to claim 7, wherein the origin position display mark and the sensor mounting position display mark are stamps. 請求項6において、上記第1の被検出部を検出するセンサおよび第2の被検出部を検出するセンサをセンサケース内に設け、このセンサケースに、第2の被検出部の円周方向位置を示す表示マークを設けた回転検出機能付き軸受。7. The sensor according to claim 6, wherein a sensor for detecting the first detected portion and a sensor for detecting the second detected portion are provided in a sensor case, and the sensor case has a circumferential position of the second detected portion. Bearing with a rotation detection function provided with a display mark indicating 回転検出に用いられる原点付き磁気エンコーダの製造方法であって、互いに同心のリング状の第1の被検出部および第2の被検出部を有し、第1の被検出部は円周方向の各部の厚さが一定であり、第2の被検出部は第1の被検出部と繋がっていて、円周上の1箇所のみ第1の被検出部と厚さが同一の厚肉部分とされ、他の部分が上記厚肉部分よりも薄い薄肉部分である未着磁エンコーダ素材を製造する過程と、この未着磁エンコーダ素材の第1の被検出部に円周方向に並べて設ける複数の磁極、および第2の被検出部の厚肉部分に設ける磁極を同時に着磁する過程とを含む原点付き磁気エンコーダの製造方法。A method for manufacturing a magnetic encoder with an origin used for rotation detection, comprising: a first detected portion and a second detected portion which are concentric with each other in a ring shape, wherein the first detected portion is arranged in a circumferential direction. The thickness of each part is constant, the second detected part is connected to the first detected part, and the thick part having the same thickness as the first detected part only in one place on the circumference A process of manufacturing an unmagnetized encoder material in which the other portion is a thin portion thinner than the thick portion, and a plurality of circumferentially arranged non-magnetized encoder materials provided on a first detected portion of the unmagnetized encoder material. Simultaneously magnetizing the magnetic poles and the magnetic poles provided in the thick portion of the second detected portion.
JP2002262261A 2002-09-09 2002-09-09 Magnetic encoder with original position, and bearing Pending JP2004101312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262261A JP2004101312A (en) 2002-09-09 2002-09-09 Magnetic encoder with original position, and bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262261A JP2004101312A (en) 2002-09-09 2002-09-09 Magnetic encoder with original position, and bearing

Publications (1)

Publication Number Publication Date
JP2004101312A true JP2004101312A (en) 2004-04-02

Family

ID=32262353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262261A Pending JP2004101312A (en) 2002-09-09 2002-09-09 Magnetic encoder with original position, and bearing

Country Status (1)

Country Link
JP (1) JP2004101312A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353732A (en) * 2003-05-28 2004-12-16 Nsk Ltd Rolling bearing device with sensor
JP2006058011A (en) * 2004-08-17 2006-03-02 Nok Corp Pulsar ring for magnetic rotary encoder
EP1653079A2 (en) * 2004-10-29 2006-05-03 Ab Skf Wind turbine
JP2006226874A (en) * 2005-02-18 2006-08-31 Uchiyama Mfg Corp Magnetic encoder and tone wheel
WO2007086363A1 (en) * 2006-01-25 2007-08-02 Ntn Corporation Rolling bearing with rotation sensor
US7307414B2 (en) 2006-03-01 2007-12-11 Ntn Corporation Bearing with integrated rotation sensor
WO2008139738A1 (en) * 2007-05-16 2008-11-20 Ntn Corporation Bearing for wheel with rotational speed detector
US7508193B2 (en) * 2004-05-27 2009-03-24 Nok Corporation Encoder
JP2009287704A (en) * 2008-05-30 2009-12-10 Ntn Corp Bearing with rotation detecting device
JP2012008073A (en) * 2010-06-28 2012-01-12 Nsk Ltd Rolling bearing with sensor
DE102017115157A1 (en) * 2017-07-06 2019-01-10 Saf-Holland Gmbh flywheel
CN110631612A (en) * 2019-10-02 2019-12-31 北京金钢科技有限公司 Compact integrated multi-group separated magnetic encoder
JP6824483B1 (en) * 2020-03-10 2021-02-03 三菱電機株式会社 Magnetic linear position detector

