JPH10311673A - Air liquefaction/separation method and apparatus for producing high purity nitrogen and coarse neon - Google Patents

Air liquefaction/separation method and apparatus for producing high purity nitrogen and coarse neon

Info

Publication number
JPH10311673A
JPH10311673A JP12609297A JP12609297A JPH10311673A JP H10311673 A JPH10311673 A JP H10311673A JP 12609297 A JP12609297 A JP 12609297A JP 12609297 A JP12609297 A JP 12609297A JP H10311673 A JPH10311673 A JP H10311673A
Authority
JP
Japan
Prior art keywords
rectification column
column
air
liquefied
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12609297A
Other languages
Japanese (ja)
Inventor
Mitsuru Yamashita
満 山下
Hideyuki Honda
秀幸 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP12609297A priority Critical patent/JPH10311673A/en
Publication of JPH10311673A publication Critical patent/JPH10311673A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/30Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/32Neon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/42Separating low boiling, i.e. more volatile components from nitrogen, e.g. He, H2, Ne
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
    • F25J2270/91External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration using pulse tube refrigeration

Abstract

PROBLEM TO BE SOLVED: To collect and produce coarse neon being a raw material of neon gas having high surplus value with an air liquefaction/separation apparatus simultaneously with ultrahigh purity nitrogen gas. SOLUTION: Compressed raw material air, from which water and carbon dioxide is removed and which is cooled up to a substantially boiling point, is introduced from a pipe line 1 to a lower part of a single rectifying column 2 on an upper part of which there is provided a rectifier part 4 for condensing a low boiling point component such as hydrogen. The air is rectified in the rectifying column 2, and liquefied air is supplied from the bottom of the rectifying column 2 to a liquefied air reservoir 7 located at the top of the rectifying column 2. Gas from an upper part of the rectifier part 4 of the rectifying column 2, which gas is introduced into a condensation evaporator 8 through the pipe line 9, is cooled and liquefied. The liquefied fluid is returned through a pipe line 10 as a reflux fluid to the upper part of the rectifying column 2, and high purity liquefied nitrogen below the rectifier part 4 is fed to the condensation evaporator 8 and is vaporized using cold for collection as high purity nitrogen gas, and a pipe line 15 is divided from the pipe line 10 for the reflux fluid, from which line 15 non-condensed gas is collected as coarse neon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素等低沸点成分
の含有量が少ない高純度窒素と粗ネオンを併産し得て、
高純度の窒素が要求され、かつネオンの需要が見込まれ
る半導体工業において特に望まれる空気液化分離方法と
その装置に関するものである。
BACKGROUND OF THE INVENTION The present invention provides a method for producing high purity nitrogen and crude neon having a low content of low boiling components such as hydrogen.
The present invention relates to an air liquefaction separation method and apparatus particularly desired in the semiconductor industry where high purity nitrogen is required and neon demand is expected.

【0002】[0002]

【従来の技術】工業的に窒素を製造する方法と装置とし
ては、空気を原料としてこれを圧縮、精製、冷却の工程
を経て液化し、その組成分をその沸点差によって精留分
離するいわゆる空気液化分離方法が採用されている。そ
こで、この精留によって特に窒素ガスを専用に採取する
従来の方法として、単式精留塔を用いた装置を例示して
説明する。
2. Description of the Related Art As a method and an apparatus for industrially producing nitrogen, there is a so-called air in which air is used as a raw material, which is liquefied through steps of compression, purification and cooling, and its components are rectified and separated by a difference in boiling point. A liquefaction separation method is employed. Therefore, as a conventional method for exclusively collecting nitrogen gas by this rectification, an apparatus using a single rectification column will be described as an example.

【0003】図5は従来の空気液化分離装置に用いる単
式精留塔の系統図の一例を示すもので、塵埃、炭酸ガス
及び水分を除去した圧縮原料空気は単式精留塔52より
回収されるガス等の寒冷により冷却されてほぼ沸点温度
となって管路51を通って単式精留塔52の下部に導入
される。そして該単式精留塔52内で上部より精留板5
3を流下する環流液との接触により精留され、該単式精
留塔52の上部に窒素ガスが、また下部に酸素に富んだ
液化空気が精留降下される。このうち窒素ガスは、管路
54を通って製品窒素ガスとして導出され、その一部が
管路55を通って単式精留塔52の頂部に区画された液
化空気溜56に配置されている凝縮蒸発器57に入り、
単式精留塔52の底部から管路58を通って減圧されて
前記液化空気溜56に導入される液化空気と熱交換して
液化し、管路59を通って単式精留塔52の上部に環流
液となって導入される。なお液化空気溜56に供給され
た液化空気は凝縮蒸発器57を流通する環流液用ガスを
液化せしめるために寒冷を使用して気化し、管路60よ
り導出され原料空気と熱交換してこれを冷却して放出さ
れる。
FIG. 5 shows an example of a system diagram of a single rectification column used in a conventional air liquefaction / separation apparatus. The compressed raw material air from which dust, carbon dioxide and moisture have been removed is recovered from a single rectification column 52. The gas is cooled by cold such as a gas to reach a substantially boiling point temperature, and is introduced into a lower portion of the single rectification column 52 through a pipe 51. Then, the rectification plate 5
The rectification is performed by contact with the reflux liquid flowing down 3, and nitrogen gas is rectified at the upper part of the single rectification column 52 and liquefied air rich in oxygen is rectified at the lower part. Among them, the nitrogen gas is led out through a pipe 54 as product nitrogen gas, and a part of the nitrogen gas is condensed through a pipe 55 into a liquefied air reservoir 56 partitioned at the top of the single-column rectification column 52. Enter the evaporator 57,
The pressure is reduced from the bottom of the single-column rectification column 52 through a pipe 58 and heat exchanges with the liquefied air introduced into the liquefied air reservoir 56 to be liquefied. It is introduced as a reflux liquid. The liquefied air supplied to the liquefied air reservoir 56 is vaporized using refrigeration in order to liquefy the reflux liquid gas flowing through the condensing evaporator 57, is led out from the pipe 60 and exchanges heat with the raw material air. Is cooled and released.

【0004】しかるに上記した単式精留塔52の上部の
管路54より導出される製品窒素ガス中には水素、ヘリ
ウム、ネオン等の窒素より低沸点のガスが含まれている
のが実情である。特に半導体工業においては、半導体製
造における半導体材料ガスの搬送用ガスとして使用する
上で超高純度の窒素ガスが要求されていて、かかる活性
な水素が含有していることは製造製品の品質を損なうこ
ととなり好ましくなかった。そこで、製品窒素ガス中に
有害な水素含有量を可及的に極微量にした高純度の窒素
ガスを採取することを目的として特開昭60ー1421
83号公報に開示されている空気液化分離法が提案され
た。
However, the fact is that the product nitrogen gas led out from the pipe 54 above the single-type rectification column 52 contains a gas having a lower boiling point than nitrogen, such as hydrogen, helium, or neon. . Particularly in the semiconductor industry, ultra-high purity nitrogen gas is required for use as a carrier gas for semiconductor material gas in semiconductor manufacturing, and the presence of such active hydrogen impairs the quality of manufactured products. That was not desirable. Therefore, Japanese Patent Application Laid-Open No. 60-1421 aims to collect high-purity nitrogen gas in which the harmful hydrogen content in the product nitrogen gas is made as small as possible.
No. 83 has proposed an air liquefaction separation method.

【0005】この方法は本出願人が出願し提案したもの
で、この単式精留塔の系統図を図6に図示して説明す
る。なお、図5と同一の構成部は同一符号を付して詳細
な説明は省略する。即ち前記図5に図示した単式精留塔
52の上部に数段の精留板61を設備し、該上部より管
路54で導出する窒素ガスは製品として採取せずに、一
部を弁62で放出量を調整して系外に放出し、残部は図
5と同様管路55、凝縮蒸発器57、管路59を経て単
式精留塔52の上部に環流される。そして製品窒素は前
記単式精留塔52の放出・環流ガスの導出管路54の導
出位置より数段下方の精留板の位置に設けた導出管路6
3より高純度液化窒素を導出し、一部は減圧弁64で減
圧した後管路65により凝縮蒸発器57を経てその寒冷
を使用して気化し管路66で高純度窒素ガスとして採取
し、残部は管路67より高純度の液化窒素として採取す
る。
[0005] This method has been filed and proposed by the present applicant, and a system diagram of this single type rectification column will be described with reference to FIG. Note that the same components as those in FIG. 5 are denoted by the same reference numerals, and detailed description is omitted. That is, several stages of rectification plates 61 are installed at the upper part of the single-type rectification column 52 shown in FIG. The remaining amount is returned to the upper part of the single rectification column 52 via the pipe 55, the condensing evaporator 57, and the pipe 59 in the same manner as in FIG. The product nitrogen is supplied to a rectification plate 6 provided at a position of a rectification plate several stages below the discharge position of the discharge / recirculation gas discharge line 54 of the single-type rectification column 52.
3, high-purity liquefied nitrogen is led out, a part of which is depressurized by a pressure reducing valve 64, vaporized by a pipe 65 through a condensing evaporator 57, and collected as high-purity nitrogen gas by a pipe 66. The remainder is collected as high-purity liquefied nitrogen from line 67.

