JPH1031206A - Formation of macromolecule liquid crystal film - Google Patents

Formation of macromolecule liquid crystal film

Info

Publication number
JPH1031206A
JPH1031206A JP20425596A JP20425596A JPH1031206A JP H1031206 A JPH1031206 A JP H1031206A JP 20425596 A JP20425596 A JP 20425596A JP 20425596 A JP20425596 A JP 20425596A JP H1031206 A JPH1031206 A JP H1031206A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
coating
phase transition
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP20425596A
Other languages
Japanese (ja)
Inventor
Nobuyuki Shigeno
信行 重野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP20425596A priority Critical patent/JPH1031206A/en
Publication of JPH1031206A publication Critical patent/JPH1031206A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformly form a macromolecule liquid crystal film and to stably form a uniaxial optical film having high quality. SOLUTION: The surface of a substrate 1 is first subjected to an orientation treatment along a prescribed orientation direction by executing an orientation stage. Next, the surface of the substrate 1 is coated with a coating material 2 consisting of macromolecule liquid crystals 2a having a prescribed phase transition point and a prescribed b. p. at a prescribed thickness in a uniform state by executing a coating stage. In succession, a drying state is executed to dry the applied coating material 2 subjected to a low-temp. heat treatment at the b. p. or below to evaporate the solvent while maintaining the uniform state of the coating material. Finally, an aligning stage is executed. The uniaxial film 3 is formed by once subjecting the substrate 1 to the high-temp. heat treatment to the phase transition point or above, then slowly cooling the substrate down to the temp. below the phase transition point and aligning the macromolecule liquid crystals 2a included in the dried coating material 2 in the orientation direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高分子液晶の成膜方
法に関する。より詳しくは高分子液晶を一軸光学膜とし
て成膜し四分の一波長板の機能を付与する技術に関す
る。
The present invention relates to a method for forming a polymer liquid crystal film. More specifically, the present invention relates to a technique of forming a polymer liquid crystal as a uniaxial optical film and imparting a function of a quarter wavelength plate.

【0002】[0002]

【従来の技術】一般に、波長板は互いに垂直な方向に振
動する直線偏光が板を通過した時、これらの間に所定の
光路差(従って位相差)を与える複屈折板(結晶板)を
いう。複屈折板の厚さをd、互いに垂直な電気的主軸方
向に振動する直線偏光の屈折率をn1,n2とした時、
光路差は|n1−n2|dで与えられる。この値がλ/
4,λ/2,λ/1(λは用いる光の真空中での波長)
のものを夫々四分の一、二分の一、一波長板といい、こ
れらはπ/2,π,2πの位相板に相当する。例えば、
四分の一波長板は互いに垂直な方向に振動する直線偏光
の間に1/4波長の光路差を生ずる様に厚さを決められ
た複屈折板である。白雲母を適当な厚さに劈開した薄板
等が用いられる。あるいは、一方向に分子配向させた合
成樹脂板等が用いられる。この板に主軸方向と45°の
方位を持つ直線偏光を入れると透過光は円偏光になる。
四分の一波長板は様々な用途があり、例えば反射型ゲス
トホスト液晶表示装置の偏光制御素子に用いられる。特
開平6−222351号公報には四分の一波長板を内部
に組込んだ反射型ゲストホスト液晶表示装置が開示され
ている。この従来構造では、ポリスチレン、ポリプロピ
レン、ポリカーボネート、ポリエチレンテレフタレート
等の高分子フィルムを一方向に分子配向させた四分の一
波長板層を用いている。しかしながら、一軸延伸した高
分子フィルムの光学異方性は必ずしも十分なものではな
く、四分の一波長板層として実用的に満足できるレベル
のものを得るに至っていない。又、この従来構造では、
高分子液晶からなる四分の一波長板層も開示している。
例えば、高分子液晶を加熱し、別途加熱又は冷却した基
板上に付着させて四分の一波長板層を形成する。しかし
ながら、この方法でも高分子液晶を高秩序度で分子配向
させる事が難しく、実用的に満足できる一軸異方性の光
学膜を得るに至っていない。
2. Description of the Related Art In general, a wave plate is a birefringent plate (crystal plate) which gives a predetermined optical path difference (accordingly, a phase difference) between linearly polarized lights oscillating in directions perpendicular to each other when passing through the plate. . When the thickness of the birefringent plate is d, and the refractive indices of linearly polarized light vibrating in the direction of the electric principal axis perpendicular to each other are n1 and n2,
The optical path difference is given by | n1−n2 | d. This value is λ /
4, λ / 2, λ / 1 (λ is the wavelength of light used in vacuum)
Are called quarter-wave, half-wave and one-wavelength plates, respectively, which correspond to phase plates of π / 2, π and 2π. For example,
The quarter-wave plate is a birefringent plate whose thickness is determined so as to generate a quarter-wavelength optical path difference between linearly polarized lights vibrating in directions perpendicular to each other. A thin plate or the like obtained by cleaving muscovite to an appropriate thickness is used. Alternatively, a synthetic resin plate or the like having a molecular orientation in one direction is used. When linearly polarized light having an azimuth of 45 ° with respect to the principal axis direction is applied to this plate, the transmitted light becomes circularly polarized light.
The quarter-wave plate has various uses, for example, used as a polarization control element of a reflective guest-host liquid crystal display device. JP-A-6-222351 discloses a reflective guest-host liquid crystal display device having a quarter-wave plate incorporated therein. In this conventional structure, a quarter-wave plate layer in which a polymer film of polystyrene, polypropylene, polycarbonate, polyethylene terephthalate or the like is molecularly oriented in one direction is used. However, the optical anisotropy of the uniaxially stretched polymer film is not always sufficient, and a practically satisfactory level as a quarter-wave plate layer has not yet been obtained. Also, in this conventional structure,
A quarter-wave plate layer composed of a polymer liquid crystal is also disclosed.
For example, a polymer liquid crystal is heated and adhered onto a separately heated or cooled substrate to form a quarter-wave plate layer. However, even with this method, it is difficult to molecularly align the polymer liquid crystal with a high degree of order, and a practically satisfactory uniaxially anisotropic optical film has not been obtained.

