JPH10317097A - High tensile strength steel excellent in weld crack resistance, and its production - Google Patents

High tensile strength steel excellent in weld crack resistance, and its production

Info

Publication number
JPH10317097A
JPH10317097A JP12545997A JP12545997A JPH10317097A JP H10317097 A JPH10317097 A JP H10317097A JP 12545997 A JP12545997 A JP 12545997A JP 12545997 A JP12545997 A JP 12545997A JP H10317097 A JPH10317097 A JP H10317097A
Authority
JP
Japan
Prior art keywords
steel
toughness
strength
strength steel
crack resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12545997A
Other languages
Japanese (ja)
Inventor
Masahiko Hamada
昌彦 濱田
Takahiro Kushida
隆弘 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12545997A priority Critical patent/JPH10317097A/en
Publication of JPH10317097A publication Critical patent/JPH10317097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mass-produceable high tensile strength steel improved in weld crack resistance without restrictions on P cm. SOLUTION: This high tensile strength steel excellent in weld crack resistance has a chemical composition containing, by weight, 0.03-0.2% C, <0.1% Si, 0.5-3% Mn, 0.005-0.03% Ti, 0.002-0.007% O (oxygen), 0-2% Cu, 0-2% Ni, 0-2% Cr, 0-1% Mo, 0-0.2% V, 0-0.2% Nb, 0-0.003% B, and Al in an amount satisfying 0.5<=Al/O (oxygen) <=1.5. The high tensile strength steel can be produced by casting a steel having the above chemical composition by continuous casting and then performing hot rolling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、橋梁、建築、ペン
ストック、圧力容器、造船等に用いられる耐溶接割れ性
に優れた高張力鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel having excellent weld cracking resistance used for bridges, buildings, penstocks, pressure vessels, shipbuilding and the like.

【0002】[0002]

【従来の技術】溶接構造物の大型化、施工能率の向上等
のために、溶接構造物に使用される鋼材は、次第に強度
が高い高張力鋼へと移行している。高張力鋼の使用にあ
たって問題となるのは溶接割れである。溶接割れは溶接
金属に固溶した水素が、硬化した溶接熱影響部(以下、
「HAZ」と記す)に拡散し、溶接後数時間から数日の
後に割れが生じる現象である。溶接割れには、鋼材の化
学組成によって定まる硬化能、溶接時に溶接金属に混入
する水素量、および応力の3因子が影響し、これら因子
が高いほど割れが生じやすいことが知られている。逆
に、上記の3因子の影響を適切に低減することにより溶
接割れが防止できる。たとえば、水素量および応力の低
減を目的に溶接前に予熱を行うことが溶接割れ防止に有
効であるが、溶接施工能率を損なうことは避けられな
い。このような問題を解決するために、溶接割れ性の低
い高張力鋼について種々の検討がなされてきた。
2. Description of the Related Art In order to increase the size of welded structures and improve construction efficiency, steel materials used for welded structures are gradually shifting to high-strength steels having higher strength. A problem in using high-strength steel is weld cracking. Weld cracks are caused by hydrogen dissolved in the weld metal,
HAZ) and cracks occur several hours to several days after welding. It is known that welding cracks are affected by three factors, namely, the hardening ability determined by the chemical composition of the steel material, the amount of hydrogen mixed into the weld metal during welding, and the stress. Conversely, welding cracks can be prevented by appropriately reducing the effects of the above three factors. For example, preheating before welding for the purpose of reducing the amount of hydrogen and stress is effective for preventing welding cracks, but inevitably impairs welding work efficiency. In order to solve such a problem, various studies have been made on high-strength steel having low weld cracking properties.

【0003】たとえば、Cを下げ、かつ、VNの析出硬
化作用により、溶接割れ性を高めずに強度を高める技術
が開示されている(特開昭56−123350号公
報)。しかしながら、本技術で利用されるVNは熱的に
不安定であり、高温に加熱されるHAZではVNは母材
に固溶するため、HAZの中に軟化域が発生し十分な強
度を確保できない。また、VおよびNを多量に含有させ
ることはHAZの靭性の低下を招くという問題がある。
For example, there is disclosed a technique for lowering C and increasing the strength without increasing the weld cracking property by the precipitation hardening action of VN (JP-A-56-123350). However, the VN used in the present technology is thermally unstable, and in a HAZ heated to a high temperature, the VN dissolves in the base material, so that a softened region is generated in the HAZ, and sufficient strength cannot be secured. . In addition, a large amount of V and N has a problem that the toughness of HAZ is reduced.

【0004】また、Pcmを制限するとともに、Ti/
Nの範囲を限定することによりTiNを生成させ、HA
Zの硬さを低く抑えることにより耐溶接割れ性を向上さ
せる鋼が開示されている(特公平5−55584号公
報)。しかしながら、Pcmの上限を抑えることは耐溶
接割れ性の改善に効果はあるが、鋼の高強度化を達成し
にくいという問題がある。また、微細TiNの組織微細
化作用によりHAZの硬さは低くなるとしているが、高
温に加熱されるHAZの溶融線近傍では、TiNもVN
と同様に母材に固溶するのでこの位置では硬さは低くな
らず、耐溶接割れ性は改善されない。
In addition to limiting Pcm, Ti /
TiN is produced by limiting the range of N, and HA
A steel has been disclosed which improves weld cracking resistance by suppressing the hardness of Z to a low value (Japanese Patent Publication No. 5-55584). However, although suppressing the upper limit of Pcm is effective in improving weld cracking resistance, there is a problem that it is difficult to achieve high strength of steel. In addition, although the hardness of the HAZ is reduced due to the structure refining action of the fine TiN, TiN is also reduced to VN near the melting line of the HAZ heated to a high temperature.
In this position, the hardness does not decrease and the resistance to welding cracking is not improved.