【0006】この方法では前記した通り、単式精留塔5
2の上部に数段の精留板61を設けて、該部で精留を行
わしめて水素等の低沸点成分をできる限り多くの量を、
その上部に濃縮して気体状で滞留せしめ、これを上部の
管路54より放出量を調節しつつ導出して環流ガスとし
ていた。その結果前記導出管路54より数段下の精留板
では水素等の低沸点成分の含有量は低減し、管路63か
らは水素等の低沸点成分が極微量となった高純度の液化
窒素が導出されるものである。
In this method, as described above, the single rectification column 5
A plurality of rectification plates 61 are provided on the upper part of 2, and rectification is performed in the rectification portion to reduce the amount of low boiling components such as hydrogen as much as possible,
It was concentrated in the upper part and retained in a gaseous state, and this was led out from the upper conduit 54 while controlling the amount of release, and used as reflux gas. As a result, in the rectifying plate several stages below the outlet line 54, the content of low-boiling components such as hydrogen is reduced, and from the line 63, high-purity liquefaction in which the amount of low-boiling components such as hydrogen is minimal Nitrogen is derived.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た図6に図示した単式精留塔52の上部の導出管路54
より導出されるガスの一部は放出し、一部は凝縮蒸発器
57を経て液化して環流液として単式精留塔52の上部
に戻していた。そして管路63から導出される製品窒素
中の含有酸素量を0.3ppm未満とした場合、管路5
4で導出されるガスの組成を分析してみると、2〜10
ppmの水素、8〜20ppmのヘリウム、40〜10
0ppmのネオンが含有されている窒素ガスであること
が判った。更にこの放出・環流ガスが管路55より凝縮
蒸発器57を経て液化されて単式精留塔52の上部に戻
される環流液のうちの未凝縮ガスの組成を分析したとこ
ろ、約95ppmの水素、約475ppmのヘリウム、
約1710ppmのネオンが濃縮されて含有している窒
素ガスであることが判明した。
However, the outlet line 54 at the top of the single-column rectification column 52 shown in FIG.
A part of the gas derived was released, and a part thereof was liquefied via the condensing evaporator 57 and returned to the upper part of the single rectification column 52 as reflux liquid. When the oxygen content in the product nitrogen derived from the line 63 is less than 0.3 ppm, the line 5
Analyzing the composition of the gas derived in 4
ppm hydrogen, 8-20 ppm helium, 40-10 ppm
It was found that the nitrogen gas contained 0 ppm neon. Further, when the composition of the uncondensed gas in the reflux liquid which is liquefied through the pipe 55 through the condenser evaporator 57 through the condenser evaporator 57 and returned to the upper part of the single rectification column 52 is analyzed, about 95 ppm of hydrogen, About 475 ppm helium,
It was found that about 1710 ppm of neon was nitrogen gas which was concentrated and contained.

【0008】しかるに、従来これら付加価値の高い低沸
点成分ガスが濃縮されて含有しているガスを、前記した
如くただ単に放出して無駄にしていたのが実情であっ
た。そこで、特により多く濃縮されているネオン成分を
放出することなく有効に活用することに着目したもので
ある。即ち本発明は単式精留塔で水素等の低沸点成分を
極微量に低減した高純度窒素を採取するため、これら有
害となって不必要な水素等の低沸点成分ガスを極力濃縮
して放出して除去していたのを、これを回収することに
より付加価値の高いネオンの原料となる粗ネオンを効率
よく同時に採取することを可能としたものである。そし
て特にこれら高純度の窒素とネオンとを必要とする半導
体製造工業分野に適応した経済的に高純度窒素と粗ネオ
ンを併産する空気液化分離方法とその装置を提供するこ
とを目的とする。
However, in the prior art, the gas containing such high-value-added low-boiling-point component gas in a concentrated form has simply been released and wasted as described above. Therefore, the present invention focuses on the effective use of a more concentrated neon component without releasing it. That is, the present invention collects high-purity nitrogen in which a low-boiling component such as hydrogen is reduced to a trace amount in a single-column rectification column, and condenses and releases these harmful and unnecessary low-boiling component gases such as hydrogen as much as possible. By collecting this, crude neon, which is a raw material for neon with high added value, can be efficiently and simultaneously collected. It is another object of the present invention to provide an air liquefaction separation method and an apparatus for economically producing high-purity nitrogen and crude neon, which are particularly adapted to the semiconductor manufacturing industry requiring these high-purity nitrogen and neon.

【0009】[0009]

【課題を解決するための手段】上記不都合の解決と、目
的を達成するため、本発明の請求項1は、原料空気を圧
縮し、水分、炭酸ガスを除去した後ほぼ沸点温度まで冷
却して、単式精留塔下部に導入し、該単式精留塔の底部
より液化空気を導出してこの寒冷を利用して凝縮蒸発器
を冷却し、また単式精留塔上部より水素等低沸点成分の
含有量の多いガスを導出して前記凝縮蒸発器にて凝縮
し、環流液とし単式精留塔上部に戻し、そして前記水素
等低沸点成分を多く含有するガスの導出位置より少なく
とも1理論段下より水素等低沸点成分の含有量が少ない
高純度の液化窒素を導出し、前記凝縮蒸発器を介して気
化して高純度窒素ガスとして採取するとともに、前記単
式精留塔上部より導出した水素等低沸点成分を多く含有
するガスの一部を分岐してネオンガス原料の粗ネオンと
して採取することを特徴とする高純度窒素と粗ネオンを
併産する空気液化分離方法とし、請求項2に係わる発明
は、単式精留塔上部より導出した水素等低沸点成分を多
く含有するガスの一部を凝縮蒸発器流通後に分岐して未
凝縮ガスを粗ネオンとして採取することを特徴とする請
求項1に記載の高純度窒素と粗ネオンを併産する空気液
化分離方法とし、請求項3に係わる発明は、単式精留塔
上部より導出した水素等低沸点成分を多く含有するガス
の一部を凝縮蒸発器に導入する前に分岐して粗ネオンと
して採取することを特徴とする請求項1に記載の高純度
窒素と粗ネオンを併産する空気液化分離方法としたもの
である。そして請求項4に係わる発明は、液化空気の寒
冷で冷却される凝縮蒸発器は単式精留塔の頂部に区画さ
れた液化空気溜に配置され、単式精留塔底部よりの液化
空気を液化空気溜に導入してその寒冷を利用しているこ
とを特徴とする請求項1乃至請求項3のいずれか1項に
記載の高純度窒素と粗ネオンを併産する空気液化分離方
法とし、請求項5に係わる発明は、液化空気の寒冷で冷
却される凝縮蒸発器は単式精留塔と独立して配置され
て、単式精留塔底部よりの液化空気を導通せしめてその
寒冷を利用して冷却されてなることを特徴とする請求項
1乃至請求項3のいずれか1項に記載の高純度窒素と粗
ネオンを併産する空気液化分離方法としたものである。
Means for Solving the Problems In order to solve the above problems and to achieve the object, a first aspect of the present invention is to compress raw air, remove water and carbon dioxide gas, and then cool to almost the boiling point. , Introduced into the lower portion of the single-column rectification column, liquefied air is led out from the bottom of the single-column rectification column, and the condensing evaporator is cooled by utilizing this cold. A gas having a high content is led out and condensed in the condensing evaporator, returned as a reflux liquid to the upper part of the single-column rectification column, and at least one theoretical stage below the lead-out position of the gas containing a low boiling point component such as hydrogen. High-purity liquefied nitrogen with a lower content of low-boiling components such as hydrogen is derived, vaporized through the condensation evaporator and collected as high-purity nitrogen gas, and hydrogen and the like derived from the upper part of the single-column rectification column Part of the gas containing a lot of low boiling components is separated And a method for producing high-purity nitrogen and crude neon simultaneously, wherein the crude liquefied gas is collected as crude neon of neon gas raw material. 2. The air for co-producing high purity nitrogen and crude neon according to claim 1, wherein a part of the gas containing a large amount of boiling components is branched after passing through the condensing evaporator, and uncondensed gas is collected as crude neon. The invention according to claim 3 is a liquefaction separation method, wherein a part of a gas containing a large amount of low-boiling components such as hydrogen derived from the upper part of a single rectification column is branched and collected as crude neon before being introduced into a condensation evaporator. The method according to claim 1, wherein the method is an air liquefaction separation method for producing high purity nitrogen and crude neon simultaneously. The invention according to claim 4 is that the condensing evaporator cooled by the cooling of the liquefied air is disposed in a liquefied air reservoir partitioned at the top of the single rectification tower, and the liquefied air from the bottom of the single rectification tower is liquefied air. 4. An air liquefaction separation method according to any one of claims 1 to 3, wherein the method is used to produce high purity nitrogen and crude neon together, wherein the method is used for introducing the mixture into a reservoir and utilizing the cold. The invention according to 5 is characterized in that the condensing evaporator cooled by the liquefied air by cooling is disposed independently of the single-column rectification column, and the liquefied air from the bottom of the single-column rectification column is made to conduct and the cooling is performed by utilizing the cold. An air liquefaction separation method according to any one of claims 1 to 3, characterized in that high purity nitrogen and crude neon are produced together.