【0003】[0003]

【課題を解決する為の手段】上述した従来の技術の課題
にかんがみ、本発明は高分子液晶を利用して均一且つ高
秩序度の一軸光学膜を形成する事を目的とする。かかる
目的を達成する為に以下の手段を講じた。即ち、本発明
にかかる高分子液晶成膜方法では、先ず基板の表面を所
定の配向方向に沿って配向処理する配向工程を行なう。
次に塗工工程を行ない、所定の相転移点を有する高分子
液晶と所定の沸点を有する溶媒とからなる塗剤を所定の
厚みで該基板の表面に一様な状態で塗工する。続いて乾
燥工程を行ない、沸点以下で低温加熱処理を実行し溶媒
を蒸発させて塗工した塗剤の一様な状態を維持したまま
乾燥する。最後に整列工程を行ない、該基板を一旦相転
位点以上に高温加熱処理した後相転移点以下の温度まで
徐冷し乾燥された塗剤に含まれる高分子液晶を該配向方
向に整列させて一軸光学膜を形成する。好ましくは、前
記乾燥工程は真空下で低温加熱処理を行ない溶媒の蒸発
を促進する。又、前記塗工工程はスピンコート、ディッ
ピング又は印刷により該塗剤を塗工する。さらに、前記
配向工程は該基板の表面にポリイミドを成膜した後配向
方向に沿ってラビングする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems in the prior art, an object of the present invention is to form a uniform and highly ordered uniaxial optical film using a polymer liquid crystal. The following measures were taken to achieve this purpose. That is, in the method of forming a polymer liquid crystal film according to the present invention, first, an alignment step of aligning the surface of the substrate along a predetermined alignment direction is performed.
Next, a coating process is performed, and a coating material composed of a polymer liquid crystal having a predetermined phase transition point and a solvent having a predetermined boiling point is applied in a uniform state on the surface of the substrate with a predetermined thickness. Subsequently, a drying step is performed, and a low-temperature heat treatment is performed at a temperature lower than the boiling point to evaporate the solvent, thereby drying the applied coating material while maintaining a uniform state. Lastly, an alignment step is performed, and after the substrate is once subjected to a high-temperature heat treatment above the phase transition point, then gradually cooled to a temperature below the phase transition point and the polymer liquid crystal contained in the dried coating material is aligned in the alignment direction. A uniaxial optical film is formed. Preferably, the drying step is a low-temperature heat treatment under vacuum to promote the evaporation of the solvent. In the coating step, the coating is applied by spin coating, dipping or printing. Further, in the alignment step, a polyimide film is formed on the surface of the substrate, and then rubbed along the alignment direction.

【0004】本発明にかかる高分子液晶成膜方法はゲス
トホスト液晶表示装置の製造方法に応用できる。この場
合、先ず一方の基板の表面を所定の配向方向に沿って配
向処理する配向工程を行なう。次に塗工工程を行ない、
所定の相転移点を有する高分子液晶と所定の沸点を有す
る溶媒とからなる塗剤を所定の厚みで該基板の表面に一
様な状態で塗工する。続く乾燥工程では、沸点以下で低
温加熱処理を行ない、溶媒を蒸発させて塗工した塗剤の
一様な状態を維持したまま乾燥する。さらに整列工程を
行ない、該基板を一旦相転移点以上に高温加熱処理した
後相転移点下の温度まで徐冷し乾燥された塗剤に含まれ
る高分子液晶を該配向方向に整列させて四分の一波長板
層に加工する。この後、所定の間隙を介して該一方の基
板に他方の基板を接合する接合工程を行なう。最後に注
入工程を行ない、二色性色素を含有したゲストホスト液
晶を該間隙に注入してゲストホスト液晶表示装置を完成
する。
The polymer liquid crystal film forming method according to the present invention can be applied to a method for manufacturing a guest-host liquid crystal display device. In this case, first, an alignment step of aligning the surface of one substrate along a predetermined alignment direction is performed. Next, perform the coating process,
A coating material consisting of a polymer liquid crystal having a predetermined phase transition point and a solvent having a predetermined boiling point is applied to the surface of the substrate with a predetermined thickness in a uniform state. In the subsequent drying step, a low-temperature heat treatment is performed at a temperature lower than the boiling point, and the solvent is evaporated to dry the coated material while maintaining a uniform state. Further, an alignment step is performed. The substrate is once subjected to a high-temperature heat treatment at a temperature higher than the phase transition point, then gradually cooled to a temperature below the phase transition point, and the polymer liquid crystal contained in the dried coating material is aligned in the alignment direction to form the liquid crystal. Process into a one-half wavelength plate layer. Thereafter, a bonding step of bonding the one substrate to the other substrate via a predetermined gap is performed. Finally, an injection step is performed, and a guest-host liquid crystal containing a dichroic dye is injected into the gap to complete a guest-host liquid crystal display.