【0005】Ti酸化物を利用して耐溶接割れ性を改善
する技術も開示されている(特開平8−175724号
公報)。本技術はTi23と母材の界面に水素がトラッ
プされ、実質的に水素が低減されるので、耐溶接割れ性
が改善されるというものである。本技術で利用されるT
i酸化物(Ti23)は、窒化物に比べて熱的に安定で
あるので高温にさらされるHAZの溶融線近傍において
も、その効果が消滅することはない。しかしながら、鋼
中にTi23を微細に均一分散させることは実験室では
できても、製造現場で実際に生産することは容易ではな
い。
[0005] A technique for improving the resistance to weld cracking by using a Ti oxide has also been disclosed (JP-A-8-175724). According to the present technology, hydrogen is trapped at the interface between Ti 2 O 3 and the base material, and hydrogen is substantially reduced, so that welding crack resistance is improved. T used in this technology
Since the i-oxide (Ti 2 O 3 ) is more thermally stable than the nitride, its effect does not disappear even near the melting line of the HAZ exposed to a high temperature. However, although it is possible to finely and uniformly disperse Ti 2 O 3 in steel in a laboratory, it is not easy to actually produce Ti 2 O 3 at a manufacturing site.

【0006】[0006]

【発明が解決しようとする課題】本発明は、Pcmの制
限なしに耐溶接割れ性を向上させた大量生産可能な高張
力鋼を提供することを目的とする。具体的には下記の性
能を確保することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-tensile steel which can be mass-produced and has improved weld cracking resistance without limiting Pcm. Specifically, the object is to secure the following performance.

【0007】1.耐溶接割れ性:割れ停止予熱温度の実
験値が、日本溶接協会(WES)規格WES 3002によって
Pcmから予測される温度よりも低いこと。
[0007] 1. Weld cracking resistance: The experimental value of the crack stop preheating temperature is lower than the temperature predicted from Pcm by the Japan Welding Society (WES) standard WES 3002.

【0008】 [0008]

【0009】[0009]

【課題を解決するための手段】本発明者らは、鋼中に安
定して均一微細分散が可能な複合酸化物の溶接割れ防止
作用に着目して試験を行い、下記の事項を確認すること
ができた。
Means for Solving the Problems The inventors of the present invention carry out a test focusing on the effect of preventing a composite oxide from being welded cracking stably and uniformly and finely dispersed in steel, and confirm the following items. Was completed.

【0010】(a)Al−Mn系、Mn−Ti系または
Al−Mn−Ti系の各複合酸化物の1種または2種以
上が鋼中に生成した場合に耐溶接割れ性が著しく改善さ
れる。
(A) When one or more of Al-Mn-based, Mn-Ti-based or Al-Mn-Ti-based composite oxides are formed in steel, weld cracking resistance is significantly improved. You.

【0011】(b)上記(a)の複合酸化物を鋼中に微
細分散させるには、Si、O(酸素)、Al、Ti等を
適切な範囲に含ませる必要がある。とくに、Siを低減
させることが必須である。
(B) In order to finely disperse the composite oxide of (a) in steel, it is necessary to include Si, O (oxygen), Al, Ti and the like in an appropriate range. In particular, it is essential to reduce Si.

【0012】(c)優れた耐溶接割れ性を保持したうえ
で、母材およびHAZの強度と靭性をバランス良く確保
するには、母材のその他の合金元素を適切な範囲としな
ければならない。
(C) In order to maintain the strength and toughness of the base material and the HAZ in a well-balanced manner while maintaining excellent weld crack resistance, the other alloy elements of the base material must be in an appropriate range.

【0013】本発明は上記の事項を組み合わせ、製造現
場での高張力鋼の溶製、鋳造等の試験を経て完成された
もので、その要旨は下記の化学組成の鋼およびその製造
方法にある。
The present invention has been completed by combining the above-mentioned items and conducting tests such as smelting and casting of high-tensile steel at a manufacturing site. The gist of the present invention lies in steel having the following chemical composition and a method of manufacturing the same. .

【0014】(1)重量%で、C:0.03〜0.2
%、Si:0.1%未満、Mn:0.5〜3%、Ti:
0.005〜0.03%、O(酸素):0.002〜
0.007%、Cu:0〜2%、Ni:0〜2%、C
r:0〜2%、Mo:0〜1%、V:0〜0.2%、N
b:0〜0.2%、B:0〜0.003%、および下記
式を満足するAlを含む耐溶接割れ性に優れた高張力
鋼。
(1) C: 0.03-0.2% by weight
%, Si: less than 0.1%, Mn: 0.5 to 3%, Ti:
0.005 to 0.03%, O (oxygen): 0.002 to
0.007%, Cu: 0 to 2%, Ni: 0 to 2%, C
r: 0 to 2%, Mo: 0 to 1%, V: 0 to 0.2%, N
b: 0 to 0.2%, B: 0 to 0.003%, and a high-strength steel containing Al satisfying the following formula and having excellent weld cracking resistance.

【0015】 0.5≦Al/O(酸素)≦1.5 ・・・・・・・・ (2)上記(1)に記載する化学組成の鋼を連続鋳造法
によって鋳造した後、熱間圧延する耐溶接割れ性に優れ
た高張力鋼の製造方法。
0.5 ≦ Al / O (oxygen) ≦ 1.5 (2) After the steel having the chemical composition described in the above (1) is cast by a continuous casting method, A method for producing high-strength steel that has excellent resistance to weld cracking that is rolled.

