JPH10311502A - Coal gasifying device and operation method therefor - Google Patents

Coal gasifying device and operation method therefor

Info

Publication number
JPH10311502A
JPH10311502A JP9122339A JP12233997A JPH10311502A JP H10311502 A JPH10311502 A JP H10311502A JP 9122339 A JP9122339 A JP 9122339A JP 12233997 A JP12233997 A JP 12233997A JP H10311502 A JPH10311502 A JP H10311502A
Authority
JP
Japan
Prior art keywords
heat recovery
recovery boiler
crude product
product gas
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9122339A
Other languages
Japanese (ja)
Inventor
Yuji Fukuda
祐治 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP9122339A priority Critical patent/JPH10311502A/en
Publication of JPH10311502A publication Critical patent/JPH10311502A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve reliability and the economical efficiency of a heat transfer pipe of a heat recovery type boiler to recover heat from coarse produced gas generated at a coal gasifying furnace by the heat transfer pipe of the heat recovery boiler is formed of a Cr radical alloy steel. SOLUTION: In a coal gasifying device, the surface on the coarse produced gas side of a heat transfer pipe 4 of a heat recovery boiler 1 is formed of a Cr radical alloy steel containing at least 8 wt.% or more (preferably 12 wt. % or more) Cr and steam occupying 20 50 Vol.% of coarse produced gas is fed to the coarse produced gas inlet 2 side of the heat recovery boiler 1. This constitution forms an oxidation film of Cr having corrosion resistance against H2 S on the surface of the heat transfer pipe 4 of the heat recovery boiler 1, containing Cr, through oxidation of steam during the starting of operation of the heat recovery boiler 1, prevents the occurrence of corrosion by using a low-cost material, and improves reliability and the economical efficiency of the heat recovery boiler heat transfer pipe 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱回収ボイラ伝熱
管の信頼性と経済性とを高めた石炭ガス化装置及びその
運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coal gasifier having improved reliability and economy of a heat recovery boiler heat transfer tube and a method of operating the same.

【0002】[0002]

【従来の技術】従来の石炭火力に比較してクリーンかつ
高効率な石炭ガス化複合発電が注目されている。図6は
一般的な石炭ガス化複合発電装置の構成を示すフローチ
ャートである。本図に示すように石炭14及び酸化剤1
5を石炭ガス化炉16へ投入し、発生した粗生成ガスを
熱回収ボイラ1へ導き熱回収を行った後脱塵装置17で
脱塵し、脱硫装置18で脱硫しクリーンな生成ガスをガ
スタービン19へ導き燃焼させて発電機を駆動する。同
時にガスタービン19の排ガスを排熱回収ボイラ20へ
導き排熱を回収する。熱回収ボイラ1で得られた蒸気と
排熱回収ボイラ20で得られた蒸気とを蒸気タービン2
1へ導き発電機を駆動する。このように石炭ガス化複合
発電はガスタービン19と蒸気タービン21の2つの熱
サイクルを有し、従来の蒸気タービンサイクルだけの石
炭火力より高い効率が得られる。石炭ガス化複合発電に
おいては蒸気源として図示せざる石炭ガス化炉16の水
冷壁、熱回収ボイラ1及び排熱回収ボイラ20があり、
特に粗生成ガスから熱回収を行う熱回収ボイラ1は石炭
ガス化複合発電の効率を支配する重要な機器で、その内
部には膨大な伝熱面積となる伝熱管4が配置されてい
る。
2. Description of the Related Art Attention has been focused on integrated coal gasification combined cycle, which is cleaner and more efficient than conventional coal-fired power plants. FIG. 6 is a flowchart showing the configuration of a general integrated coal gasification combined cycle device. As shown in this figure, coal 14 and oxidant 1
5 is introduced into a coal gasifier 16, the generated crude gas is led to the heat recovery boiler 1, heat is recovered, then the dust is removed by the dust remover 17, the desulfurization is performed by the desulfurizer 18, and the clean product gas is removed. The generator is driven by being guided to the turbine 19 and burned. At the same time, the exhaust gas of the gas turbine 19 is guided to the exhaust heat recovery boiler 20 to recover the exhaust heat. The steam obtained by the heat recovery boiler 1 and the steam obtained by the exhaust heat recovery boiler 20 are combined with a steam turbine 2
Lead to 1 and drive the generator. As described above, the integrated coal gasification combined cycle has two heat cycles of the gas turbine 19 and the steam turbine 21, and can obtain higher efficiency than the coal-fired power of the conventional steam turbine cycle alone. In the integrated coal gasification combined cycle, there are a water cooling wall, a heat recovery boiler 1 and an exhaust heat recovery boiler 20 of a coal gasifier 16 not shown as a steam source.
In particular, the heat recovery boiler 1 that recovers heat from the crude product gas is an important device that controls the efficiency of the integrated coal gasification combined cycle, and a heat transfer tube 4 having a huge heat transfer area is disposed inside the heat recovery boiler 1.