【0005】本発明は、高分子液晶(液晶ポリマー)を
適当な溶媒に溶解させてスピンコートや印刷等により基
板上に塗布する。溶媒を蒸発させる際、十分低温でこれ
を行なう事により、ピンホール等の欠陥の発生を抑制す
る。この時、真空下で低温加熱処理を行なう事により、
さらに蒸発を促進させても良い。例えば、ゲストホスト
液晶表示装置に四分の一波長板層を形成する場合、材料
となる液晶ポリマーをシクロヘキサノン等の適当な溶媒
に溶解させた後、スピンコートや印刷等で塗工する。さ
らに、比較的低温の加熱処理を行ない溶媒を蒸発した
後、比較的高温の加熱処理を行ない液晶ポリマーを整列
させている。塗剤に含まれる溶媒を蒸発させる際、例え
ば溶媒の沸点を超える比較的高温の加熱処理を行なうと
塗膜面にピンホール(ハジキ)が発生し塗膜の一様性を
損なう。これを防ぐ為、溶媒の沸点以下で十分に低温の
加熱処理を行ない溶媒を蒸発させた後高分子液晶の整列
処理を行なっている。
In the present invention, a high-molecular liquid crystal (liquid crystal polymer) is dissolved in a suitable solvent and applied to a substrate by spin coating or printing. When the solvent is evaporated, by performing this at a sufficiently low temperature, the occurrence of defects such as pinholes is suppressed. At this time, by performing a low-temperature heat treatment under vacuum,
Further, evaporation may be promoted. For example, when a quarter-wave plate layer is formed on a guest-host liquid crystal display device, a liquid crystal polymer as a material is dissolved in an appropriate solvent such as cyclohexanone, and then applied by spin coating, printing, or the like. Further, after performing a heat treatment at a relatively low temperature to evaporate the solvent, a heat treatment at a relatively high temperature is performed to align the liquid crystal polymers. When evaporating the solvent contained in the coating agent, for example, if a heat treatment at a relatively high temperature exceeding the boiling point of the solvent is performed, pinholes (repelling) are generated on the coating film surface and the uniformity of the coating film is impaired. In order to prevent this, heat treatment is performed at a temperature sufficiently lower than the boiling point of the solvent to evaporate the solvent and then align the polymer liquid crystal.

【0006】[0006]

【発明の実施の形態】以下、図面を参照して本発明の最
良な実施形態を詳細に説明する。図1は、本発明にかか
る高分子液晶成膜方法を示す工程図である。先ず(A)
に示す様に配向工程を行なう。即ち、基板1の表面を所
定の配向方向(矢印で示す)に沿って配向処理する。例
えば、基板1の表面にポリイミド(図示せず)を成膜し
た後配向方向に沿ってラビングする。場合によっては、
基板1の表面を直にラビングしてもよい。次に(B)に
示す様に塗工工程および乾燥工程を行なう。塗工工程で
は、所定の相転移点を有する高分子液晶2aと所定の沸
点を有する溶媒とからなる塗剤2を所定の厚みで基板1
の表面に一様な状態で塗工する。例えば、スピンコー
ト、ディッピング又は印刷により塗剤2を塗工する。ス
ピンコートを行なう場合、塗剤の濃度やスピン回転数等
の条件を適宜設定して、形成される塗膜の厚みが可視光
領域でλ/4の位相差を生じさせる様にすれば、所望の
四分の一波長板層が得られる。続く乾燥工程では、沸点
以下で低温加熱処理を行ない溶媒を蒸発させて塗工した
塗剤2(塗膜)の一様な状態を維持したまま乾燥する。
これにより、塗膜にピンホール等が発生する事はない。
なお、この乾燥工程では、場合により真空下で低温加熱
処理を行ない、溶媒の蒸発を促進させる事ができる。最
後に(C)に示す様に整列工程を行なう。この整列工程
では、基板1を一旦相転移点以上に高温加熱した後相転
移点以下の温度まで徐冷し乾燥された塗剤2に含まれる
高分子液晶2aを配向方向に整列させて一軸光学膜3を
形成する。その厚みを適当に設定する事で、一軸光学膜
3をそのまま四分の一波長板層として用いる事ができ
る。図示する様に、塗工および乾燥段階では塗剤2に含
まれる高分子液晶2aの液晶分子はランダムな整列状態
にあるのに対し、高温加熱処理後では高分子液晶2aの
液晶分子は配向方向に沿って整列し、所望の一軸光学異
方性が得られる。具体的には、塗剤2を塗工し且つ乾燥
させた基板1を予めネマティック相温度又はイソトロピ
ック相温度に設定されたオーブンに投入して加熱する。
その後徐冷して室温まで戻す。これによって塗工された
高分子液晶2aが予めラビング処理しておいた基板1の
配向方向に整列する。以上の説明から理解される様に、
本発明では沸点以下で低温加熱処理を行ない溶媒を蒸発
させて塗膜の一様な状態を維持したまま乾燥している。
これに対し、沸点以上もしくはこれに近い高温で加熱処
理を行なうとピンホール等の欠陥が塗膜に発生し良好な
膜質の一軸光学膜を安定して得る事ができない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a process chart showing a polymer liquid crystal film forming method according to the present invention. First (A)
The alignment process is performed as shown in FIG. That is, the surface of the substrate 1 is aligned along a predetermined alignment direction (indicated by an arrow). For example, after a polyimide (not shown) is formed on the surface of the substrate 1, rubbing is performed along the alignment direction. In some cases,
The surface of the substrate 1 may be directly rubbed. Next, a coating step and a drying step are performed as shown in FIG. In the coating step, a coating material 2 composed of a polymer liquid crystal 2a having a predetermined phase transition point and a solvent having a predetermined boiling point is applied to the substrate 1 with a predetermined thickness.
Is applied uniformly on the surface of. For example, the coating material 2 is applied by spin coating, dipping, or printing. In the case of performing spin coating, it is desirable to appropriately set conditions such as the concentration of the coating agent and the number of spin rotations so that the thickness of the formed coating film causes a phase difference of λ / 4 in the visible light region. Is obtained. In the subsequent drying step, the solvent is evaporated at a temperature lower than the boiling point, and the solvent is evaporated to dry the coated coating material 2 (coating film) while maintaining a uniform state.
Thereby, pinholes and the like do not occur in the coating film.
In this drying step, a low-temperature heat treatment may be performed in some cases under vacuum to promote the evaporation of the solvent. Finally, an alignment step is performed as shown in FIG. In this alignment step, the substrate 1 is once heated to a temperature higher than the phase transition point, then gradually cooled to a temperature lower than the phase transition point, and the polymer liquid crystal 2a contained in the dried coating material 2 is aligned in the alignment direction to be uniaxial optically. The film 3 is formed. By setting the thickness appropriately, the uniaxial optical film 3 can be used as it is as a quarter-wave plate layer. As shown in the drawing, the liquid crystal molecules of the polymer liquid crystal 2a contained in the coating material 2 are in a random alignment state in the coating and drying stages, whereas the liquid crystal molecules of the polymer liquid crystal 2a are in the alignment direction after the high-temperature heat treatment. And the desired uniaxial optical anisotropy is obtained. Specifically, the substrate 1 on which the coating material 2 has been applied and dried is put into an oven set to a nematic phase temperature or an isotropic phase temperature in advance and heated.
Then, cool slowly and return to room temperature. As a result, the applied polymer liquid crystal 2a is aligned in the alignment direction of the substrate 1 which has been rubbed in advance. As can be understood from the above description,
In the present invention, low-temperature heat treatment is performed at a temperature lower than the boiling point to evaporate the solvent, and the coating film is dried while maintaining a uniform state.
On the other hand, when the heat treatment is performed at a high temperature which is higher than or close to the boiling point, defects such as pinholes are generated in the coating film, and a uniaxial optical film having good film quality cannot be stably obtained.

