JPH10315238A - Flowing behavior analyzing device for foamable resin - Google Patents

Flowing behavior analyzing device for foamable resin

Info

Publication number
JPH10315238A
JPH10315238A JP9132344A JP13234497A JPH10315238A JP H10315238 A JPH10315238 A JP H10315238A JP 9132344 A JP9132344 A JP 9132344A JP 13234497 A JP13234497 A JP 13234497A JP H10315238 A JPH10315238 A JP H10315238A
Authority
JP
Japan
Prior art keywords
resin
mold
computer
foaming
injection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9132344A
Other languages
Japanese (ja)
Inventor
Hajime Eguchi
元 江口
Kunio Sasaoka
邦男 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP9132344A priority Critical patent/JPH10315238A/en
Publication of JPH10315238A publication Critical patent/JPH10315238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a foaming starting point by fixedly arranging in a row a plurality of reflection type optical sensors at an upper transparent portion of a mold and input pulse signals generated when a resin passes directly under the sensors into a computer for processing so as to measure the foaming speed in a real-time fashion. SOLUTION: Reflection type optical sensors R0 to R8 are mounted on an upper transparent mold of a metal mold 1 and a resin is injected from an injection port 2. The mounting position of the sensor may be at the position of the injection port 2 or may be freely changed to other positions. When a foamable resin is started to be injected from the injection port 2, the computer starts to collect data, pulse signals are generated when the resin passes directly under the sensors R0 to R8, and the singals so generated are then fed into the computer. The computer obtains an approximate equation representing the drift velocity of the resin based on the pulse signals so fed and then obtains a foaming starting point using the equation so obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は発泡性樹脂の成形試
験のための金型装置において、その内部での樹脂注入後
の流動挙動、詳しくは流動速度の測定とそれをもとに発
泡開始点を求めることに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding apparatus for a molding test of an expandable resin, and more particularly to a flow behavior after injection of a resin inside the mold apparatus. It is about seeking.

【0002】[0002]

【従来の技術】金型内の樹脂の流動挙動は、その樹脂の
性質を評価するための指標の一つであるが、これまで直
接測定するのが困難であるため目視で観測した結果を用
いていたが、きわめて不正確であった。
2. Description of the Related Art The flow behavior of a resin in a mold is one of indices for evaluating the properties of the resin, but it has been difficult to directly measure the resin so far. Was very inaccurate.

【0003】[0003]

【発明が解決しようとする課題】目視による観測では発
泡性樹脂の流動挙動を詳細に把握するのは困難である
が、挙動を直接測定する手段があれば高い精度が得られ
る。しかし、流動する発泡性樹脂はその形状が不定かつ
不安定で、その挙動に影響を与えないように測定するた
めには非接触であることが必要である。
Although it is difficult to grasp the flow behavior of the foamable resin in detail by visual observation, high accuracy can be obtained if there is a means for directly measuring the behavior. However, the flowing foamable resin has an indeterminate and unstable shape and needs to be non-contact in order to measure it without affecting its behavior.

【0004】[0004]

【課題を解決するための手段】本発明の目的は、発泡性
樹脂成形試験のための金型装置で、上型(うわがた)が
透明板のものを用い、その上面に取り付け位置可変の反
射型光電センサーを複数個取り付け、その金型に注入機
を用いて発泡性樹脂を注入すると、樹脂が反射型光電セ
ンサーの直下を通過した瞬間にセンサーがパルス信号を
生起し、それをリアルタイムでコンピュータ処理するこ
とによって非接触で流動挙動に関するデータを収集し、
発泡開始点を求めることのできる反射型光電センサーと
コンピュータとからなる装置により達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a mold apparatus for a foaming resin molding test, wherein the upper mold (wagata) has a transparent plate and has a variable mounting position on its upper surface. When a plurality of reflective photoelectric sensors are mounted and foaming resin is injected into the mold using an injection machine, the sensor generates a pulse signal as soon as the resin passes directly below the reflective photoelectric sensor, and the pulse signal is generated in real time. Collects data on flow behavior in a non-contact manner by computer processing,
This is achieved by an apparatus including a computer and a reflective photoelectric sensor capable of determining a foaming start point.