【0003】[0003]

【発明が解決しようとする課題】一般に熱回収ボイラの
伝熱管はメタル温度が500℃以下であることから炭素
鋼または低合金鋼が用いられる。しかし、石炭ガス化複
合発電の場合粗生成ガスはH2及びCOに富む還元性ガ
スで、腐食性の強いH2Sを最大で数千ppm含有す
る。このため熱回収ボイラ1を長期間運転するにはH2
Sによる腐食への配慮が必要である。従って対策として
は、(1) 低硫黄分の石炭を使用する、(2) H2Sによ
る耐食性に優れた材料または表面処理を行う、が挙げら
れる。これらの対策のうち(1)は、使用可能な石炭の銘
柄が限定され資源の有効活用の点から好ましくない。次
に(2)は、耐食性に優れるCrまたはCoを含む合金、
例えばステライトに代表されるCo基合金、50Cr50Niを
外管とし炭素鋼または低合金鋼を内管とした二重管を用
いる方法、ステライトまたは50Cr50Niを炭素鋼または低
合金鋼に溶射する方法、耐SCCに優れるFe基超合金
のインコロイ800Hを用いる方法はあるが、何れも高
価な材料であり多量に使用するにはコストの点で問題が
ある。またSUS321H、SUS347Hに代表される18-8オステナ
イトステンレス鋼は装置停止時にSCCが発生する恐れ
があり、熱回収ボイラの伝熱管に使用できない。本発明
の目的は、石炭ガス化炉で発生する粗生成ガスから熱回
収する熱回収ボイラ伝熱管の信頼性と経済性とを高める
ことにある。
Generally, carbon steel or low alloy steel is used for the heat transfer tube of the heat recovery boiler because the metal temperature is 500 ° C. or less. However, in the case of the integrated coal gasification combined cycle, the crude product gas is a reducing gas rich in H 2 and CO, and contains up to several thousand ppm of highly corrosive H 2 S. Therefore, to operate the heat recovery boiler 1 for a long time, H 2
Consideration of corrosion by S is necessary. Therefore, as countermeasures, (1) using low-sulfur coal, and (2) performing a material or a surface treatment having excellent corrosion resistance by H 2 S can be mentioned. Among these measures, (1) is not preferable from the viewpoint of effective utilization of resources because the brand of usable coal is limited. Next, (2) is an alloy containing Cr or Co having excellent corrosion resistance,
For example, a Co-based alloy typified by stellite, a method using a double tube using 50Cr50Ni as an outer tube and carbon steel or a low alloy steel as an inner tube, a method of spraying stellite or 50Cr50Ni onto a carbon steel or a low alloy steel, and SCC resistance Although there is a method using Incoloy 800H, which is an Fe-based superalloy, which is excellent in quality, they are expensive materials, and there is a problem in terms of cost when used in large quantities. Also, 18-8 austenitic stainless steels represented by SUS321H and SUS347H may cause SCC when the apparatus is stopped, and cannot be used for heat transfer tubes of heat recovery boilers. An object of the present invention is to improve the reliability and economy of a heat recovery boiler heat transfer tube that recovers heat from a crude product gas generated in a coal gasifier.

【0004】[0004]