【0007】図2は高分子液晶の一例を示す化学構造を
表わした模式図である。図示する様に、この高分子液晶
はアルキル主鎖から分岐した側鎖を有している。側鎖の
先端にはペンダントとしてメトキシフェニルベンゾアー
トが連結されている。側鎖のスペーサ長は炭素数nで2
個及び6個のものが交互に配列されている。即ち、n=
2及びn=6の側鎖が1対1の割合で主鎖に対し共重合
されている。この高分子液晶は例えばシクロヘキサノン
とメチルエチルケトン(MEK)を8対2で混合した溶
媒に溶かして塗剤とする。この塗剤を基板に塗工して一
軸光学膜を形成する。即ち、予めラビング処理を施され
た基板上にスピンコートや印刷等によりこの塗剤を塗布
する。
FIG. 2 is a schematic view showing a chemical structure of an example of a polymer liquid crystal. As shown, this polymer liquid crystal has a side chain branched from an alkyl main chain. Methoxyphenylbenzoate is connected as a pendant to the tip of the side chain. The length of the side chain spacer is 2 with carbon number n.
And six are alternately arranged. That is, n =
2 and n = 6 side chains are copolymerized to the main chain at a ratio of 1: 1. This polymer liquid crystal is dissolved in a solvent obtained by mixing cyclohexanone and methyl ethyl ketone (MEK) at a ratio of 8 to 2 to form a coating material. This coating material is applied to a substrate to form a uniaxial optical film. That is, this coating agent is applied by spin coating, printing, or the like on a substrate that has been previously rubbed.

【0008】図3は上述した塗剤を乾燥処理及び整列処
理する場合の温度プロファイルを示すグラフである。先
ず、乾燥工程では80℃程度の低温で2時間程度加熱処
理を行ない十分に溶媒を蒸発させる。なお、この低温焼
成の際に真空下でこれを行う事により、さらに蒸発を促
進させてもよい。これに対し、溶媒の蒸発の為に約10
0℃以上の温度で加熱するとピンホールが発生し、良好
な塗膜が得られない事が実験により明らかとなってい
る。次に、整列工程では加熱及び徐冷を行なう。図2に
示した高分子液晶はネマティック相と液相との間の相転
移点TPが110℃である。そこで、基板を一旦相転移
点TP以上の温度(例えば120℃)に高温加熱処理し
た後、相転移点TP以下の温度まで徐冷し乾燥された塗
剤に含まれる高分子液晶を配向方向に整列させて一軸光
学膜を形成する。相転移点TPを超える120℃で整列
工程を行なう事により良好な一軸配向(良配向)を有す
る光学膜を安定して作成する事ができる。
FIG. 3 is a graph showing a temperature profile when the above-mentioned coating material is subjected to a drying process and an alignment process. First, in the drying step, heat treatment is performed at a low temperature of about 80 ° C. for about 2 hours to sufficiently evaporate the solvent. The evaporation may be further promoted by performing this under vacuum during the low-temperature firing. On the other hand, about 10%
Experiments have shown that when heated at a temperature of 0 ° C. or more, pinholes are generated and a good coating film cannot be obtained. Next, heating and slow cooling are performed in the alignment step. The polymer liquid crystal shown in FIG. 2 has a phase transition point TP between a nematic phase and a liquid phase of 110 ° C. Therefore, the substrate is once subjected to a high-temperature heat treatment at a temperature equal to or higher than the phase transition point TP (for example, 120 ° C.), and then gradually cooled to a temperature equal to or lower than the phase transition point TP so that the polymer liquid crystal contained in the dried coating material is oriented in the alignment direction. Align to form a uniaxial optical film. By performing the alignment step at 120 ° C. exceeding the phase transition point TP, an optical film having good uniaxial orientation (good orientation) can be stably formed.