【0005】本発明においては、金型に注入され発泡し
ながら流動する樹脂の挙動を非接触で測定するために、
金型の透明な上型の上部に反射型光型センサーを複数個
並べて取り付け、その直下を直下を樹脂が通過した瞬間
に生起されるパルス信号をコンピュータに取り込むこと
によって発泡速度をリアルタイムで測定し、発泡開始点
を求める。
In the present invention, in order to non-contactly measure the behavior of a resin which flows into a mold while foaming while being injected into a mold,
A plurality of reflective optical sensors are arranged on the upper part of the transparent upper mold, and the foaming speed is measured in real time by taking in a computer a pulse signal generated immediately after the resin passes directly below the reflective optical sensor. The starting point of foaming is determined.

【0006】[0006]

【発明の実施の形態】金型へ発泡性樹脂を注入した後、
金型の透明な上型の上部に取り付けた複数個の反射型光
電センサーからその直下を樹脂が通過する度にパルス信
号がコンピュータに入力される。コンピュータは信号を
受け付けるとその時刻を記録し、注入口からセンサーま
での距離は前もって計測しコンピュータに記録してある
ので、それらを用いて樹脂の流動速度を表す近似式を求
め、その近似式を使って発泡開始点を得る。
BEST MODE FOR CARRYING OUT THE INVENTION After injecting a foamable resin into a mold,
A pulse signal is input to a computer from a plurality of reflective photoelectric sensors attached to the upper part of the transparent upper mold of the mold each time the resin passes directly below the reflective photoelectric sensors. When the computer receives the signal, it records the time, and the distance from the injection port to the sensor is measured in advance and recorded in the computer. Use to obtain the starting point of foaming.

【0007】[0007]

【実施例】以下、実施例について図面を参照して説明す
る。図1は金型およびコンピュータシステムの全体図で
ある。金型1において反射型光型センサーR0〜R8を
上型に取り付け、注入口2より樹脂を注入する。反射型
光型センサーの取り付け位置は注入口の位置あるいは試
料の処方にあわせて自由に変えることができる。一つの
注入口から発泡性樹脂を注入開始すると、コンピュータ
はデータを収集し始め、樹脂がセンサーの直下を通過し
た瞬間にパルス信号がコンピュータに送られる。コンピ
ュータはパルス信号を受け取るとその時点の時刻を得
て、時刻とセンサーの位置との関係を表す近似式を作
る。近似式は発泡開始前はルート曲線、発泡開始後はロ
ジスティック曲線を用いる。
Embodiments will be described below with reference to the drawings. FIG. 1 is an overall view of a mold and a computer system. In the mold 1, the reflection type optical sensors R <b> 0 to R <b> 8 are attached to the upper mold, and the resin is injected from the injection port 2. The mounting position of the reflection type optical sensor can be freely changed according to the position of the injection port or the prescription of the sample. When the foaming resin starts to be injected from one injection port, the computer starts collecting data, and a pulse signal is sent to the computer as soon as the resin passes just below the sensor. When the computer receives the pulse signal, it obtains the time at that point in time and creates an approximate expression representing the relationship between the time and the position of the sensor. The approximate expression uses a root curve before foaming starts and a logistic curve after foaming starts.

【0008】[0008]

【数1】 (Equation 1)

【0009】[0009]

【数2】ルート曲線Yt=a1√Xt+a2発泡開始点
は注入する発泡性樹脂の処方によってほぼ決まるので、
それを考慮してセンサーの取り付け位置を決める。上の
二つの曲線の交点、あるいは最接近点が発泡開始点であ
る。実際に発泡試験を行って得た発泡速度を表す曲線を
図2に示す。
## EQU2 ## The root curve Yt = a12Xt + a2 The foaming start point is substantially determined by the formulation of the foamable resin to be injected.
Considering that, determine the sensor mounting position. The intersection of the above two curves, or the closest point, is the foaming start point. FIG. 2 shows a curve representing the foaming speed obtained by actually performing the foaming test.

【0010】[0010]

【発明の効果】本発明によると、従来の技術では達成で
きなかった発泡性樹脂の発泡速度と発泡開始点が高い精
度で求まるようになった。
According to the present invention, the foaming speed and foaming start point of the foamable resin, which could not be achieved by the prior art, can be determined with high precision.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 金型を上から見た図である。FIG. 1 is a view of a mold as viewed from above.