【0010】次に上記空気液化分離方法を実施するため
の装置として、請求項6に係わる発明は、原料空気を導
入して液化精留分離する単式精留塔と、該単式精留塔の
底部よりの液化空気の寒冷を利用して冷却される凝縮蒸
発器と、前記単式精留塔の上部より水素等の低沸点成分
を多く含むガスを導出して前記凝縮蒸発器を経て単式精
留塔上部に戻す環流液管路と、前記水素等の低沸点成分
を多く含むガスを導出する単式精留塔上部より少なくと
も1理論段下より水素等の低沸点成分の含有量が少ない
液化窒素を導出し前記凝縮蒸発器を経てこれを気化して
高純度窒素ガスとして採取する管路等よりなるととも
に、前記環流液管路より分岐して粗ネオン採取管路を設
けたことを特徴とする高純度窒素と粗ネオンを併産する
空気液化分離装置とし、請求項7に係わる発明は、単式
精留塔の上部より凝縮蒸発器を経て単式精留塔の上部に
戻す環流液管路より分岐する粗ネオン採取管路は、環流
液管路の凝縮蒸発器導出後の管路で分岐していることを
特徴とする請求項6に記載の高純度窒素と粗ネオンを併
産する空気液化分離装置とし、請求項8に係わる発明
は、単式精留塔の上部より凝縮蒸発器を経て単式精留塔
の上部に戻す環流液管路より分岐する粗ネオン採取管路
は、環流液管路の凝縮蒸発器導入前の管路で分岐してい
ることを特徴とする請求項6に記載の高純度窒素と粗ネ
オンを併産する空気液化分離装置としたものである。そ
して請求項9に係わる発明として、単式精留塔の底部よ
りの液化空気の寒冷を利用して冷却される凝縮蒸発器
は、単式精留塔頂部に区画され、単式精留塔底部よりの
液化空気供給管が配設された液化空気溜に配置され冷却
されていることを特徴とする請求項6乃至請求項8のい
ずれか1項に記載の高純度窒素と粗ネオンを併産する空
気液化分離装置とし、請求項10に係わる発明として、
単式精留塔の底部よりの液化空気の寒冷を利用して冷却
される凝縮蒸発器は、該凝縮蒸発器に単式精留塔底部よ
りの液化空気供給管を連結して、該管で供給される液化
空気を流通せしめて冷却されていることを特徴とする請
求項6乃至請求項8のいずれか1項に記載の高純度窒素
と粗ネオンを併産する空気液化分離装置とし、更に請求
項11に係わる発明として、前記単式精留塔は、水素等
低沸点成分を多く含むガスを導出する位置と水素等低沸
点成分の含有量が少ない液化窒素を導出する位置との間
に、少なくとも1理論段よりなる精留部を設けてなるこ
とを特徴とする請求項6乃至請求項10のいずれか1項
に記載の高純度窒素と粗ネオンを併産する空気液化分離
装置としたものである。
[0010] Next, as an apparatus for carrying out the above air liquefaction separation method, the invention according to claim 6 is directed to a single type rectification column for introducing and liquefying and liquefying a raw material air, and a bottom portion of the single type rectification column. And a condensing evaporator cooled by utilizing the cooling of the liquefied air, and a gas containing a large amount of low-boiling components such as hydrogen is derived from the upper part of the single-column rectification column, and the single-column rectification column is passed through the condensation evaporator. A reflux liquid line to be returned to the upper part, and liquefied nitrogen having a lower content of low-boiling components such as hydrogen are derived from at least one theoretical stage below the single-column rectification column for deriving a gas containing a large amount of low-boiling components such as hydrogen. A high-purity nitrogen gas line, which is provided with a line for vaporizing the gas through the condensing evaporator and collecting it as high-purity nitrogen gas, and a crude neon sampling line branched from the reflux liquid line. An air liquefaction separator that produces both nitrogen and crude neon According to a seventh aspect of the present invention, the crude neon sampling line branched from the reflux liquid line which returns from the upper portion of the single-stage rectification column to the upper portion of the single-stage rectification column via the condensing evaporator is formed by condensation and evaporation of the reflux liquid line. An air liquefaction separation apparatus for producing both high-purity nitrogen and crude neon according to claim 6, wherein the apparatus is branched in a pipeline after the vessel is led out. The crude neon sampling line that branches off from the reflux liquid line that returns to the upper part of the single-stage rectification column from the upper part of the column via the condensing evaporator should be branched off from the reflux liquid line before the introduction of the condensing evaporator. An air liquefaction / separation apparatus according to claim 6, which produces both high-purity nitrogen and crude neon. According to a ninth aspect of the present invention, the condensing evaporator cooled by utilizing the cooling of the liquefied air from the bottom of the single rectification column is partitioned at the top of the single rectification column, and the liquefaction from the bottom of the single rectification column is performed. The air liquefaction for producing high-purity nitrogen and crude neon according to any one of claims 6 to 8, wherein the air supply pipe is disposed in a liquefied air reservoir provided therein and cooled. The invention according to claim 10 is a separation device.
The condensing evaporator cooled by utilizing the cooling of the liquefied air from the bottom of the single rectification column is connected to the liquefied air supply pipe from the bottom of the single rectification column to the condensing evaporator, and supplied by the pipe. 9. An air liquefaction / separation apparatus according to any one of claims 6 to 8, wherein the liquefied air is cooled by flowing liquefied air. In the invention according to Item 11, the single-column rectification column has at least one liquefied nitrogen between a position at which a gas containing a large amount of low-boiling components such as hydrogen is led out and a position at which liquefied nitrogen having a low content of low-boiling components such as hydrogen is led out. An air liquefaction / separation apparatus according to any one of claims 6 to 10, wherein a rectifying section comprising a theoretical stage is provided. .

【0011】[0011]

【発明の実施の形態】以下本発明の高純度窒素と粗ネオ
ンとを併産する空気液化分離方法についての実施の形態
について図面により説明する。図1は、本発明の空気液
化分離装置の第1の実施の形態を説明する単式精留塔の
系統図を示すものである。この装置においては、単式精
留塔2は通常一般に用いられている段数(通常60段)
の精留部3の外に塔上部に数段(1〜10段)の精留部
4を水素等低沸点成分ガスの濃縮用に設けたものであ
る。しかるに、原料空気は圧縮された後含有する水分、
炭酸ガス等を除去し、ほぼ沸点温度(液化温度)まで冷
却して管路1より単式精留塔2の下部に導入される。そ
して単式精留塔2内に導入された原料空気は、そのうち
の低沸点成分はガス状で塔内を上方に向けて上昇し、よ
り上方で液化されて下降してくる液化ガスと各段の精留
部3で接触し、沸点の相異によって精留分離され、上方
に位置する精留部ほど沸点の低い窒素成分が多くなり、
下方の位置の精留部ほどより沸点の高い酸素成分が多く
なる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the air liquefaction separation method of the present invention for simultaneously producing high-purity nitrogen and crude neon will be described with reference to the drawings. FIG. 1 shows a system diagram of a single type rectification column for explaining a first embodiment of an air liquefaction / separation apparatus of the present invention. In this apparatus, the single-column rectification column 2 has the number of stages generally used (normally 60 stages).
In addition to the rectification unit 3, a plurality of rectification units 4 (1 to 10 stages) are provided in the upper part of the tower for concentrating low-boiling component gas such as hydrogen. However, the raw material air contains moisture after being compressed,
After removing carbon dioxide gas and the like, the mixture is cooled to almost the boiling point temperature (liquefaction temperature) and introduced into the lower part of the single type rectification column 2 through the pipe 1. The raw air introduced into the single-column rectification column 2 has a low-boiling point component in a gaseous form, which rises upward in the column, and is liquefied further upward and descends into a liquefied gas of each stage. It is contacted in the rectification unit 3 and rectified and separated by the difference in boiling point, and the higher the rectification unit is located, the more nitrogen components having a lower boiling point increase.
The lower the rectification section, the higher the oxygen component having a higher boiling point.

【0012】一方単式精留塔2の底部には原料空気より
酸素成分が多い液化空気が貯留し、該液化空気は弁5に
より膨張減圧されて管路6を介して単式精留塔2の頂部
に連設された液化空気溜7に供給される。該液化空気溜
7には、複数の流路よりなってそれぞれが熱交換し得る
ように構成された凝縮蒸発器8が貯留される液化空気に
浸漬されるよう設けられている。そして凝縮蒸発器8に
は、単式精留塔2の上部で水素等低沸点成分濃縮用に設
けた例えば3〜5段の精留部4の上方と連通する管路9
が連結されていて、前記単式精留塔2の上部より水素等
の低沸点成分が濃縮されたガスが管路9より凝縮蒸発器
8を経て液化し管路10より前記単式精留塔2の上部に
環流液として戻される。
On the other hand, liquefied air having a higher oxygen content than the raw air is stored at the bottom of the single rectification column 2, and the liquefied air is expanded and decompressed by a valve 5, and is passed through a pipe 6 to the top of the single rectification column 2. Is supplied to the liquefied air reservoir 7 connected to the liquefied air reservoir 7. The liquefied air reservoir 7 is provided with a condensing evaporator 8 formed of a plurality of flow paths and configured to exchange heat with each other so as to be immersed in the stored liquefied air. The condensing evaporator 8 has a conduit 9 communicating with an upper part of the rectification section 4 having, for example, three to five stages provided for concentrating low boiling components such as hydrogen at the upper part of the single rectification column 2.
And a gas in which low-boiling components such as hydrogen are concentrated from the upper portion of the single-column rectification column 2 is liquefied through a line 9 through a condensing evaporator 8, and is liquefied through a line 10. It is returned to the upper part as reflux liquid.