【0016】ここで、「高張力鋼」には、厚鋼板、熱延
鋼板(ホットコイル)、棒鋼、条鋼等が該当する。「熱
間圧延」には、単に形状を整えるための熱間圧延、およ
び加工による組織の微細化を得るための熱間圧延の両方
を含む。熱間圧延後、(a) 放冷せずに加速冷却をしても
よいし、(b) 加速冷却もしくは直接焼入れをした後焼戻
しをしてもよいし、または(c) 放冷した後、焼入れ焼戻
し等の熱処理を施してもよい。
Here, the "high-tensile steel" includes a thick steel plate, a hot-rolled steel plate (hot coil), a steel bar, a bar steel, and the like. "Hot rolling" includes both hot rolling for simply adjusting the shape and hot rolling for obtaining a fine structure by working. After hot rolling, (a) accelerated cooling without cooling, (b) tempering after accelerated cooling or direct quenching, or (c) after cooling, Heat treatment such as quenching and tempering may be performed.

【0017】[0017]

【発明の実施の形態】本発明の最大の特徴は、Al−M
n系、Mn−Ti系およびAl−Mn−Ti系という3
種類の複合酸化物のうち1種または2種以上を鋼中に微
細分散させることにある。この3種類の酸化物は、鋼の
化学組成、とくにSi、O、Al、Mnを下記の範囲に
限定することにより鋼中に均一に微細分散させることが
できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The most important feature of the present invention is that Al-M
n-based, Mn-Ti-based and Al-Mn-Ti-based
One or two or more of the complex oxides are finely dispersed in steel. These three types of oxides can be uniformly and finely dispersed in steel by limiting the chemical composition of steel, particularly Si, O, Al, and Mn, to the following ranges.

【0018】1.化学組成 Si:0.1%未満 Siは、通常、脱酸剤として鋼に添加され、また強度上
昇にも有効な元素である。しかし本発明ではSiは耐溶
接割れ性改善の観点から望ましくない。Siが0.1%
以上含まれるとSi−Mn系の酸化物が生成し、耐溶接
割れ性に有効な複合酸化物Al−Mn系、Mn−Ti系
またはAl−Mn−Ti系各酸化物の生成を阻害する。
この結果、十分な耐溶接割れ性を確保できないのでSi
は0.1%未満とする。望ましくは0.07%以下であ
る。一方、脱酸および強度上昇はSi以外の元素により
可能であるから必ずしもSiは添加される必要はなく、
したがって、その下限値は特に限定しない。
1. Chemical composition Si: less than 0.1% Si is usually added to steel as a deoxidizing agent, and is also an effective element for increasing the strength. However, in the present invention, Si is not desirable from the viewpoint of improving weld cracking resistance. 0.1% of Si
When it is contained as described above, a Si-Mn-based oxide is generated, which inhibits formation of a composite oxide Al-Mn-based, Mn-Ti-based or Al-Mn-Ti-based oxide effective for weld cracking resistance.
As a result, sufficient welding crack resistance cannot be secured, so that Si
Is less than 0.1%. Desirably, it is 0.07% or less. On the other hand, deoxidation and strength increase are possible with elements other than Si, so Si need not always be added,
Therefore, the lower limit is not particularly limited.

【0019】Mn:0.5〜3% Mnは、本発明においては十分な量の複合酸化物および
強度を確保するうえで必須の元素である。0.5%未満
では複合酸化物の生成量および強度が十分確保できな
い。一方、3%を超えると焼入性が過度に上昇し、耐溶
接割れ性を劣化させる。また、高張力鋼板の製造に常用
される連続鋳造法によって製造される連続鋳造スラブに
中心偏析を生成させるのでその上限を3%とする。
Mn: 0.5 to 3% Mn is an essential element in the present invention for securing a sufficient amount of the composite oxide and ensuring strength. If it is less than 0.5%, the amount and strength of the composite oxide cannot be sufficiently secured. On the other hand, if it exceeds 3%, the hardenability is excessively increased and the weld crack resistance is deteriorated. In addition, since the center segregation is generated in the continuous casting slab manufactured by the continuous casting method commonly used for manufacturing a high-tensile steel sheet, the upper limit is set to 3%.

【0020】Ti:0.005〜0.03% Tiは本発明においては複合酸化物を形成する上で必須
の元素である。複合酸化物を形成した分以外の残余のT
iは、TiNを形成しHAZの靭性を改善する効果も併
せて有する。Tiが0.005%未満ではこれらの効果
が十分得られない。一方、0.03%を超えるとHAZ
の靭性を著しく劣化させるので、0.005〜0.03
%とする。
Ti: 0.005 to 0.03% Ti is an essential element in forming a composite oxide in the present invention. Residual T other than that of forming composite oxide
i also has the effect of forming TiN and improving the toughness of HAZ. If Ti is less than 0.005%, these effects cannot be sufficiently obtained. On the other hand, if it exceeds 0.03%, HAZ
0.005 to 0.03
%.

【0021】O(酸素):0.002〜0.007% 酸素は複合酸化物形成のために0.002%以上含有さ
れている必要がある。0.002%未満では、たとえ所
望の複合酸化物が得られても、耐溶接割れ性を改善する
のに十分な複合酸化物量が得られない。一方、0.00
7%を超える過剰の酸素は鋼の清浄度を害し延性および
靭性の劣化を生じるので、酸素は0.002〜0.00
7%とする。
O (oxygen): 0.002 to 0.007% Oxygen needs to be contained in an amount of 0.002% or more to form a composite oxide. If it is less than 0.002%, even if a desired composite oxide is obtained, a sufficient amount of the composite oxide to improve weld cracking resistance cannot be obtained. On the other hand, 0.00
Since oxygen in excess of 7% impairs the cleanliness of the steel and causes a deterioration in ductility and toughness, the oxygen content should be 0.002 to 0.002%.
7%.