【0009】さらに、図4及び図5を参照して本発明に
かかる高分子液晶成膜方法を応用したゲストホスト液晶
表示装置の製造方法を説明する。先ず、図4の工程
(A)で、ガラス又は石英等からなる絶縁性の基板11
の上に薄膜トランジスタ12を集積形成する。具体的に
は、高融点金属等からなるゲート電極13を絶縁基板1
1の表面にパタニング形成した後、その上にCVD等に
よりシリコン酸化膜又はシリコン窒化膜からなるゲート
絶縁膜14を成膜する。その上に多結晶シリコン等から
なる半導体薄膜15を成膜し、薄膜トランジスタ12の
素子領域に合わせて島状にパタニングする。その上にゲ
ート電極13と整合したシリコン酸化膜等からなるスト
ッパ16をパタニング形成する。ストッパ16をマスク
としてイオンドーピング又はイオンインプランテーショ
ンにより不純物を半導体薄膜15に注入してボトムゲー
ト型の薄膜トランジスタ12を形成する。この薄膜トラ
ンジスタ12を被覆する様に、CVD等で酸化シリコン
等からなる層間絶縁膜17を成膜する。
Further, a method for manufacturing a guest-host liquid crystal display device to which the method for forming a polymer liquid crystal film according to the present invention is applied will be described with reference to FIGS. First, in step (A) of FIG. 4, an insulating substrate 11 made of glass, quartz, or the like is used.
The thin film transistor 12 is integratedly formed thereon. Specifically, the gate electrode 13 made of a high melting point metal or the like is
After patterning is formed on the surface of the substrate 1, a gate insulating film 14 made of a silicon oxide film or a silicon nitride film is formed thereon by CVD or the like. A semiconductor thin film 15 made of polycrystalline silicon or the like is formed thereon, and is patterned in an island shape according to the element region of the thin film transistor 12. A stopper 16 made of a silicon oxide film or the like aligned with the gate electrode 13 is formed thereon by patterning. Impurities are implanted into the semiconductor thin film 15 by ion doping or ion implantation using the stopper 16 as a mask to form the bottom gate thin film transistor 12. An interlayer insulating film 17 made of silicon oxide or the like is formed by CVD or the like so as to cover the thin film transistor 12.

【0010】工程(B)に進み、層間絶縁膜17にコン
タクトホールを開口した後アルミニウム等をスパッタリ
ングで堆積し、所定の形状にパタニングしてソース電極
18及びドレイン電極19を形成する。この時同時にア
ルミニウムを利用して光反射層20を形成する。この光
反射層20はドレイン電極19と同電位に接続されてい
る。この光反射層20は凹凸が形成された樹脂膜20a
とその表面に成膜されたアルミニウム膜20bとからな
る。樹脂膜20aはフォトリソグラフィーにより凹凸が
パタニングされた感光性樹脂膜である。この感光性樹脂
膜20aは例えばフォトレジストからなり、基板11の
表面に全面的に塗布される。これを所定のマスクを介し
て露光処理し、例えば円柱状にパタニング加工する。次
いで加熱してリフローを施せば凹凸形状が安定的に形成
できる。この様にして形成された凹凸形状の表面に所望
の膜厚で良好な光反射率を有するアルミニウム膜20b
を形成する。凹凸の深さ寸法を数μmに設定すれば、良
好な光散乱特性が得られ、光反射層20は白色を呈す
る。
In step (B), after opening a contact hole in the interlayer insulating film 17, aluminum or the like is deposited by sputtering and patterned into a predetermined shape to form a source electrode 18 and a drain electrode 19. At this time, the light reflection layer 20 is simultaneously formed using aluminum. This light reflection layer 20 is connected to the same potential as the drain electrode 19. The light reflection layer 20 is formed of a resin film 20a having unevenness.
And an aluminum film 20b formed on the surface thereof. The resin film 20a is a photosensitive resin film whose irregularities are patterned by photolithography. The photosensitive resin film 20 a is made of, for example, a photoresist, and is entirely applied to the surface of the substrate 11. This is exposed through a predetermined mask, and is patterned into, for example, a cylindrical shape. Then, by heating and performing reflow, the uneven shape can be formed stably. An aluminum film 20b having a desired film thickness and good light reflectance on the surface of the uneven shape formed in this manner.
To form If the depth dimension of the unevenness is set to several μm, good light scattering characteristics can be obtained, and the light reflection layer 20 exhibits white.

【0011】工程(C)に進み、薄膜トランジスタ12
及び光反射層20の凹凸を埋める様に平坦化層21を形
成する。平坦化層21はアクリル樹脂等透明な有機物を
用いる事が好ましい。この平坦化層21の表面を所定の
配向方向に沿って配向処理する。例えば、平坦化層21
の表面にポリイミドからなる下地配向層22を成膜した
後配向方向に沿ってラビングする。この平坦化層21を
介在させる事で下地配向層22の成膜及びラビング処理
が安定に行なえる。
In step (C), the thin film transistor 12
Then, the flattening layer 21 is formed so as to fill the unevenness of the light reflection layer 20. The flattening layer 21 is preferably made of a transparent organic material such as an acrylic resin. The surface of the flattening layer 21 is subjected to an alignment process along a predetermined alignment direction. For example, the planarization layer 21
Is formed on the surface of the substrate, and then rubbed along the alignment direction. By interposing the flattening layer 21, the formation and the rubbing treatment of the base alignment layer 22 can be performed stably.