【0013】また、単式精留塔2の前記上部に設けた例
えば前記3〜5段の精留部4の下部は、該精留部4によ
り水素等の低沸点成分ガスが濃縮して含有するガスは上
方に上昇してこれらの成分が低減し、しかも酸素濃度
0.3ppm未満の高純度の液化窒素が精留されて存在
し、これを管路11より導出して弁12で減圧膨張して
管路13で凝縮蒸発器8に導入せしめ、該凝縮蒸発器8
でその寒冷を環流ガスの液化に使用して気化し、水素等
の低沸点成分が極めて極微量に低減した高純度窒素ガス
として管路14より導出されて採取される。
The lower part of, for example, the three- to five-stage rectification section 4 provided above the single-type rectification column 2 contains the low-boiling component gas such as hydrogen concentrated by the rectification section 4. The gas rises upward to reduce these components, and high-purity liquefied nitrogen having an oxygen concentration of less than 0.3 ppm is rectified and present. Through the line 13 to the condensation evaporator 8.
Then, the cold is used for liquefaction of the reflux gas to vaporize it, and it is led out from the pipe 14 and collected as high-purity nitrogen gas in which low-boiling components such as hydrogen are reduced to an extremely small amount.

【0014】しかるに、前記単式精留塔2の上部より管
路9で導出される水素等の低沸点成分ガスが濃縮して含
有するガスは、凝縮蒸発器8で単式精留塔2の液化空気
溜7の液化空気と、前記単式精留塔2の水素等低沸点濃
縮用の精留部4の下部より管路11、弁12、管路13
を経て凝縮蒸発器8に導入されている高純度液化窒素と
により冷却されて、沸点の高い窒素(沸点:1atmで
約ー196℃)の多くが液化する。しかし、これより沸
点の低い水素(沸点:1atmで約ー253℃)、ヘリ
ウム(沸点:1atmで約ー269℃)、ネオン(沸
点:1atmで約ー246℃)等のガスは液化されず気
体状態で、ヘリウム約475ppm、水素約95pp
m、ネオン約1710ppmに濃縮された成分を含む窒
素ガスが凝縮蒸発器8よりの管路10に導出され、これ
を該管路10より分岐した管路15によりネオンの原料
とする粗ネオンとして採取する。なお、符号16は液化
空気溜7に貯留した液化空気がその寒冷を環流液の液化
に使用した結果気化した酸素富化空気の導出管路であ
る。
However, the gas containing a low-boiling component gas such as hydrogen extracted from the upper part of the single-stage rectification column 2 through a pipe 9 is concentrated, and the liquefied air of the single-stage rectification column 2 is condensed by a condensing evaporator 8. Line 11, valve 12, line 13 from the liquefied air in reservoir 7 and the lower part of rectification unit 4 for concentrating low boiling point such as hydrogen in single type rectification column 2.
And high-purity liquefied nitrogen introduced into the condensing evaporator 8 to liquefy most of the nitrogen having a high boiling point (boiling point: about -196 ° C. at 1 atm). However, gases such as hydrogen having a lower boiling point (boiling point: about -253 ° C at 1 atm), helium (boiling point: about -269 ° C at 1 atm), neon (boiling point: about -246 ° C at 1 atm) are not liquefied. In the state, about 475 ppm of helium, about 95 pp of hydrogen
A nitrogen gas containing a component concentrated to about 1710 ppm in neon is led out to the pipe 10 from the condensing evaporator 8, and is collected as crude neon as a neon raw material through a pipe 15 branched from the pipe 10. I do. Reference numeral 16 denotes an outlet line for oxygen-enriched air which is vaporized as a result of the liquefied air stored in the liquefied air reservoir 7 being used for liquefaction of the circulating liquid by using its cold.

【0015】このようにして採取されたネオン成分を多
く含む粗ネオンガスは、該管路15より例えば沸点差に
よって分縮する分縮器を用いる濃縮手段Cに送給され、
ヘリウム約14%、水素約3%、ネオン約49%を含む
窒素ガスに濃縮され、更に、これを例えば吸着分離、精
留による分離等の従来公知の精製手段Pを用いて99%
以上の高純度ネオンとして精製採取する。
The thus-collected crude neon gas containing a large amount of neon components is sent from the pipe line 15 to a concentrating means C using a decomposer for decomposing, for example, by a difference in boiling point.
It is concentrated to a nitrogen gas containing about 14% of helium, about 3% of hydrogen and about 49% of neon, and this is further reduced to 99% using a conventionally known purification means P such as adsorption separation and rectification.
Purified and collected as high purity neon as described above.

【0016】本発明は、上記した通り単式精留塔2の上
部に水素等低沸点成分を濃縮するため理論段数で1段乃
至それ以上よりなる精留部4を設け、この精留部4の下
方より高純度液化窒素を導出して、これを凝縮蒸発器8
で寒冷を使用して気化して、水素等の低沸点成分が極微
量に低減した高純度窒素ガスとして採取するとともに、
前記単式精留塔2の上部に設けた上記1段乃至それ以上
の水素等低沸点成分濃縮用の精留部4の上方より環流液
用に使用するガスを導出して、凝縮蒸発器8で冷却され
て単式精留塔2の上部に戻す環流液を得るため液化する
際に、液化しないで気体状態にある低沸点成分ガスが濃
縮して含有するガスを分取するようにしたので、ネオン
を含む低沸点成分が効果的に濃縮されていて、ネオンの
原料となる粗ネオンとして効率よく採取することができ
る。しかも従来の単式精留型窒素製造装置の通常の運転
を保持し、なんら動力原単位を変動したり、損なうこと
無く、これらを効果的に併産することを可能としたもの
である。
According to the present invention, as described above, a rectifying section 4 having one or more theoretical plates is provided at the upper part of the single rectifying column 2 in order to concentrate low boiling components such as hydrogen. High-purity liquefied nitrogen is led out from the lower part,
Vaporized using refrigeration at low temperatures, and collected as high-purity nitrogen gas with extremely low levels of low-boiling components such as hydrogen,
A gas used for reflux liquid is led out from above the rectification section 4 for concentrating low boiling components such as hydrogen of one or more stages provided at the upper part of the single type rectification column 2, At the time of liquefaction in order to obtain a reflux liquid which is cooled and returned to the upper part of the single-column rectification column 2, the low-boiling-point component gas which is in a gaseous state without being liquefied is concentrated to fractionate the contained gas. The low-boiling point component containing is effectively concentrated, and can be efficiently collected as crude neon as a raw material of neon. In addition, the normal operation of the conventional single rectification type nitrogen production apparatus is maintained, and it is possible to effectively co-produce these without changing or impairing the power consumption unit.

【0017】次に前記図1に図示した実施の形態の変形
を、第2の実施の形態として図2にその単式精留塔の系
統図を図示して説明する。なお、図1と同一の構成部は
同一符号を付し詳細な説明は省略する。図1の第1の実
施の形態との差異は、図1の第1の実施の形態では粗ネ
オンの採取管路を凝縮蒸発器8の導出後の管路10より
分岐した管路15であったのを、図2の第2の実施の形
態では、凝縮蒸発器8に環流液用に液化するため導入す
る、単式精留塔2の上部の水素等の低沸点成分ガスが濃
縮されて含有する窒素ガスを、凝縮蒸発器8に導入する
前の管路9より分岐した管路25で粗ネオンを採取する
ようにしたものである。
Next, a modification of the embodiment shown in FIG. 1 will be described as a second embodiment with reference to FIG. 2 which shows a system diagram of the single rectification column. The same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description is omitted. The difference from the first embodiment shown in FIG. 1 is that in the first embodiment shown in FIG. 1, the crude neon sampling line is branched from the line 10 after the condensing evaporator 8 is led out from the line 15. In contrast, in the second embodiment shown in FIG. 2, a low-boiling-point component gas such as hydrogen at the upper part of the single-column rectification column 2, which is introduced into the condensing evaporator 8 for liquefaction for a reflux liquid, is concentrated and contained. Before the nitrogen gas to be introduced into the condensing evaporator 8, crude neon is collected in a pipe 25 branched from the pipe 9.