【0022】 0.5≦Al/O(酸素)≦1.5・・・・・・・・ AlはTi、Mnに比べて酸素との親和力が高い。この
ためAl/Oが1.5を超えると鋼中の酸素はほぼ全量
がAlと反応しAl23を形成する。このため複合酸化
物が得られなくなり耐溶接割れ性の改善効果が消失す
る。一方、Al/Oが0.5未満になるとAlの不足か
ら脱酸が十分に行われず母材の靭性が劣化する。
0.5 ≦ Al / O (oxygen) ≦ 1.5... Al has a higher affinity for oxygen than Ti and Mn. Therefore, when Al / O exceeds 1.5, almost all of the oxygen in the steel reacts with Al to form Al 2 O 3 . For this reason, a composite oxide cannot be obtained, and the effect of improving weld cracking resistance is lost. On the other hand, when Al / O is less than 0.5, deoxidation is not sufficiently performed due to lack of Al, and the toughness of the base material is deteriorated.

【0023】本発明においてAlは複合酸化物の生成元
素として、また優れた母材靭性を得るために必須の元素
であるが、その含有率は上記式のように鋼中の酸素濃
度に応じて制限される。Alは、溶鋼を転炉等で精錬し
た後、オンライン分析して得られた酸素含有率に応じ
て、式を満たすように、歩留まりも考慮したAlの添
加量が定められ、炉外精錬炉等において溶鋼中に投入さ
れることが望ましい。近年のAl添加技術の進歩によ
り、Al含有率の精度は0.002重量%の幅まで向上
している。本発明の完成はこのようなAl添加技術の進
歩に負うところが大きい。
In the present invention, Al is an essential element for forming a composite oxide and for obtaining excellent base metal toughness, and its content depends on the oxygen concentration in the steel as in the above formula. Limited. After refining molten steel in a converter or the like, the amount of Al to be added is determined according to the oxygen content obtained by online analysis, taking into account the yield, so that the formula is satisfied. Is desirably charged into molten steel. Recent advances in Al addition technology have improved the accuracy of the Al content to a range of 0.002% by weight. Completion of the present invention largely depends on such advances in Al addition technology.

【0024】C:0.03〜0.2% Cは母材の強度を得るために添加される。Cは0.03
%未満では十分な強度が得られないが、一方、0.2%
を超えるとHAZの硬さが著しく上昇し、耐溶接割れ性
が著しく劣化するので0.03〜0.2%とする。
C: 0.03-0.2% C is added to obtain the strength of the base material. C is 0.03
%, Sufficient strength cannot be obtained, while 0.2%
If it exceeds 0.2%, the hardness of the HAZ is significantly increased, and the resistance to weld cracking is significantly degraded.

【0025】上記の合金元素のほかに、本発明の鋼は、
主に母材の強度と靭性を確保するためにつぎの任意元素
を下記の範囲に含有する。
In addition to the above alloying elements, the steel of the present invention
The following optional elements are contained in the following ranges mainly in order to secure the strength and toughness of the base material.

【0026】Cu:0〜2% Cuは含まなくてもよい。しかし、Cuは低温靭性を損
なうことなく鋼の強度を上昇させるので、高強度と高靭
性が必要とされる場合には含ませる。0.05%未満で
はその効果が小さいので、Cuを含む場合には0.05
%以上とすることが望ましい。一方、2%を超えると鋼
の表面性状を著しく劣化させるので上限は2%とする。
Cu: 0 to 2% Cu may not be contained. However, Cu increases the strength of the steel without impairing the low-temperature toughness, and is included when high strength and high toughness are required. If the content is less than 0.05%, the effect is small.
% Is desirable. On the other hand, if it exceeds 2%, the surface properties of the steel are significantly deteriorated, so the upper limit is made 2%.

【0027】Ni:0〜2% Niは含まなくてもよい。しかし、Niは鋼の強度と靭
性をともに向上させるので寒冷地で使用される高張力鋼
等の場合には含ませる。0.05%未満ではその効果が
小さいのでNiを含む場合には0.05%以上とするこ
とが望ましい。一方、2%を超えると溶接時の湯流れが
阻害され大入熱溶接での溶接能率が劣化するので上限は
2%とする。
Ni: 0 to 2% Ni may not be contained. However, Ni enhances both the strength and toughness of the steel, so it is included in the case of high tensile steel used in cold regions. If the content is less than 0.05%, the effect is small. Therefore, when Ni is contained, the content is preferably set to 0.05% or more. On the other hand, if it exceeds 2%, the flow of molten metal at the time of welding is hindered and the welding efficiency in large heat input welding deteriorates, so the upper limit is made 2%.

【0028】Cr:0〜2% Crは含まなくてもよい。しかし、Crは鋼の強度を向
上させ、かつ耐炭酸ガス腐食性の改善にも効果があるの
でこれらの特性を確保する場合には含ませる。0.05
%未満ではその効果が小さいので含む場合には0.05
%以上とすることが望ましい。一方、2%を超えると過
度の焼入性上昇から耐溶接割れ性が劣化するので上限は
2%とする。
Cr: 0 to 2% Cr may not be contained. However, Cr is effective in improving the strength of steel and in improving the corrosion resistance to carbon dioxide gas, so Cr is included when these properties are secured. 0.05
%, The effect is small.
% Is desirable. On the other hand, if it exceeds 2%, the resistance to weld cracking is degraded due to excessive hardenability, so the upper limit is made 2%.

【0029】Mo:0〜1% Moは含まなくてもよい。しかしMoは焼入性を向上さ
せ鋼の強度と靭性を向上させるので、鋼の肉厚が厚い場
合に中心部まで所望の組織を得るために含ませる。0.
02%未満ではその効果が小さいので、含ませる場合に
は0.02%以上とすることが望ましい。一方、1%を
超えると焼きが入りすぎる場合が多くなり、母材、HA
Zともに靭性が劣化するので上限は1%とする。
Mo: 0 to 1% Mo may not be contained. However, Mo improves the hardenability and improves the strength and toughness of the steel. Therefore, when the thickness of the steel is large, Mo is included up to the center to obtain a desired structure. 0.
If it is less than 02%, the effect is small, and if it is contained, it is desirable to make it 0.02% or more. On the other hand, if it exceeds 1%, the baking often occurs too much and the base material, HA
Since the toughness of both Z deteriorates, the upper limit is set to 1%.