【図2】 発泡速度の近似式をグラフ化したものであ
る。横軸は時間、縦軸はセンサーの位置をあらわし、実
線と点線の交点が発泡開始点である。
FIG. 2 is a graph of an approximate expression of a foaming speed. The horizontal axis represents time, the vertical axis represents the position of the sensor, and the intersection of the solid line and the dotted line is the foaming start point.

【符号の説明】[Explanation of symbols]

1 金型本体 2 注入口 R0〜R8 反射型光電センサー 1 Mold body 2 Injection port R0 ~ R8 Reflection type photoelectric sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】発泡性樹脂成形試験のための金型装置で、
上型(うわがた)が透明板のものを用い、その上面に取
り付け位置可変の反射型光電センサーを複数個取り付
け、その金型に注入機を用いて発泡性樹脂を注入する
と、樹脂が反射型光電センサーの直下を通過した瞬間に
センサーがパルス信号を生起し、それをリアルタイムで
コンピュータ処理することによって非接触で流動挙動に
関するデータを収集し、発泡開始点を求めることのでき
る反射型光電センサーとコンピュータとからなる装置。
1. A mold apparatus for a foaming resin molding test,
The upper mold is made of a transparent plate, a plurality of reflective photoelectric sensors with variable mounting positions are mounted on the upper surface, and when the foaming resin is injected into the mold using an injection machine, the resin is reflected. The sensor generates a pulse signal as soon as it passes directly below the photoelectric sensor, and the computer processes the pulse signal in real time to collect data on the flow behavior in a non-contact manner and determine the starting point of foaming. And a computer.
JP9132344A 1997-05-22 1997-05-22 Flowing behavior analyzing device for foamable resin Pending JPH10315238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9132344A JPH10315238A (en) 1997-05-22 1997-05-22 Flowing behavior analyzing device for foamable resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9132344A JPH10315238A (en) 1997-05-22 1997-05-22 Flowing behavior analyzing device for foamable resin

Publications (1)

Publication Number Publication Date
JPH10315238A true JPH10315238A (en) 1998-12-02

Family

ID=15079155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9132344A Pending JPH10315238A (en) 1997-05-22 1997-05-22 Flowing behavior analyzing device for foamable resin

Country Status (1)

Country Link
JP (1) JPH10315238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160238A (en) * 2000-11-28 2002-06-04 Bridgestone Corp Method for analyzing flowability of polyurethane foam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160238A (en) * 2000-11-28 2002-06-04 Bridgestone Corp Method for analyzing flowability of polyurethane foam

Similar Documents

Publication Publication Date Title
CN101750515B (en) Non-contact type measuring method for measuring liquid parameters
CN102109333B (en) Small-curvature radius complex curved surface intelligent ultrasonic thickness measurement system
CN107389798B (en) The device and method of metal material semisolid fraction solid is quickly detected using ultrasonic wave
ATE102805T1 (en) DEVICE FOR ACCEPTING DATA WHEN ASYNCHRONOUS SIGNALS APPEAR.
EP1785702A3 (en) Method and device for measuring gas meter and volume corrector accuracy
WO2005045635A3 (en) Method and apparatus to reject electrical interference in a capacitive liquid level sensor system
US5596508A (en) High resolution measurement of a thickness using ultrasound
JPH10315238A (en) Flowing behavior analyzing device for foamable resin
CN109342057A (en) A kind of transmission parts test macro with high-speed data acquisition function
CN206960656U (en) Pulse ranging system
CN210612107U (en) Depth perception test experimental device
CN109991437A (en) A kind of speed measuring device
JP2885422B2 (en) Shape evaluation device and shape evaluation method
CN111912742A (en) Multifunctional detection flow type counting cell and application method thereof
CN111983253A (en) Robot speed testing method and device
Quirk Semiautomated recording of wood cell dimensions
CN104501742A (en) Splitting angle measuring method based on monochromatic light autocollimator secondary collimation principle
CN2549439Y (en) Non-contact dynamic continuous metering tester
CN109000615A (en) A kind of slope measuring method
JP3101745B2 (en) Vibration intensity analyzer
CN219200608U (en) System for measuring sound velocity temperature coefficient of liquid
Lu et al. Phase comparison technique for measuring liquid–liquid phase equilibrium
Li et al. Design of Mechanical Property Verification System for Drug Dissolution Meter Based on Non-contact Measurement
CN2259614Y (en) Dynamic angular instrument
KR100675103B1 (en) Apparatus and method for the quantitative measurement of adhesive force of cell to constructs