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353732A (en) * 2003-05-28 2004-12-16 Nsk Ltd Rolling bearing device with sensor
US7508193B2 (en) * 2004-05-27 2009-03-24 Nok Corporation Encoder
JP4605352B2 (en) * 2004-08-17 2011-01-05 Nok株式会社 Pulsar ring for magnetic rotary encoder
JP2006058011A (en) * 2004-08-17 2006-03-02 Nok Corp Pulsar ring for magnetic rotary encoder
EP1653079A2 (en) * 2004-10-29 2006-05-03 Ab Skf Wind turbine
JP2006226874A (en) * 2005-02-18 2006-08-31 Uchiyama Mfg Corp Magnetic encoder and tone wheel
WO2007086363A1 (en) * 2006-01-25 2007-08-02 Ntn Corporation Rolling bearing with rotation sensor
US7307414B2 (en) 2006-03-01 2007-12-11 Ntn Corporation Bearing with integrated rotation sensor
WO2008139738A1 (en) * 2007-05-16 2008-11-20 Ntn Corporation Bearing for wheel with rotational speed detector
JP2009287704A (en) * 2008-05-30 2009-12-10 Ntn Corp Bearing with rotation detecting device
JP2012008073A (en) * 2010-06-28 2012-01-12 Nsk Ltd Rolling bearing with sensor
DE102017115157A1 (en) * 2017-07-06 2019-01-10 Saf-Holland Gmbh flywheel
DE102017115157B4 (en) * 2017-07-06 2020-03-12 Saf-Holland Gmbh Magnet wheel
CN110631612A (en) * 2019-10-02 2019-12-31 北京金钢科技有限公司 Compact integrated multi-group separated magnetic encoder
JP6824483B1 (en) * 2020-03-10 2021-02-03 三菱電機株式会社 Magnetic linear position detector
WO2021181535A1 (en) * 2020-03-10 2021-09-16 三菱電機株式会社 Magnetic linear position detector
US11933640B2 (en) 2020-03-10 2024-03-19 Mitsubishi Electric Corporation Magnetic linear position detector

Similar Documents

Publication Publication Date Title
JP2007232589A (en) Bearing with rotation sensor
JP2004101312A (en) Magnetic encoder with original position, and bearing
CN101401280A (en) Shaft support system for electric motor, electric motor and method for making same
JP5213790B2 (en) Angular position detection system with two multipole magnets
JP2000192949A (en) Rotary support device with rotating speed detecting device
WO2006018942A1 (en) Pulser ring for magnetic rotary encoder
US20030173956A1 (en) Bearing assembly equipped with rotation sensor capable of detecting home position
JPH11194009A (en) Rolling bearing with rotational angle sensing device
JP4543306B2 (en) Encoder with cylindrical cover
JP2005337886A (en) Encoder
JP2003222152A (en) Bearing with rotary sensor
JP2006177865A (en) Magnetic encoder and bearing for wheel equipped with it
JP3451423B2 (en) How to magnetize the tone wheel
JP2006090831A (en) Bearing with rotation sensor
JP2005308559A (en) Pulsar ring for magnetic rotary encoder
JP2007315765A (en) Rotation sensor and bearing with rotation sensor
JP2000142341A (en) Rotation supporting device with rotating speed detecting device
JP2980939B2 (en) Wheel bearing device with built-in rotation detection mechanism
JP2008058027A (en) Rotation sensor
JP4743385B2 (en) Magnetic encoder and tone wheel
JP2001165946A (en) Rotational speed detector and rotary shaft used for the same
JP2000346673A (en) Rolling bearing
JP2004258028A (en) Apparatus for coding rotation parameter, anti-friction bearing and electric motor having the apparatus
JP2005009671A (en) Bearing with rotary sensor
JPH11295330A (en) Vehicle speed sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009