【0030】V:0〜0.2% Vは含まなくてもよい。しかし、Vは微量で鋼の強度を
向上させるので、高強度が必要な場合には含ませる。
0.005%未満ではその効果が小さいので、Vを含む
場合には0.005%以上とすることが望ましい。一
方、0.2%を超えとV炭窒化物の析出硬化が過度に生
じ、強度は確保されるが母材およびHAZの一部で靭性
が劣化するので上限は0.2%とする。
V: 0 to 0.2% V may not be contained. However, V slightly increases the strength of steel, so it is included when high strength is required.
If the content is less than 0.005%, the effect is small. Therefore, when V is contained, the content is desirably 0.005% or more. On the other hand, if it exceeds 0.2%, precipitation hardening of V carbonitride occurs excessively and the strength is secured, but the toughness is deteriorated in a part of the base metal and HAZ, so the upper limit is made 0.2%.

【0031】Nb:0〜0.2% Nbは含まなくてもよい。しかし、Nbは母材の強度と
靭性の向上およびHAZの軟化を防止する作用を有する
ので、大入熱溶接施工をする鋼の場合には含ませる。
0.005%未満ではその効果が小さいので、含ませる
場合には0.005%以上とすることが望ましい。一
方、0.2%を超えると連続鋳造スラブの表面性状が著
しく劣化するので上限は0.2%とする。
Nb: 0 to 0.2% Nb may not be contained. However, since Nb has the effect of improving the strength and toughness of the base material and preventing the softening of the HAZ, Nb is included in the case of steel subjected to high heat input welding.
If the content is less than 0.005%, the effect is small. Therefore, when the content is included, the content is preferably 0.005% or more. On the other hand, if it exceeds 0.2%, the surface properties of the continuously cast slab are significantly deteriorated, so the upper limit is made 0.2%.

【0032】B:0〜0.003% Bは含まなくてもよい。しかし、Bは極微量で鋼の焼入
性を向上させるので鋼の肉厚が厚い場合には含ませる。
0.0001%未満ではその効果が小さいので、含ませ
る場合には0.0001%以上とすることが望ましい。
一方、0.003%を超えると母材の靭性を劣化させる
ので上限は0.003%とする。
B: 0 to 0.003% B may not be contained. However, B improves the hardenability of steel in a very small amount, and is included when the thickness of steel is large.
If the content is less than 0.0001%, the effect is small. Therefore, if the content is included, the content is preferably 0.0001% or more.
On the other hand, if it exceeds 0.003%, the toughness of the base material is deteriorated, so the upper limit is made 0.003%.

【0033】上記の任意の合金元素のほかに、周知の効
果を有する周知の合金元素、例えば介在物の形態制御の
ためにCa、La、Ce等を添加してもよい。
In addition to the above-mentioned optional alloying elements, well-known alloying elements having a known effect, for example, Ca, La, Ce or the like may be added for controlling the form of inclusions.

【0034】不純物元素のうちPおよびSは下記の範囲
に限定することが望ましい。
It is desirable that P and S of the impurity elements be limited to the following ranges.

【0035】P:0.03%以下 鋼に不可避的に含まれる不純物元素Pは、靭性の確保の
ために低いほど好ましくその上限を0.03%とするの
がよい。
P: 0.03% or less The impurity element P inevitably contained in steel is preferably as low as possible to secure toughness, and its upper limit is preferably set to 0.03%.

【0036】S:0.03%以下 鋼に不可避的に含まれる不純物元素Sは、鋼質の向上、
ラメラティア防止等のためにその上限を0.03%とす
ることが望ましい。 2.複合酸化物 Si、Al、Mn、O、Tiを上記の範囲に入れること
により、Al−Mn系、Mn−Ti系、またはAl−M
n−Ti系の複合酸化物が微細に分散した鋼が得られ
る。さらに、上記の範囲内で各合金元素の含有率を加減
することにより、上記の複合酸化物の量を加減すること
ができる。
S: 0.03% or less The impurity element S inevitably contained in steel improves the steel quality,
It is desirable to set the upper limit to 0.03% in order to prevent lamella tear. 2. By setting the composite oxide Si, Al, Mn, O, and Ti within the above range, an Al—Mn system, a Mn—Ti system, or an Al—M
A steel in which the n-Ti-based composite oxide is finely dispersed can be obtained. Further, by adjusting the content of each alloy element within the above range, the amount of the composite oxide can be adjusted.

【0037】これらの酸化物が生成した場合に溶接割れ
性が改善される理由は、組織の微細化によると考えられ
る。高温加熱されたときの粒成長抑制および冷却時の変
態核サイトの高密度化の両方の効果により組織が微細化
され、それが原因で硬化能が低下して硬化しにくくな
る。通常のAlキルド鋼中では酸化物はほぼ全量が初晶
反応によりAl23として形成される。これに対して上
記の組成範囲の鋼の場合、上記の3種類の複合酸化物は
偏晶反応によって形成されるので、これら複合酸化物は
Al23に比べて凝集粗大化が生じにくい。またこれら
複合酸化物は、形状が球形なので、微細分散の効果と併
せて複合酸化物と鋼の界面面積を増大させる。このため
変態核発生サイトが増加し硬化能が低下して耐溶接割れ
性が向上したと考える。
It is considered that the reason why the weld cracking property is improved when these oxides are formed is due to the refinement of the structure. The structure is refined by both the effect of suppressing grain growth when heated at a high temperature and increasing the density of transformed nucleus sites during cooling, and as a result, hardening ability is reduced and hardening is difficult. In ordinary Al-killed steel, almost all of the oxide is formed as Al 2 O 3 by a primary crystal reaction. On the other hand, in the case of steel having the above composition range, the above three types of composite oxides are formed by a monotectic reaction, so that these composite oxides are less likely to cause agglomeration and coarsening than Al 2 O 3 . Since these composite oxides are spherical in shape, they increase the interface area between the composite oxide and steel in addition to the effect of fine dispersion. For this reason, it is considered that the number of transformation nucleus generation sites increased, the hardening ability decreased, and the weld crack resistance improved.