【0018】この方法によると上記単式精留塔2の上部
に水素等の低沸点成分を濃縮するために設ける精留部4
を図1の第1の実施の形態より1段乃至数段多く(例え
ば6〜9段)設ければ、より水素等の低沸点成分が濃縮
された窒素ガスが粗ネオンとして得られる。そして、管
路25により採取された粗ネオンは第1の実施の形態と
同様に濃縮手段C、精製手段Pを経て高純度のネオンを
得る。また、低沸点成分が極微量に低減され、酸素濃度
が0.3ppm未満の高純度窒素ガスは、図1の第1の
実施の形態と同様に単式精留等2の上部に設けた水素等
低沸点成分濃縮用の精留部4の下方より管路11で高純
度液化窒素が導出され凝縮蒸発器8を経て気化して管路
14より採取される。
According to this method, a rectifying section 4 provided at the upper part of the single-type rectifying column 2 for concentrating low-boiling components such as hydrogen.
If one or more stages (for example, 6 to 9 stages) are provided in the first embodiment of FIG. 1, nitrogen gas in which low-boiling components such as hydrogen are more concentrated can be obtained as crude neon. Then, the high-purity neon is obtained from the crude neon collected through the pipe 25 through the concentrating means C and the refining means P as in the first embodiment. In addition, high-purity nitrogen gas whose low-boiling components are reduced to a trace amount and whose oxygen concentration is less than 0.3 ppm can be obtained by, for example, hydrogen or the like provided in the upper part of the single-stage rectifier 2 as in the first embodiment of FIG. High-purity liquefied nitrogen is led out from the line 11 below the rectifying unit 4 for concentrating low-boiling components, vaporized through the condensing evaporator 8 and collected from the line 14.

【0019】次に第3の実施の形態を図3に単式精留塔
の系統図を図示して説明する。なお、図1、図2と同一
構成部は同一の符号を付し詳細な説明は省略する。この
第3の実施の形態と前記図1の第1の実施の形態及び図
2の第2の実施の形態との大きな差異は以下の通りであ
る。即ち、第1、第2の各実施の形態で使用した単式精
留塔2は、その頂部に単式精留塔2の底部より減圧供給
される液化空気を貯留する液化空気溜7が連設されてい
たこと、そして該液化空気溜7内に貯留される液化空気
に浸漬されるように凝縮蒸発器8を配置していたが、こ
れに対してこの第3の実施の形態では、単式精留塔22
はその頂部に液化空気溜を設けていないこと、従って凝
縮蒸発器28は液化空気に浸漬されておらず、単式精留
塔22と独立して断熱空間内に配置されている、いわゆ
るドライタイプと称せられるものである。そして環流液
を生成するのに必要な寒冷は、単式精留塔22の底部よ
りの液体空気を弁5、管路6を介して流路を増設した凝
縮蒸発器28に導入して賄われ、これにより気化した酸
素富化空気は管路26より導出される。
Next, a third embodiment will be described with reference to FIG. 1 and 2 are denoted by the same reference numerals, and detailed description thereof will be omitted. The major differences between the third embodiment and the first embodiment shown in FIG. 1 and the second embodiment shown in FIG. 2 are as follows. In other words, the single rectification column 2 used in each of the first and second embodiments is provided with a liquefied air reservoir 7 for storing liquefied air supplied at reduced pressure from the bottom of the single rectification column 2 at the top. And the condensing evaporator 8 is disposed so as to be immersed in the liquefied air stored in the liquefied air reservoir 7. On the other hand, in the third embodiment, the single rectification is performed. Tower 22
Is not provided with a liquefied air reservoir at the top thereof. Therefore, the condensing evaporator 28 is not immersed in the liquefied air, and is a so-called dry type which is disposed independently of the single-type rectification tower 22 in an adiabatic space. It is called. The refrigeration required to generate the reflux liquid is covered by introducing liquid air from the bottom of the single-column rectification column 22 to the condensation evaporator 28 having an additional flow path through the valve 5 and the pipe 6, As a result, the oxygen-enriched air vaporized is led out from the line 26.

【0020】以下図3の第3の実施の形態について説明
する。圧縮され水分、炭酸ガスを除去し、沸点近くまで
冷却された原料空気は管路1より単式精留塔22の下部
に供給され、低沸点成分ガスは単式精留塔22内を上昇
する。そしてより上方で液化されて下降してくる液化ガ
スと各段の精留部3で接触し、沸点の相異によって精留
分離され、上方に位置する精留部ほど沸点の低い窒素成
分が多くなり、下方の位置の精留部ほどより沸点の高い
酸素成分が多くなる。
Hereinafter, a third embodiment of FIG. 3 will be described. The raw material air which has been compressed to remove water and carbon dioxide and has been cooled to a temperature close to the boiling point is supplied to the lower part of the single rectification column 22 through the pipe 1, and the low boiling component gas rises in the single rectification column 22. The liquefied gas, which is liquefied upward and descends, comes into contact with the rectifying section 3 of each stage and is rectified and separated by a difference in boiling point. The rectifying section located above has more nitrogen components having a lower boiling point. The lower the rectification portion, the more oxygen components having a higher boiling point.

【0021】一方単式精留塔22の底部には原料空気よ
り酸素成分が多い液化空気が貯留し、該液化空気は弁5
により膨張減圧されて管路6を介して複数の流路よりな
ってそれぞれが熱交換し得るように構成された凝縮蒸発
器28に導入される。そして寒冷を使用して気化した酸
素富化空気は管路26より導出される。また、凝縮蒸発
器28には、単式精留塔22の上部で水素等低沸点成分
濃縮用に設けた精留部4の上方と連通する管路9が連結
されていて、前記単式精留塔22の上部より水素等の低
沸点成分が濃縮されて含有するガスが管路9より凝縮蒸
発器28を経て冷却されて液化し管路10より前記単式
精留塔22の上部に環流液として戻される。
On the other hand, liquefied air having a higher oxygen content than the raw material air is stored at the bottom of the single-column rectification column 22, and the liquefied air is supplied to a valve 5
Is introduced into a condensing evaporator 28 which is constituted by a plurality of flow paths via a pipe 6 so that each of them can exchange heat. Then, the oxygen-enriched air vaporized using the cold is led out from the pipe 26. The condensing evaporator 28 is connected to a pipe 9 communicating with an upper part of the rectification unit 4 provided for concentrating low boiling components such as hydrogen at the upper part of the single rectification column 22. A gas containing hydrogen and other low-boiling components condensed from the upper part of the pipe 22 is cooled through a pipe 9 through a condensing evaporator 28, liquefied, and returned as a reflux liquid to the upper part of the single-type rectification column 22 through a pipe 10. It is.

【0022】また、単式精留塔22の前記上部に設けた
1段乃至それ以上の段数の精留部4の下部は、該精留部
4により水素等の低沸点成分ガスは上方に上昇してこれ
らの成分が低減し、しかも酸素濃度0.3ppm未満の
高純度の液化窒素が精留されて存在し、これを管路11
より導出して弁12で減圧膨張して管路13で凝縮蒸発
器28に導入せしめ、該凝縮蒸発器28でその寒冷を環
流ガスの液化に使用して気化し、水素等の低沸点成分が
極めて極微量に低減した高純度窒素ガスとして管路14
より導出されて採取される。
In the lower part of one or more stages of rectification sections 4 provided at the upper part of the single-type rectification column 22, low-boiling component gases such as hydrogen rise upward by the rectification section 4. These components are reduced, and high-purity liquefied nitrogen having an oxygen concentration of less than 0.3 ppm is rectified.
It is decompressed and expanded by the valve 12 and introduced into the condensing evaporator 28 through the pipe 13. The condensing evaporator 28 uses the cold for liquefaction of the reflux gas and vaporizes it. Pipe line 14 as extremely pure nitrogen gas reduced to an extremely small amount
Derived and collected.

【0023】しかるに、前記単式精留塔22の上部より
管路9で導出される水素等の低沸点成分が濃縮されて含
有するガスは、蒸発凝縮器28で単式精留塔22の底部
より管路6を経て導入されている液化空気と、前記単式
精留塔22の水素等低沸点濃縮用の精留部4の下部より
管路11、弁12、管路13を経て凝縮蒸発器28に導
入されている高純度液化窒素との寒冷で冷却されて、沸
点の高い窒素(沸点:1atmで約ー196℃)の多く
が液化する。しかし、これより沸点の低い水素(沸点:
1atmで約ー253℃)、ヘリウム(沸点:1atm
で約ー269℃)、ネオン(沸点:1atmで約ー24
6℃)等のガスは液化されず気体状態で、ヘリウム約4
75ppm、水素約95ppm、ネオン約1710pp
mに濃縮された成分を含む窒素ガスが凝縮蒸発器28よ
りの環流液用の管路10に導出され、これを該管路10
より分岐した管路15によりネオンの原料とする粗ネオ
ンとして採取する。
However, the gas containing hydrogen and other low-boiling components concentrated from the upper part of the single-type rectification column 22 via the pipe 9 is concentrated in the evaporative condenser 28 from the bottom of the single-type rectification column 22. The liquefied air introduced through the line 6 and the lower part of the rectification unit 4 for concentrating low-boiling points such as hydrogen of the single-type rectification column 22 to the condensing evaporator 28 through the line 11, the valve 12 and the line 13 to the condensing evaporator 28. Most of the nitrogen having a high boiling point (boiling point: about −196 ° C. at 1 atm) is liquefied by being cooled in the cold with the introduced high-purity liquefied nitrogen. However, hydrogen with a lower boiling point (boiling point:
Helium (boiling point: 1 atm)
At about -269 ° C), neon (boiling point: about -24 at 1 atm)
6 ° C) and other gases are not liquefied and are in a gaseous state.
75 ppm, hydrogen about 95 ppm, neon about 1710 pp
The nitrogen gas containing the component concentrated to m is led out of the condensing evaporator 28 to the recirculating liquid line 10,
It is collected as crude neon as a neon raw material through a more branched pipe 15.