【0012】工程(D)に進み、所定の相転移点を有す
る高分子液晶と所定の沸点を有する溶媒とからなる塗剤
を所定の厚みで下地配向層22の表面に一様な状態で塗
工する。沸点以下で低温加熱処理を行ない溶媒を蒸発さ
せて塗膜の一様な状態を維持したまま乾燥する。基板1
1を一旦相転移点以上に高温加熱処理した後相転移点以
下の温度まで徐冷し乾燥された塗剤に含まれる高分子液
晶を下地配向層22のラビング方向に整列させて四分の
一波長板層23に加工する。
Proceeding to step (D), a coating comprising a polymer liquid crystal having a predetermined phase transition point and a solvent having a predetermined boiling point is coated in a uniform state on the surface of the base alignment layer 22 with a predetermined thickness. Work. A low-temperature heat treatment is performed at a temperature below the boiling point to evaporate the solvent, and the coating film is dried while maintaining a uniform state. Substrate 1
1 is once subjected to a high-temperature heat treatment above the phase transition point, then gradually cooled to a temperature below the phase transition point, and the polymer liquid crystal contained in the dried coating material is aligned in the rubbing direction of the base alignment layer 22 by a quarter. The wave plate layer 23 is processed.

【0013】図5の工程(E)に進み、四分の一波長板
層23、下地配向層22及び平坦化層21を貫通して薄
膜トランジスタ12のドレイン電極19に連通するコン
タクトホール24を開口する。例えば、ドライエッチン
グ又はウェットエッチングにより上述した積層(21,
22,23)をパタニングしてコンタクトホール24を
形成する。
Proceeding to the step (E) of FIG. 5, a contact hole 24 penetrating through the quarter-wave plate layer 23, the base alignment layer 22, and the planarizing layer 21 and communicating with the drain electrode 19 of the thin film transistor 12 is opened. . For example, the above-described lamination (21,
22 and 23) are patterned to form contact holes 24.

【0014】工程(F)に進み、四分の一波長板層23
の上にITO等からなる透明導電膜を成膜し所定の形状
にパタニングして画素電極25を得る。この画素電極2
5はコンタクトホール24を介して薄膜トランジスタ1
2のドレイン電極19に電気接続する。画素電極25の
表面を被覆する様に配向層26を成膜する。例えば、ポ
リイミドを溶解した配向溶剤を塗工した後乾燥して配向
層26とする。
Proceeding to step (F), the quarter-wave plate layer 23
A transparent conductive film made of ITO or the like is formed thereon, and is patterned into a predetermined shape to obtain the pixel electrode 25. This pixel electrode 2
5 is a thin film transistor 1 through a contact hole 24.
2 is electrically connected to the drain electrode 19. The alignment layer 26 is formed so as to cover the surface of the pixel electrode 25. For example, an alignment solvent in which polyimide is dissolved is applied and then dried to form an alignment layer 26.

【0015】最後に工程(G)に進み、所定の間隙を介
して反射側の基板11に入射側の基板31を接合する。
入射側の基板31の内表面には予め対向電極32及び配
向層33が形成されている。この間隙にゲストホスト液
晶40を注入すると反射型のゲストホスト液晶表示装置
が完成する。このゲストホスト液晶40はネマティック
液晶分子41と例えば黒色の二色性色素42を含んでい
る。図示の例では液晶分子41は上下に位置する一対の
配向層33及び26により垂直配向に制御されている。
これに倣って二色性色素42も垂直配向している。
Finally, the process proceeds to step (G), where the incident-side substrate 31 is joined to the reflective-side substrate 11 via a predetermined gap.
A counter electrode 32 and an alignment layer 33 are previously formed on the inner surface of the incident side substrate 31. When the guest host liquid crystal 40 is injected into this gap, a reflection type guest host liquid crystal display device is completed. The guest host liquid crystal 40 includes nematic liquid crystal molecules 41 and, for example, a black dichroic dye 42. In the illustrated example, the liquid crystal molecules 41 are controlled to be vertically aligned by a pair of alignment layers 33 and 26 positioned above and below.
Following this, the dichroic dye 42 is also vertically aligned.