【0038】本発明鋼の製造にあたって、複合酸化物の
微細分散の観点からは凝固時の冷却速度は速い方が望ま
しい。この種の鋼の製造に通常用いられる鋳片の断面厚
さが100〜250mmの連続鋳造方法の場合、望まし
い冷却速度の範囲に入るが、20トン鋼塊等の場合は凝
固速度が遅いために微細分散した複合酸化物が得られ
ず、十分な耐溶接割れ性を得ることができない。このよ
うにして得られた複合酸化物は圧延および熱処理中に大
きく変質することはない。複合酸化物の平均密度は、種
類によらず上記3種類の複合酸化物であるかぎり、光学
顕微鏡の視野内で3〜60個/mm2 の範囲にあること
が望ましい。3個/mm2 未満では耐溶接割れ性が不十
分であり、60個/mm2 を超えると延性および靭性が
低下し、溶接鋼構造物には用いることができない。
In the production of the steel of the present invention, it is desirable that the cooling rate during solidification be high from the viewpoint of fine dispersion of the composite oxide. In the case of a continuous casting method in which the section thickness of a slab normally used for the production of this type of steel is 100 to 250 mm, the cooling rate falls within the range of a desired cooling rate. A finely dispersed composite oxide cannot be obtained, and sufficient welding crack resistance cannot be obtained. The composite oxide obtained in this way does not significantly change during rolling and heat treatment. The average density of the composite oxide is desirably in the range of 3 to 60 particles / mm 2 within the visual field of the optical microscope as long as the above three types of composite oxides are used regardless of the type. If it is less than 3 pieces / mm 2 , the resistance to weld cracking is insufficient, and if it exceeds 60 pieces / mm 2 , ductility and toughness decrease, and it cannot be used for welded steel structures.

【0039】3.製造方法 本発明の鋼を連続鋳造法によって鋳造すると、凝固速度
が適切な範囲となり上記の3種類の複合酸化物が微細に
均一分散し、耐溶接割れ性を大きく向上させる。複合酸
化物が均一微細に分散しない凝固速度の限度は、鋳片断
面の最小差し渡し厚さが300mm程度と推定される。
通常の連続鋳造法では鋳片断面の差し渡し厚さは250
mm以下なので、複合酸化物の微細均一分散が確保され
る。凝固時に均一に微細分散した複合酸化物は、その後
の熱間圧延や熱処理によっても実質的に変化することは
なく、耐溶接割れ性を有効に維持する。
3. Manufacturing Method When the steel of the present invention is cast by a continuous casting method, the solidification rate is in an appropriate range, and the above three types of composite oxides are finely and uniformly dispersed, thereby greatly improving weld cracking resistance. The limit of the solidification rate at which the composite oxide is not uniformly and finely dispersed is estimated to be about 300 mm, the minimum crossing thickness of the slab section.
In the normal continuous casting method, the passing thickness of the slab section is 250.
mm or less, fine and uniform dispersion of the composite oxide is ensured. The composite oxide uniformly finely dispersed at the time of solidification does not substantially change by subsequent hot rolling or heat treatment, and effectively maintains weld cracking resistance.

【0040】熱間圧延は鋼の形状を整えるために、また
は圧延加工と再結晶により組織を微細化するために行
う。強度と靭性のバランスをさらに高いものにするため
に、熱間圧延後に加速冷却してもよいし、加速冷却もし
くは直接焼入れ後焼戻ししてもよいし、また、熱間圧延
後放冷し再加熱し熱処理を行ってもよい。
The hot rolling is performed to adjust the shape of the steel or to refine the structure by rolling and recrystallization. In order to further enhance the balance between strength and toughness, accelerated cooling may be performed after hot rolling, or accelerated cooling or direct quenching may be followed by tempering, or, after hot rolling, left to cool and reheat. Heat treatment may be performed.

【0041】[0041]

【実施例】つぎに実施例により、本発明の効果を説明す
る。
EXAMPLES Next, the effects of the present invention will be described with reference to examples.

【0042】表1および表2は、200kgの真空精錬
炉により溶製した供試鋼の化学組成を示す。溶鋼を20
0kg用角型鋳型に鋳造し、断面最小差し渡し厚さ15
0mmの鋼塊とした。
Tables 1 and 2 show the chemical composition of the test steel melted in a 200 kg vacuum refining furnace. 20 molten steel
Cast into 0kg square mold, minimum cross-section thickness 15
It was a 0 mm steel ingot.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】得られた鋼塊を熱間圧延により30mmの
鋼板とした。熱間圧延の仕上げ温度は850℃とし、仕
上げ圧延後、肉厚中心部での冷却速度35℃/秒にて加
速冷却し、350℃で冷却を停止し放冷した。一部の供
試鋼については、さらに625℃で焼戻しを施した。
The obtained steel ingot was hot rolled into a 30 mm steel sheet. The finishing temperature of the hot rolling was 850 ° C., after the finish rolling, accelerated cooling was performed at a cooling rate of 35 ° C./sec at the center of the thickness, cooling was stopped at 350 ° C., and the material was allowed to cool. Some test steels were further tempered at 625 ° C.