【0024】このようにして採取されたネオン成分を多
く含む粗ネオンガスは、該管路15より例えば沸点差に
よって分縮する分縮器を用いる濃縮手段Cに送給され、
ヘリウム約14%、水素約3%、ネオン約49%を含む
窒素ガスに濃縮され、更に、これを例えば吸着分離、精
留による分離等の従来公知の精製手段Pを用いて99%
以上の高純度ネオンとして採取し得ることは第1、第2
の各実施の形態と同様である。
The thus-collected crude neon gas containing a large amount of neon components is sent from the pipe line 15 to the enrichment means C using a decomposer for decomposing, for example, due to a difference in boiling point.
It is concentrated to a nitrogen gas containing about 14% of helium, about 3% of hydrogen and about 49% of neon, and this is further reduced to 99% using a conventionally known purification means P such as adsorption separation and rectification.
The first and second things that can be collected as high purity neon as described above
This is the same as the respective embodiments.

【0025】以上の通り第3の実施の形態でも、上記し
た通り単式精留塔22の上部に水素等低沸点成分を濃縮
するため少なくとも1段乃至それ以上よりなる精留部4
を設け、この精留部4の下方より高純度液化窒素を導出
して、これを凝縮蒸発器28で寒冷を使用して気化し
て、低沸点成分の極微量の高純度窒素ガスとして採取す
るとともに、前記単式精留塔22の上部に設けた1段乃
至それ以上の段数よりなる水素等低沸点成分濃縮用の精
留部4の上方より環流液用に使用するガスを導出して、
凝縮蒸発器28で冷却されて単式精留塔22の上部に戻
す環流液を得るため液化する際に、液化しない気体状態
にある低沸点成分ガスが濃縮して含有するガスを分取す
るようにしたので、ネオンを含む低沸点成分が効果的に
濃縮されていて、ネオンの原料となる粗ネオンとして効
率よく採取することができる。しかも従来の単式精留型
窒素製造装置の通常の運転を保持し、なんら動力原単位
を変動したり、損なうこと無くこれらを併産することが
可能である。
As described above, also in the third embodiment, as described above, a rectifying section 4 comprising at least one stage or more for concentrating low boiling components such as hydrogen on the upper part of the single rectifying column 22.
Is provided, and high-purity liquefied nitrogen is led out from below the rectifying section 4, and is vaporized using cold in a condensing evaporator 28, and is collected as a trace amount of high-purity nitrogen gas having a low boiling point component. In addition, the gas used for the reflux liquid is derived from above the rectifying section 4 for concentrating low boiling components such as hydrogen having one or more stages provided at the upper part of the single type rectifying column 22,
At the time of liquefaction in order to obtain a reflux liquid which is cooled by the condensing evaporator 28 and returned to the upper portion of the single-column rectification column 22, the low-boiling-point component gas in a non-liquefied gaseous state is concentrated to separate the contained gas. Therefore, the low-boiling components including neon are effectively concentrated, and can be efficiently collected as crude neon as a neon raw material. In addition, it is possible to maintain the normal operation of the conventional single-column rectification type nitrogen production apparatus, and to co-produce these without changing or impairing the power consumption unit.

【0026】なお、本第3の実施の形態の方法では単式
精留塔22は頂部に液化空気溜を設備しないので構造が
簡単であり、また凝縮蒸発器28も単式精留塔外に配置
するようにしてあるので、修理、保安等の保守管理が容
易である点で極めて好都合である。更に、この実施の形
態では、環流液とするガスを液化するための凝縮蒸発器
28を単式精留塔の頂部に配置せずに、単式精留塔22
より独立せしめたので、これを冷却するための単式精留
塔22の底部よりの液化空気を第1、第2の実施の形態
の如く塔頂まで送給するための水頭圧を必要とせず、そ
れ故水頭圧を形成せしめることは必要ない。この結果伝
熱効果を高めるとともに、これにより動力消費を低減し
得る効果を奏する点で第1の実施の形態より好都合であ
る。また、この実施の形態では、使用する凝縮蒸発器2
8として多流体の熱交換が可能で熱交換効率が高いプレ
ートフィン型熱交換器を用いることが好ましい。
In the method of the third embodiment, the single rectification column 22 has a simple structure because no liquefied air reservoir is provided at the top, and the condensing evaporator 28 is disposed outside the single rectification column. This is very advantageous in that maintenance and management such as repair and security are easy. Further, in this embodiment, the condensing evaporator 28 for liquefying the gas to be the reflux liquid is not disposed at the top of the single-column rectification column, and the single-column rectification column 22 is not used.
Since it is more independent, there is no need for a head pressure for sending liquefied air from the bottom of the single-column rectification column 22 to cool it to the top as in the first and second embodiments, Therefore, it is not necessary to establish a head pressure. As a result, it is more advantageous than the first embodiment in that the effect of increasing the heat transfer effect and thereby reducing the power consumption can be obtained. In this embodiment, the condensing evaporator 2
As 8, it is preferable to use a plate-fin type heat exchanger capable of exchanging heat with multiple fluids and having high heat exchange efficiency.

【0027】更に図4は本発明の第4の実施の形態を説
明する単式精留塔の系統図を示すものである。図1乃至
図3図示した第1乃至第3の実施の形態と同一構成部は
同一符号を付し詳細な説明は省略する。第4の実施の形
態の特徴は、使用する単式精留塔は、図3に図示した第
3の実施の形態と同様に精留塔の頂部に液化空気溜を連
設していない単式精留塔22を使用したものである。そ
して凝縮蒸発器28は精留塔外に独立して配置されてい
て、単式精留塔22の底部から液化空気が供給されて環
流液用のガスを液化するためにその寒冷が使用されてい
る、いわゆるドライタイプのものである。そしてその運
転の態様は前記第3の実施の形態と同様である。
FIG. 4 is a system diagram of a single-column rectification column for explaining a fourth embodiment of the present invention. The same components as those in the first to third embodiments shown in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof will be omitted. The feature of the fourth embodiment is that the single rectification column used is a single rectification column in which a liquefied air reservoir is not continuously provided at the top of the rectification column as in the third embodiment shown in FIG. The tower 22 is used. The condensing evaporator 28 is independently disposed outside the rectification column, and liquefied air is supplied from the bottom of the single-column rectification column 22 and the refrigeration is used to liquefy the gas for the reflux liquid. Is a so-called dry type. The mode of operation is the same as that of the third embodiment.

【0028】ただし、粗ネオンとして採取する管路は、
第3の実施の形態では、単式精留塔22の上部に設けた
水素等低沸点成分濃縮用に設けた1段乃至それ以上の段
数よりなる精留部4の上方より、低沸点成分が濃縮され
たガスを管路9で導出して、これを凝縮蒸発器28で冷
却し凝縮液化して単式精留塔22の上部に環流液として
戻す管路10より分岐して、管路15より未凝縮のネオ
ン等を含む低沸点成分が濃縮されて含有するガスを粗ネ
オンとして採取したのに対して、第4の実施の形態では
単式精留塔22の上部から管路9で導出されて凝縮蒸発
器28を経て環流される水素、ネオン等の低沸点成分が
含まれるガスを凝縮蒸発器28に導入する前の管路9よ
り管路25を分岐して該管路25より粗ネオンとして採
取したものである。即ち前記第2の実施の形態と同様な
位置より粗ネオンを採取したものである。
However, the pipeline to be collected as crude neon is:
In the third embodiment, the low-boiling components are concentrated from above a rectifying section 4 having one or more stages provided for concentrating low-boiling components such as hydrogen provided above the single-type rectifying column 22. The separated gas is led out through a line 9, cooled by a condensing evaporator 28, condensed and liquefied, and branched off from a line 10 returned to the upper part of the single rectification column 22 as a reflux liquid. While the low-boiling components including the condensed neon and the like are concentrated and the contained gas is collected as crude neon, in the fourth embodiment, the condensed gas is drawn out from the upper part of the single rectification column 22 through the pipe 9 and condensed. Before introducing a gas containing low-boiling components such as hydrogen and neon, which is circulated through the evaporator 28, the pipe 25 is branched from the pipe 9 before being introduced into the condensing evaporator 28, and is collected as coarse neon from the pipe 25. It was done. That is, coarse neon is sampled from the same position as in the second embodiment.

【0029】なお管路25で採取した粗ネオンは上記各
実施の形態と同様に従来公知の濃縮手段C、精製手段P
を経てネオンが純化され99%以上の高純度のネオンと
して採取される。また、高純度窒素ガスは管路14より
同時に採取されることは前記各実施の形態と同様であ
る。この第4の実施の形態では第3の実施の形態と同様
に凝縮蒸発器28が単式精留塔22外に配置され液化空
気に浸漬されないドライタイプの態様であり、寒冷を利
用する液化空気は多流路が形成されてそれぞれが熱交換
可能に形成されたプレートフィン型の熱交換器よりなる
凝縮蒸発器28に導入されている。
The crude neon collected in the pipe 25 is supplied to the conventionally known concentrating means C and purifying means P in the same manner as in the above embodiments.
, The neon is purified and collected as high-purity neon of 99% or more. Further, the high-purity nitrogen gas is simultaneously collected from the pipe 14 as in the above embodiments. In the fourth embodiment, as in the third embodiment, the condensing evaporator 28 is of a dry type in which the condensing evaporator 28 is disposed outside the single rectification column 22 and is not immersed in liquefied air. The multi-channels are formed and introduced into a condensing evaporator 28 composed of a plate-fin type heat exchanger each formed to be capable of exchanging heat.