【0016】続いて、(G)に示した反射型ゲストホス
ト液晶表示装置を用いて白黒表示を行なう場合の動作に
ついて参考に説明する。電圧無印加状態では液晶分子4
1は垂直方向に配向し、二色性色素42も同様に配向す
る。上側の基板31から入射した光は二色性色素42に
よって吸収されずに液晶層40を通過し、四分の一波長
板層23で偏光されずに光反射層20で反射する。反射
した光は再び四分の一波長板層23を通過し、液晶層4
0で吸収されずに出射する。従って白色表示となる。一
方電圧印加時には液晶分子41が画素電極25及び対向
電極32の間に生じた電界に応答して水平配向に移行す
る。二色性色素42も同様に配向する。上側の基板31
側から入射した光が液晶層40を通過すると、入射光の
うち二色性色素42の分子の長軸方向に平行な振動面を
持つ成分が二色性色素42によって吸収される。又、二
色性色素42の分子の長軸方向に対して垂直な振動面を
持つ成分は液晶層40を通過し、反射側の基板11に形
成された四分の一波長板層23で円偏光とされ、光反射
層20で反射する。この時反射光の偏光が逆回りとな
り、再び四分の一波長板層23を通過し、二色性色素4
2の分子の長軸方向に対して平行な振動面を持つ成分と
なる。この成分は二色性色素42によって吸収されるの
で略完全な黒色表示となる。
Next, a description will be given of an operation in the case of performing monochrome display using the reflection type guest-host liquid crystal display device shown in FIG. When no voltage is applied, the liquid crystal molecules 4
1 is oriented vertically, and the dichroic dye 42 is similarly oriented. Light incident from the upper substrate 31 passes through the liquid crystal layer 40 without being absorbed by the dichroic dye 42, and is reflected by the light reflection layer 20 without being polarized by the quarter-wave plate layer 23. The reflected light passes through the quarter-wave plate layer 23 again, and
At 0, light is emitted without being absorbed. Therefore, white display is obtained. On the other hand, when a voltage is applied, the liquid crystal molecules 41 shift to horizontal alignment in response to an electric field generated between the pixel electrode 25 and the counter electrode 32. The dichroic dye 42 is similarly oriented. Upper substrate 31
When light incident from the side passes through the liquid crystal layer 40, components of the incident light having a vibration plane parallel to the major axis direction of the molecules of the dichroic dye 42 are absorbed by the dichroic dye 42. The component of the dichroic dye 42 having a vibration plane perpendicular to the major axis direction of the molecule passes through the liquid crystal layer 40 and is reflected by the quarter-wave plate layer 23 formed on the reflective side substrate 11. The light is polarized and reflected by the light reflection layer 20. At this time, the polarization of the reflected light is reversed and passes through the quarter-wave plate layer 23 again, and the dichroic dye 4
A component having a vibration plane parallel to the major axis direction of the second molecule. Since this component is absorbed by the dichroic dye 42, an almost complete black display is obtained.

【0017】[0017]

【発明の効果】以上説明した様に、本発明によれば、高
分子液晶と溶媒とからなる塗剤を塗工した後、沸点以下
で低温加熱処理を行ない溶媒を蒸発させて塗膜の一様な
状態を維持したまま乾燥している。この後、相転移点以
上に高温加熱処理した後相転移点以下の温度まで徐冷
し、塗膜に含まれる高分子液晶を整列させて一軸光学膜
を形成している。かかる方法により塗膜にピンホール等
の欠陥が発生しなくなり、良好な一軸配向性を備えた光
学膜を安定して作成できる様になり、ゲストホスト液晶
表示装置に内蔵される四分の一波長板層等の用途に好適
である。
As described above, according to the present invention, after applying a coating material composed of a liquid crystal polymer and a solvent, a low-temperature heat treatment is performed at a temperature lower than the boiling point to evaporate the solvent, thereby evaporating the solvent. It is dry while maintaining such a state. Thereafter, the film is heated at a temperature higher than the phase transition point and then gradually cooled to a temperature lower than the phase transition point, thereby aligning the polymer liquid crystals contained in the coating film to form a uniaxial optical film. With this method, defects such as pinholes do not occur in the coating film, and an optical film having good uniaxial orientation can be stably formed. It is suitable for applications such as plate layers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる高分子液晶成膜を方法を示す工
程図である。
FIG. 1 is a process chart showing a method for forming a polymer liquid crystal film according to the present invention.

【図2】高分子液晶の一例を示す模式図である。FIG. 2 is a schematic diagram illustrating an example of a polymer liquid crystal.

【図3】高分子液晶成膜方法の温度プロファイルを示す
グラフである。
FIG. 3 is a graph showing a temperature profile of a polymer liquid crystal film forming method.

【図4】本発明にかかる高分子液晶成膜方法を応用した
ゲストホスト液晶表示装置の製造方法を示す工程図であ
る。
FIG. 4 is a process chart showing a method for manufacturing a guest-host liquid crystal display device to which the polymer liquid crystal film forming method according to the present invention is applied.

【図5】同じく製造方法を示す工程図である。FIG. 5 is a process drawing showing the same manufacturing method.

【符号の説明】[Explanation of symbols]