【0046】溶接割れ性の評価は、JIS Z3158 に従って
溶接割れ試験を実施し、HAZに割れが生じなくなる予
熱温度を求めた。溶接割れ試験における試験ビード置き
には市販の低水素系の80kgf/mm2 級被覆溶接棒
を用い、溶接入熱量は17kJ/cmとした。本溶接と
同条件で溶接した溶着金属の拡散性水素濃度をJIS Z311
3 に記載のグリセリン法で測定したところ、溶着金属1
00gあたり3.3ccであった。
For the evaluation of weld cracking, a welding crack test was conducted in accordance with JIS Z3158, and a preheating temperature at which cracking did not occur in the HAZ was determined. A commercially available low hydrogen type 80 kgf / mm 2 class coated welding rod was used for placing the test bead in the welding crack test, and the welding heat input was 17 kJ / cm. The diffusible hydrogen concentration of the deposited metal welded under the same conditions as this welding was determined according to JIS Z311.
As a result of measurement by the glycerin method described in 3,
It was 3.3 cc per 00 g.

【0047】HAZの靭性は再現熱サイクル材を用いて
検討した。表1および表2の各々の供試鋼より11mm
角の再現熱サイクル試験片を採取し高周波加熱装置を用
いて再現溶接熱サイクルを付与しシャルピー衝撃試験を
行った。与えた熱サイクルは最高加熱温度1400℃
(保持時間3秒)とし、800℃から500℃の冷却時
間を60秒とした。シャルピー衝撃試験は−40℃で行
い、−40℃での吸収エネルギーを試験片3本の平均値
にて求めHAZ靭性の評価とした。本条件は板厚30m
mの鋼板に溶接入熱量100kJ/cmにてサブマージ
アーク溶接を実施した場合の溶融線近傍の熱サイクルに
相当する。表3は、母材の機械的性質、割れ発生停止温
度および再現熱サイクル材のシャルピー試験結果を示
す。
The toughness of HAZ was examined using a reproducible heat cycle material. 11 mm from each test steel in Tables 1 and 2
A reproducible heat cycle test piece of the corner was sampled, a reproducible welding heat cycle was applied using a high frequency heating device, and a Charpy impact test was performed. The given heat cycle is the maximum heating temperature 1400 ℃
(Holding time: 3 seconds), and the cooling time from 800 ° C. to 500 ° C. was 60 seconds. The Charpy impact test was performed at −40 ° C., and the absorbed energy at −40 ° C. was determined by the average value of three test pieces, and the HAZ toughness was evaluated. This condition is 30m thick
m corresponds to a heat cycle in the vicinity of the melting line when submerged arc welding is performed on a steel sheet having a welding heat input of 100 kJ / cm. Table 3 shows the mechanical properties of the base material, the crack initiation stop temperature, and the results of the Charpy test of the reproduced heat cycle material.

【0048】[0048]

【表3】 [Table 3]

【0049】表3に示すように、比較例では母材靭性、
割れ発生停止温度、再現熱サイクル靭性のいずれかが劣
っていた。
As shown in Table 3, in the comparative example, the base material toughness,
Either the crack initiation stop temperature or the reproduced thermal cycle toughness was inferior.

【0050】比較例である鋼番号(以下、「比較例」と
記す)3ではSiが本発明で限定する上限値を超えてい
るため、所望の複合酸化物が得られないため割れ発生停
止温度に改善が認められなかった。
In steel number 3 (hereinafter referred to as “comparative example”) as a comparative example, since the Si exceeds the upper limit defined in the present invention, a desired composite oxide cannot be obtained, and thus the crack generation stopping temperature. No improvement was observed.

【0051】比較例4では酸素が本発明の下限値未満で
あるため十分な量の酸化物が得られず、割れ発生停止温
度に改善が認められなかった。
In Comparative Example 4, a sufficient amount of oxide was not obtained because oxygen was less than the lower limit of the present invention, and no improvement was observed in the crack generation stopping temperature.

【0052】比較例6ではAl/Oが本発明の上限を超
えているため鋼中の大半の酸化物はAl23となり、割
れ発生停止温度の改善が認められなかった。
In Comparative Example 6, Al / O exceeded the upper limit of the present invention, so that most of the oxides in the steel were Al 2 O 3 , and no improvement in the crack generation stop temperature was observed.

【0053】比較例7ではTiが本発明の下限未満のた
め酸化物が微細に分散せず割れ発生停止温度に改善が認
められなかった。
In Comparative Example 7, the oxide was not finely dispersed because Ti was less than the lower limit of the present invention, and no improvement was observed in the crack generation stopping temperature.

【0054】比較例9ではTiが本発明の上限を超えて
いるため、耐溶接割れ性の改善が得られず、またHAZ
靭性も劣化した。
In Comparative Example 9, since the content of Ti exceeded the upper limit of the present invention, no improvement in weld cracking resistance was obtained.
The toughness also deteriorated.

【0055】比較例10ではAl/Oが本発明の下限未
満であるため十分な脱酸が行われず、母材の靭性が劣化
し、それにともないHAZ靭性も劣化した。
In Comparative Example 10, since Al / O was less than the lower limit of the present invention, sufficient deoxidation was not performed, and the toughness of the base material was deteriorated, and the HAZ toughness was also deteriorated accordingly.

【0056】比較例13では酸素が本発明の上限を超え
るため、酸化物の粗大化が生じ母材およびHAZの靭性
が劣化した。
In Comparative Example 13, since the oxygen content exceeded the upper limit of the present invention, the oxide was coarsened and the toughness of the base material and HAZ was deteriorated.

【0057】比較例14ではAl/Oが本発明の上限を
超えるため、鋼中の大半の酸化物はAl23となり、割
れ発生停止温度の改善が認められず、またHAZ靭性も
劣化した。
In Comparative Example 14, since Al / O exceeded the upper limit of the present invention, most of the oxides in the steel were Al 2 O 3 , no improvement in the crack stop temperature was observed, and the HAZ toughness was deteriorated. .