【0030】この結果第4の実施の形態では単式精留塔
22と凝縮蒸発器28とが分離されているので装置費が
安価になるとともに、保守管理が容易となる等前記第3
の実施の形態と同様の効果を奏する。なお、上記実施の
形態では粗ネオンを採取する管路を、単式精留塔の上部
より導出した低沸点成分を含むガスが凝縮蒸発器を経て
導出した後の環流液の管路から分岐した管路より採取す
る方法と、凝縮蒸発器導入前の管路より分岐した管路よ
り採取する方法とを個別に分けて説明したが、本発明は
これに限定されるものではなく、これらの管路から圧力
を調節しつつ同時に粗ネオンを採取しても勿論良く、運
転になんら支障無く採取することができる。
As a result, in the fourth embodiment, the single type rectification column 22 and the condensing evaporator 28 are separated, so that the equipment cost is reduced and the maintenance and management are facilitated.
The same effect as that of the embodiment can be obtained. In the above embodiment, the pipe for collecting crude neon is a pipe branched from the pipe of the reflux liquid after the gas containing the low-boiling component derived from the upper part of the single-column rectification tower is derived via the condensation evaporator. The method of sampling from the pipe and the method of sampling from the pipe branched from the pipe before the introduction of the condensation evaporator have been described separately, but the present invention is not limited to this. Of course, crude neon may be sampled at the same time as adjusting the pressure, and the sampling can be performed without any trouble in operation.

【0031】[0031]

【発明の効果】本発明は、以上に説明した如き形態で実
施され、以下に記載するような効果を奏する。即ち、単
式精留塔の上部に水素等低沸点成分濃縮用の精留部を配
し、その上部より環流液用に導出するガスより分岐して
粗ネオンとして採取したので、ネオン成分が多く濃縮さ
れて存在し、後工程での濃縮、精製を効率よく操作でき
ネオンの回収効果を向上することができる。しかも上記
水素等低沸点成分濃縮用の精留部の下方より液化窒素を
導出することにより、好ましくない水素等の低沸点成分
が極微量に低減された高純度の窒素ガスが同時に採取し
得て、無駄のない極めて効率的な付加価値の高い空気液
化分離法と分離装置を提供し得る。
The present invention is embodied in the form described above, and has the following effects. In other words, a rectifying section for concentrating low boiling components such as hydrogen is arranged at the upper part of the single rectification column, and it is branched from the gas led out for the reflux liquid from the upper part and collected as crude neon, so that a large amount of neon components is concentrated. Thus, concentration and purification in the subsequent steps can be efficiently operated, and the neon recovery effect can be improved. In addition, by extracting liquefied nitrogen from below the rectification section for concentrating low boiling components such as hydrogen, high purity nitrogen gas in which undesirable low boiling components such as hydrogen are reduced to a trace amount can be simultaneously collected. It is possible to provide a very efficient and high value-added air liquefaction separation method and separation apparatus without waste.

【0032】その上、運転にあったっても従来の単式精
留塔を使用した高純度窒素製造装置における運転操作を
変えることなく操作し得るばかりでなく、製品を得る動
力原単位を損なうことなく極めて効率よく回収効果の高
い粗ネオンと高純度の窒素ガスを併産することができる
効果を奏する。特に水素等低沸点成分含有量が極微量に
低減された高純度窒素ガスの供給が望まれ、かつネオン
ガスの使用が見込まれる半導体製造工業分野への利用価
値は極めて高い。
In addition, even during operation, not only can the operation be performed without changing the operation of a conventional high-purity nitrogen production apparatus using a single-column rectification column, but also the power consumption unit for obtaining the product can be extremely reduced. The effect is that the crude neon and the high-purity nitrogen gas having a high recovery effect can be efficiently produced together. In particular, supply of high-purity nitrogen gas in which the content of low-boiling components such as hydrogen is reduced to an extremely small amount is desired, and the utility value in the semiconductor manufacturing industry where neon gas is expected to be used is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の空気液化分離装置の第1の実施の形
態を説明する単式精留塔の系統図である。
FIG. 1 is a system diagram of a single rectification column for explaining a first embodiment of an air liquefaction / separation apparatus of the present invention.

【図2】 本発明の空気液化分離装置の第2の実施の形
態を説明する単式精留塔の系統図である。
FIG. 2 is a system diagram of a single rectification column for explaining a second embodiment of the air liquefaction / separation apparatus of the present invention.

【図3】 本発明の空気液化分離装置の第3の実施の形
態を説明する単式精留塔の系統図である。
FIG. 3 is a system diagram of a single-column rectification column for explaining a third embodiment of the air liquefaction / separation apparatus of the present invention.

【図4】 本発明の空気液化分離装置の第4の実施の形
態を説明する単式精留塔の系統図である。
FIG. 4 is a system diagram of a single rectification column for explaining a fourth embodiment of the air liquefaction / separation apparatus of the present invention.

【図5】 従来の空気液化分離装置における単式精留塔
の系統図である。
FIG. 5 is a system diagram of a single type rectification column in a conventional air liquefaction / separation apparatus.

【図6】 従来の空気液化分離装置における別の単式精
留塔の系統図である。
FIG. 6 is a system diagram of another single rectification column in a conventional air liquefaction / separation apparatus.

【符号の説明】[Explanation of symbols]

1、6、9、10、11、13、14、15、16、2
5、26 管路、2、22 単式精留塔、 3 精留
部、4 水素等低沸点成分濃縮用の精留部、 5、12
弁、 7 液化空気溜、8、28 凝縮蒸発器、 C
濃縮手段、 P 精製手段
1, 6, 9, 10, 11, 13, 14, 15, 16, 2
5, 26 pipeline, 2, 22 single-type rectification column, 3 rectification section, 4 rectification section for concentrating low boiling components such as hydrogen, 5, 12
Valve, 7 liquefied air reservoir, 8, 28 condensation evaporator, C
Concentration means, P purification means