1…基板、2…塗剤、2a…高分子液晶、3…一軸光学
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Coating agent, 2a ... Polymer liquid crystal, 3 ... Uniaxial optical film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板の表面を所定の配向方向に沿って配
向処理する配向工程と、 所定の相転移点を有する高分子液晶と所定の沸点を有す
る溶媒とからなる塗剤を所定の厚みで該基板の表面に一
様な状態で塗工する塗工工程と、 沸点以下で低温加熱処理を行ない溶媒を蒸発させて塗工
した塗剤の一様な状態を維持したまま乾燥する乾燥工程
と、 該基板を一旦相転移点以上に高温加熱処理した後相転移
点以下の温度まで徐冷し乾燥された塗剤に含まれる高分
子液晶を該配向方向に整列させて一軸光学膜を形成する
整列工程とを行なう高分子液晶成膜方法。
An alignment step of aligning a surface of a substrate along a predetermined alignment direction, and applying a coating material comprising a liquid crystal polymer having a predetermined phase transition point and a solvent having a predetermined boiling point to a predetermined thickness. A coating step of coating the surface of the substrate in a uniform state, a drying step of performing low-temperature heat treatment at a temperature below the boiling point, evaporating the solvent, and drying the coated coating while maintaining the coated coating in a uniform state; After the substrate is once subjected to a high-temperature heat treatment above the phase transition point, then gradually cooled to a temperature below the phase transition point, and the polymer liquid crystal contained in the dried coating material is aligned in the orientation direction to form a uniaxial optical film. A polymer liquid crystal film forming method for performing an alignment step.
【請求項2】 前記乾燥工程は真空下で低温加熱を行な
い溶媒の蒸発を促進させる請求項1記載の高分子液晶成
膜方法。
2. The polymer liquid crystal film forming method according to claim 1, wherein in the drying step, low-temperature heating is performed under vacuum to promote evaporation of the solvent.
【請求項3】 前記塗工工程はスピンコート、ディッピ
ング又は印刷により該塗剤を塗工する請求項1記載の高
分子液晶成膜方法。
3. The polymer liquid crystal film forming method according to claim 1, wherein said applying step applies said coating agent by spin coating, dipping or printing.
【請求項4】 前記配向工程は該基板の表面にポリイミ
ドを成膜した後配向方向に沿ってラビングする請求項1
記載の高分子液晶成膜方法。
4. The method according to claim 1, wherein in the alignment step, a polyimide film is formed on the surface of the substrate and then rubbed along the alignment direction.
The method for forming a polymer liquid crystal according to the above.
【請求項5】 一方の基板の表面を所定の配向方向に沿
って配向処理する配向工程と、 所定の相転移点を有する高分子液晶と所定の沸点を有す
る溶媒とからなる塗剤を所定の厚みで該基板の表面に一
様な状態で塗工する塗工工程と、 沸点以下で低温加熱処理を行ない溶媒を蒸発させて塗工
した塗剤の一様な状態を維持したまま乾燥する乾燥工程
と、 該基板を一旦相転移点以上に高温加熱処理した後相転移
点以下の温度まで徐冷し乾燥された塗剤に含まれる高分
子液晶を該配向方向に整列させて四分の一波長板層に加
工する整列工程と、 所定の間隙を介して該一方の基板に他方の基板を接合す
る接合工程と、 二色性色素を含有したゲストホスト液晶を該間隙に注入
する注入工程とを行なうゲストホスト液晶表示装置の製
造方法。
5. An alignment step of aligning the surface of one of the substrates along a predetermined alignment direction, and applying a coating material comprising a polymer liquid crystal having a predetermined phase transition point and a solvent having a predetermined boiling point to a predetermined direction. A coating step of coating the surface of the substrate in a uniform state with a thickness, and a drying step of performing a low-temperature heat treatment at a temperature below the boiling point, evaporating the solvent, and drying the coated coating while maintaining a uniform state. And heating the substrate once at a high temperature above the phase transition point, then gradually cooling the substrate to a temperature below the phase transition point, and aligning the polymer liquid crystal contained in the dried coating material in the alignment direction with a quarter. An alignment step of processing into a wavelength plate layer; a bonding step of bonding the other substrate to the one substrate via a predetermined gap; and an injection step of injecting a guest-host liquid crystal containing a dichroic dye into the gap. Of manufacturing a guest-host liquid crystal display device.
JP20425596A 1996-07-15 1996-07-15 Formation of macromolecule liquid crystal film Abandoned JPH1031206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20425596A JPH1031206A (en) 1996-07-15 1996-07-15 Formation of macromolecule liquid crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20425596A JPH1031206A (en) 1996-07-15 1996-07-15 Formation of macromolecule liquid crystal film

Publications (1)

Publication Number Publication Date
JPH1031206A true JPH1031206A (en) 1998-02-03

Family

ID=16487440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20425596A Abandoned JPH1031206A (en) 1996-07-15 1996-07-15 Formation of macromolecule liquid crystal film

Country Status (1)

Country Link
JP (1) JPH1031206A (en)

Similar Documents

Publication Publication Date Title
JPH1031231A (en) Reflection type guest-host liquid crystal display device and its production
US5767994A (en) Orientation film of photopolymer in a liquid crystal display and a method of forming the film
JP3518849B2 (en) Liquid crystal display device and its manufacturing method, and substrate and its manufacturing method
JP2851906B2 (en) Optical modulation element and display device
US5936691A (en) Method of preparing alignment layer for use in liquid crystal devices using in-situ ultraviolet exposure
JP2006009030A (en) Optical element
JPH08122750A (en) Liquid crystal eelectrooptical device, projection type display device formed by utilizing the same and their driving method
JPH10282501A (en) Alignment layer, its formation and liquid crystal display element formed by adopting the aligning layer
JPH1082986A (en) Reflection type guest-host liquid crystal display device
JPH1031206A (en) Formation of macromolecule liquid crystal film
JPH10104615A (en) Formation of high-polymer liquid crystal film
JPH06289358A (en) Production of liquid crystal display device and liquid crystal display device
JPH10197870A (en) Liquid crystal display element and its production
JPH10104614A (en) Formation of high polymer liquid crystal film
JPH1152362A (en) Reflection type liquid crystal display device
US5973762A (en) Ferroelectric liquid crystal cell with a monochevron structure of smectic layers
JPH10293301A (en) Reflection type guest host liquid crystal display
JP4465847B2 (en) Transflective liquid crystal display device
JPH1031219A (en) Formation of macromolecule liquid crystal film and production of guest-host liquid crystal display device
JPS62231937A (en) Liquid crystal element
JPH1031233A (en) Production of reflection type guest-host liquid crystal display device
JP2815415B2 (en) Manufacturing method of ferroelectric liquid crystal panel
JPH10293328A (en) Manufacture of reflection type guest-host liquid crystal display
JP2002202509A (en) Liquid crystal display device and method of manufacturing for the same
JPH1031234A (en) Reflection type guest-host liquid crystal display device and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A762 Written abandonment of application

Effective date: 20051122

Free format text: JAPANESE INTERMEDIATE CODE: A762