【0058】比較例16はSiが本発明の上限値を超え
るため所望の酸化物が得られず割れ発生停止温度に改善
が認められなかった。
In Comparative Example 16, the desired oxide was not obtained because Si exceeded the upper limit of the present invention, and no improvement was observed in the crack stop temperature.

【0059】これに対して、本発明の鋼では計算で求め
た割れ発生停止温度に対して実験により求めた割れ発生
温度が低温側にシフトしており耐溶接割れ性に優れてい
ることが明らかである。また本発明の鋼は優れた母材靭
性とHAZ靭性を有していた。
On the other hand, in the steel of the present invention, the crack initiation temperature obtained by the experiment is shifted to the lower temperature side with respect to the crack initiation stop temperature obtained by the calculation, and it is clear that the steel has excellent weld cracking resistance. It is. Further, the steel of the present invention had excellent base metal toughness and HAZ toughness.

【0060】[0060]

【発明の効果】本発明によりPcmを制限することなし
に優れた耐溶接割れ性を有する高張力鋼を安定かつ安価
に提供することが出来る。その結果、高張力鋼を用いた
溶接構造物の溶接施工能率を大幅に改善することが可能
となる。
According to the present invention, a high-strength steel having excellent resistance to weld cracking can be stably and inexpensively provided without limiting Pcm. As a result, it is possible to greatly improve the welding efficiency of a welded structure using high-tensile steel.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.03〜0.2%、S
i:0.1%未満、Mn:0.5〜3%、Ti:0.0
05〜0.03%、O(酸素):0.002〜0.00
7%、Cu:0〜2%、Ni:0〜2%、Cr:0〜2
%、Mo:0〜1%、V:0〜0.2%、Nb:0〜
0.2%、B:0〜0.003%および下記式を満足
するAlを含む鋼であることを特徴とする耐溶接割れ性
に優れた高張力鋼。 0.5≦Al/O(酸素)≦1.5 ・・・・・・・・
(1) C: 0.03 to 0.2% by weight, S
i: less than 0.1%, Mn: 0.5 to 3%, Ti: 0.0
05 to 0.03%, O (oxygen): 0.002 to 0.00
7%, Cu: 0 to 2%, Ni: 0 to 2%, Cr: 0 to 2
%, Mo: 0 to 1%, V: 0 to 0.2%, Nb: 0 to 0%
A high-strength steel excellent in weld crack resistance, characterized by being a steel containing 0.2%, B: 0 to 0.003% and Al satisfying the following formula. 0.5 ≦ Al / O (oxygen) ≦ 1.5
【請求項2】請求項1に記載する化学組成の鋼を連続鋳
造法によって鋳造した後、熱間圧延することを特徴とす
る耐溶接割れ性に優れた高張力鋼の製造方法。
2. A method for producing a high-strength steel excellent in weld crack resistance, comprising: casting a steel having the chemical composition according to claim 1 by a continuous casting method, followed by hot rolling.
JP12545997A 1997-05-15 1997-05-15 High tensile strength steel excellent in weld crack resistance, and its production Pending JPH10317097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12545997A JPH10317097A (en) 1997-05-15 1997-05-15 High tensile strength steel excellent in weld crack resistance, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12545997A JPH10317097A (en) 1997-05-15 1997-05-15 High tensile strength steel excellent in weld crack resistance, and its production

Publications (1)

Publication Number Publication Date
JPH10317097A true JPH10317097A (en) 1998-12-02

Family

ID=14910626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12545997A Pending JPH10317097A (en) 1997-05-15 1997-05-15 High tensile strength steel excellent in weld crack resistance, and its production

Country Status (1)

Country Link
JP (1) JPH10317097A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096187A (en) * 1998-09-22 2000-04-04 Sumitomo Metal Ind Ltd High-strength welded steel tube
JP2014198867A (en) * 2013-03-29 2014-10-23 Jfeスチール株式会社 High tensile steel sheet excellent in heat affected zone toughness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096187A (en) * 1998-09-22 2000-04-04 Sumitomo Metal Ind Ltd High-strength welded steel tube
JP2014198867A (en) * 2013-03-29 2014-10-23 Jfeスチール株式会社 High tensile steel sheet excellent in heat affected zone toughness

Similar Documents

Publication Publication Date Title
JP3408385B2 (en) Steel with excellent heat-affected zone toughness
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP6056235B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more
JP5708349B2 (en) Steel with excellent weld heat affected zone toughness
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP2000319750A (en) High tensile strength steel for large heat input welding excellent in toughness of heat-affected zone
JP3879607B2 (en) Welded structural steel with excellent low temperature toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPH09194990A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JP2001020033A (en) Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone
JP4144121B2 (en) Non-tempered high strength steel with excellent toughness of base metal and weld heat affected zone
JPH10317097A (en) High tensile strength steel excellent in weld crack resistance, and its production
JPH10158778A (en) High tensile strength steel plate excellent in toughness and weldability, and its production
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness
JP5145616B2 (en) High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness
JP2000226633A (en) Steel for electron beam welding excellent in toughness
JP3449307B2 (en) B-added high-strength steel with excellent toughness in the heat affected zone
JP7207358B2 (en) Manufacturing method of low yield ratio high tensile steel plate
JP2834500B2 (en) Manufacturing method of high-strength steel sheet with excellent thermal toughness
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP3837083B2 (en) One-pass large heat input welding method with excellent weld heat-affected zone toughness
JPH0578740A (en) Manufacture of steel excellent in low temperature toughness in weld heat affected zone
JP4044862B2 (en) Composite structure type high strength steel plate excellent in earthquake resistance and weldability and method for producing the same