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 原料空気を圧縮し、水分、炭酸ガスを除
去した後ほぼ沸点温度まで冷却して、単式精留塔下部に
導入し、該単式精留塔の底部より液化空気を導出してこ
の寒冷を利用して凝縮蒸発器を冷却し、また単式精留塔
上部より水素等低沸点成分の含有量の多いガスを導出し
て前記凝縮蒸発器にて凝縮し、環流液とし単式精留塔上
部に戻し、そして前記水素等低沸点成分を多く含有する
ガスの導出位置より少なくとも1理論段下より水素等低
沸点成分の含有量が少ない高純度の液化窒素を導出し、
前記凝縮蒸発器を介して気化して高純度窒素ガスとして
採取するとともに、前記単式精留塔上部より導出した水
素等低沸点成分を多く含有するガスの一部を分岐してネ
オンガス原料の粗ネオンとして採取することを特徴とす
る高純度窒素と粗ネオンを併産する空気液化分離方法。
1. A raw material air is compressed, and after removing water and carbon dioxide gas, it is cooled to almost a boiling point temperature, introduced into a lower part of a single rectification column, and liquefied air is led out from a bottom of the single rectification column. The condensing evaporator is cooled by utilizing this cold, and a gas having a high content of low boiling components such as hydrogen is derived from the upper part of the single type rectifying column and condensed in the condensing evaporator to obtain a reflux liquid. Return to the top of the column, and derive high-purity liquefied nitrogen with a low content of low-boiling components such as hydrogen from at least one theoretical stage below the derivation position of the gas containing a large amount of low-boiling components such as hydrogen,
The condensed evaporator vaporizes and collects as high-purity nitrogen gas, and a part of a gas containing a large amount of low-boiling components such as hydrogen derived from the upper part of the single-column rectification column is branched to obtain a crude neon gas of neon gas. An air liquefaction separation method for producing high-purity nitrogen and crude neon simultaneously, characterized in that it is collected as air.
【請求項2】 単式精留塔上部より導出した水素等低沸
点成分を多く含有するガスの一部を凝縮蒸発器流通後に
分岐して未凝縮ガスを粗ネオンとして採取することを特
徴とする請求項1に記載の高純度窒素と粗ネオンを併産
する空気液化分離方法。
2. The method according to claim 1, wherein a part of the gas containing a large amount of low-boiling components such as hydrogen derived from the upper part of the single-column rectification column is branched after passing through the condensing evaporator, and uncondensed gas is collected as crude neon. Item 4. An air liquefaction separation method according to Item 1, wherein both high-purity nitrogen and crude neon are produced.
【請求項3】 単式精留塔上部より導出した水素等低沸
点成分を多く含有するガスの一部を凝縮蒸発器に導入す
る前に分岐して粗ネオンとして採取することを特徴とす
る請求項1に記載の高純度窒素と粗ネオンを併産する空
気液化分離方法。
3. The method according to claim 1, wherein a part of the gas containing a large amount of low-boiling components such as hydrogen derived from the upper part of the single-column rectification column is branched and collected as crude neon before being introduced into the condensing evaporator. An air liquefaction separation method for producing both high-purity nitrogen and crude neon according to claim 1.
【請求項4】 液化空気の寒冷で冷却される凝縮蒸発器
は単式精留塔の頂部に区画された液化空気溜に配置さ
れ、単式精留塔底部よりの液化空気を液化空気溜に導入
してその寒冷を利用していることを特徴とする請求項1
乃至請求項3のいずれか1項に記載の高純度窒素と粗ネ
オンを併産する空気液化分離方法。
4. A condensing evaporator cooled by the cooling of the liquefied air is disposed in a liquefied air reservoir partitioned at the top of the single rectification column, and liquefied air from the bottom of the single rectification column is introduced into the liquefied air reservoir. 2. The method of claim 1, wherein the cold is utilized.
An air liquefaction separation method for producing both high purity nitrogen and crude neon according to any one of claims 1 to 3.
【請求項5】 液化空気の寒冷で冷却される凝縮蒸発器
は単式精留塔と独立して配置されて、単式精留塔底部よ
りの液化空気を導通せしめてその寒冷を利用して冷却さ
れてなることを特徴とする請求項1乃至請求項3のいず
れか1項に記載の高純度窒素と粗ネオンを併産する空気
液化分離方法。
5. A condensing evaporator cooled by cooling of liquefied air is disposed independently of a single rectification column, and the liquefied air from the bottom of the single rectification column is conducted to be cooled by utilizing the cold. The air liquefaction separation method for producing high purity nitrogen and crude neon according to any one of claims 1 to 3, characterized in that:
【請求項6】 原料空気を導入して液化精留分離する単
式精留塔と、該単式精留塔の底部よりの液化空気の寒冷
を利用して冷却される凝縮蒸発器と、前記単式精留塔の
上部より水素等の低沸点成分を多く含むガスを導出して
前記凝縮蒸発器を経て単式精留塔上部に戻す環流液管路
と、前記水素等の低沸点成分を多く含むガスを導出する
単式精留塔上部より少なくとも1理論段下より水素等の
低沸点成分の含有量が少ない液化窒素を導出し前記凝縮
蒸発器を経てこれを気化して高純度窒素ガスとして採取
する管路等よりなるとともに、前記環流液管路より分岐
して粗ネオン採取管路を設けたことを特徴とする高純度
窒素と粗ネオンを併産する空気液化分離装置。
6. A single rectification column for introducing liquefied rectification by introducing raw material air, a condensing evaporator cooled by utilizing refrigeration of liquefied air from the bottom of the single rectification column, A reflux liquid pipeline which derives a gas containing a large amount of low boiling components such as hydrogen from the upper portion of the distillation column and returns the gas to the upper portion of the single-column rectification column via the condensation evaporator, and a gas containing a large amount of low boiling components such as the hydrogen A conduit for extracting liquefied nitrogen having a low content of low boiling components such as hydrogen from at least one theoretical stage below the upper part of the single rectification column to be derived, vaporizing the same through the condensing evaporator, and collecting it as high-purity nitrogen gas An air liquefaction / separation apparatus for producing both high-purity nitrogen and crude neon, which is provided with a crude neon sampling conduit branched from the reflux liquid conduit.
【請求項7】 単式精留塔の上部より凝縮蒸発器を経て
単式精留塔の上部に戻す環流液管路より分岐する粗ネオ
ン採取管路は、環流液管路の凝縮蒸発器導出後の管路で
分岐していることを特徴とする請求項6に記載の高純度
窒素と粗ネオンを併産する空気液化分離装置。
7. A crude neon sampling line branched from a reflux liquid line which returns from the upper part of the single-stage rectification column to the upper part of the single-stage rectification column through the condensing evaporator, is connected to the condensing evaporator of the reflux liquid line. 7. The air liquefaction / separation apparatus according to claim 6, wherein the apparatus is branched by a pipeline.
【請求項8】 単式精留塔の上部より凝縮蒸発器を経て
単式精留塔の上部に戻す環流液管路より分岐する粗ネオ
ン採取管路は、環流液管路の凝縮蒸発器導入前の管路で
分岐していることを特徴とする請求項6に記載の高純度
窒素と粗ネオンを併産する空気液化分離装置。
8. A crude neon sampling line branched from a reflux liquid line which returns from the upper part of the single-stage rectification column to the upper part of the single-stage rectification column via the condensing evaporator, is provided before the introduction of the condensation evaporator into the reflux liquid line. 7. The air liquefaction / separation apparatus according to claim 6, wherein the apparatus is branched by a pipeline.
【請求項9】 単式精留塔の底部よりの液化空気の寒冷
を利用して冷却される凝縮蒸発器は、単式精留塔頂部に
区画され、単式精留塔底部よりの液化空気供給管が配設
された液化空気溜に配置され冷却されていることを特徴
とする請求項6乃至請求項8のいずれか1項に記載の高
純度窒素と粗ネオンを併産する空気液化分離装置。
9. A condensing evaporator cooled by utilizing the refrigeration of liquefied air from the bottom of the single-column rectification column is partitioned at the top of the single-column rectification column, and a liquefied air supply pipe from the bottom of the single-column rectification column is provided. The air liquefaction / separation apparatus according to any one of claims 6 to 8, wherein the apparatus is provided in a liquefied air reservoir and is cooled.
【請求項10】 単式精留塔の底部よりの液化空気の寒
冷を利用して冷却される凝縮蒸発器は、該凝縮蒸発器に
単式精留塔底部よりの液化空気供給管を連結して、該管
で供給される液化空気を流通せしめて冷却されているこ
とを特徴とする請求項6乃至請求項8のいずれか1項に
記載の高純度窒素と粗ネオンを併産する空気液化分離装
置。
10. A condensing evaporator cooled by utilizing refrigeration of liquefied air from the bottom of a single rectification column, wherein a liquefied air supply pipe from the bottom of the single rectification column is connected to the condensing evaporator. The liquefied air supplied through the pipe is circulated and cooled, and the liquefied air separation apparatus for producing high purity nitrogen and crude neon according to any one of claims 6 to 8 characterized by the above-mentioned. .
【請求項11】 前記単式精留塔は、水素等低沸点成分
を多く含むガスを導出する位置と水素等低沸点成分の含
有量が少ない液化窒素を導出する位置との間に、少なく
とも1理論段よりなる精留部を設けてなることを特徴と
する請求項6乃至請求項10のいずれか1項に記載の高
純度窒素と粗ネオンを併産する空気液化分離装置。
11. The single-column rectification column has at least one theoretical point between a position at which a gas containing a large amount of low boiling components such as hydrogen is derived and a position at which liquefied nitrogen having a low content of low boiling components such as hydrogen is derived. The air liquefaction / separation apparatus according to any one of claims 6 to 10, further comprising a rectifying section comprising a stage.
JP12609297A 1997-05-15 1997-05-15 Air liquefaction/separation method and apparatus for producing high purity nitrogen and coarse neon Withdrawn JPH10311673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12609297A JPH10311673A (en) 1997-05-15 1997-05-15 Air liquefaction/separation method and apparatus for producing high purity nitrogen and coarse neon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12609297A JPH10311673A (en) 1997-05-15 1997-05-15 Air liquefaction/separation method and apparatus for producing high purity nitrogen and coarse neon

Publications (1)

Publication Number Publication Date
JPH10311673A true JPH10311673A (en) 1998-11-24

Family

ID=14926416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12609297A Withdrawn JPH10311673A (en) 1997-05-15 1997-05-15 Air liquefaction/separation method and apparatus for producing high purity nitrogen and coarse neon

Country Status (1)

Country Link
JP (1) JPH10311673A (en)

Similar Documents

Publication Publication Date Title
US6477859B2 (en) Integrated heat exchanger system for producing carbon dioxide
KR100192874B1 (en) Air separation
US4192662A (en) Process for liquefying and rectifying air
JP4308432B2 (en) Method and apparatus for producing nitrogen by low temperature distillation using a dephlegmator
JPH01104690A (en) Separation and recovery of heavy hydrocarbon and high purity hydrogen product
JPH0914832A (en) Method and equipment for manufacturing ultra-high purity oxygen
JP2007147113A (en) Nitrogen manufacturing method and device
KR101238063B1 (en) Nitrogen generating device and apparatus for use therefor
US5934106A (en) Apparatus and method for producing nitrogen
JP3719832B2 (en) Ultra high purity nitrogen and oxygen production equipment
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
US4530708A (en) Air separation method and apparatus therefor
JP4447501B2 (en) Air liquefaction separation method and apparatus
JPH10311673A (en) Air liquefaction/separation method and apparatus for producing high purity nitrogen and coarse neon
CN103988037B (en) Air separating method and device
JP3929799B2 (en) Method and apparatus for producing ultra high purity oxygen
US20210055047A1 (en) Method and appliance for separating a synthesis gas by cryogenic distillation
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JP3082092B2 (en) Oxygen purification method and apparatus
JP2621841B2 (en) Cryogenic separation method and apparatus for carbon monoxide
JPH07127971A (en) Argon separator
JP3513667B2 (en) Air liquefaction separation method and apparatus
JP2955864B2 (en) Method for producing high-purity oxygen
JPH11153383A (en) Method and device for manufacturing nitrogen
JPH0486474A (en) Method and device for refining nitrogen

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803