【課題を解決するための手段】上記目的は、石炭をガス
化し粗生成ガスを得る石炭ガス化炉と、粗生成ガスから
熱を回収する熱回収ボイラとを有する石炭ガス化装置に
おいて、熱回収ボイラの伝熱管の粗生成ガス側表面は少
なくともCrを8Wt%含むCr基合金鋼であることに
より達成される。上記目的は、石炭をガス化し粗生成ガ
スを得る石炭ガス化炉と、粗生成ガスから熱を回収する
熱回収ボイラとを有する石炭ガス化装置において、熱回
収ボイラの伝熱管の粗生成ガス側表面は少なくともCr
を8Wt%含むCr基合金鋼であり、熱回収ボイラの粗
生成ガス入口側に水蒸気を供給する水蒸気供給手段を設
けたことにより達成される。上記目的は、石炭をガス化
し粗生成ガスを得る石炭ガス化炉と、粗生成ガスから熱
を回収する熱回収ボイラとを有する石炭ガス化装置にお
いて、熱回収ボイラの伝熱管の粗生成ガス側表面は少な
くともCrを8Wt%含むCr基合金鋼であり、熱回収
ボイラの粗生成ガス入口側に水蒸気を供給する水蒸気供
給手段と、熱回収ボイラ内の粗生成ガス中の酸素濃度及
び硫黄濃度を計測する酸素濃度及び硫黄濃度計測手段
と、酸素濃度及び硫黄濃度計測手段が計測した酸素濃度
及び硫黄濃度により水蒸気の供給量を制御する水蒸気供
給量制御手段とを設けたことにより達成される。上記目
的は、石炭をガス化し粗生成ガスを得る石炭ガス化炉
と、粗生成ガスから熱を回収する熱回収ボイラとを有す
る石炭ガス化装置において、熱回収ボイラの伝熱管の粗
生成ガス側表面を少なくともCrを8Wt%含むCr基
合金鋼で形成し、熱回収ボイラの運転開始時に熱回収ボ
イラの粗生成ガス入口側に粗生成ガスの20〜50Vo
l%を占める水蒸気を供給することにより達成される。
上記構成によれば、Crを含む熱回収ボイラ伝熱管の表
面にH2Sに対して耐食性を有するCrの酸化皮膜が、
熱回収ボイラの運転開始時期に水蒸気酸化により形成さ
れ、安価な材料を用いて腐食を防止し熱回収ボイラ伝熱
管の信頼性と経済性とを高めることができる。耐食性を
有するCrの酸化皮膜を形成するためには伝熱管の表面
でCrを8Wt%含むことが必要で、12Wt%以上含
むことが望ましい。粗生成ガス中の水蒸気濃度が20V
ol%未満であればCrを8Wt%以上含んでも酸化皮
膜の形成が不十分であり、50Vol%以上であれば可
燃ガスの割合が半分以下となるため生成ガスの熱量が小
さくなりガスタービンの出力が減少して発電効率が低下
する。また、使用する原料石炭中の硫黄分が変動したり
原料石炭と酸化剤の割合が変動して石炭ガス化炉の運転
条件が変化しても、粗生成ガス中の酸素濃度及び硫黄濃
度を計測して水蒸気の供給量を調節することにより、伝
熱管のCr酸化皮膜が安定に存在する領域に制御でき
る。
The object of the present invention is to provide a coal gasifier having a coal gasifier for gasifying coal to obtain a crude product gas and a heat recovery boiler for recovering heat from the crude product gas. The rough product gas side surface of the heat transfer tube of the boiler is achieved by being a Cr-based alloy steel containing at least 8 Wt% of Cr. The object is to provide a coal gasifier having a coal gasifier for gasifying coal to obtain a crude product gas and a heat recovery boiler for recovering heat from the crude product gas. The surface is at least Cr
Is a Cr-based alloy steel containing 8 Wt%, which is achieved by providing a steam supply means for supplying steam to the crude product gas inlet side of the heat recovery boiler. The object is to provide a coal gasifier having a coal gasifier for gasifying coal to obtain a crude product gas and a heat recovery boiler for recovering heat from the crude product gas. The surface is a Cr-based alloy steel containing at least 8 Wt% of Cr. The steam supply means for supplying steam to the crude product gas inlet side of the heat recovery boiler, and the oxygen concentration and the sulfur concentration in the crude product gas in the heat recovery boiler are determined. This is achieved by providing the oxygen concentration and sulfur concentration measurement means to be measured, and the steam supply amount control means for controlling the supply amount of steam based on the oxygen concentration and the sulfur concentration measured by the oxygen concentration and sulfur concentration measurement means. The object is to provide a coal gasifier having a coal gasifier for gasifying coal to obtain a crude product gas and a heat recovery boiler for recovering heat from the crude product gas. The surface is formed of a Cr-based alloy steel containing at least 8 Wt% of Cr, and at the start of operation of the heat recovery boiler, 20-50 Vo of the crude gas is supplied to the crude gas inlet side of the heat recovery boiler.
Achieved by supplying steam which accounts for 1%.
According to the above configuration, a Cr oxide film having corrosion resistance to H 2 S is formed on the surface of the heat recovery boiler heat transfer tube containing Cr.
It is formed by steam oxidation at the start of operation of the heat recovery boiler. Corrosion can be prevented using inexpensive materials, and the reliability and economy of the heat recovery boiler heat transfer tubes can be improved. In order to form an oxide film of Cr having corrosion resistance, it is necessary to contain 8 Wt% of Cr on the surface of the heat transfer tube, and it is desirable to contain 12 Wt% or more. 20V water vapor concentration in crude product gas
If the content is less than 8% by weight, the formation of an oxide film is insufficient even if the content of Cr is 8% by weight or more. And the power generation efficiency decreases. Also, even if the sulfur content of the raw coal used fluctuates or the ratio of the raw coal to the oxidizer fluctuates and the operating conditions of the coal gasifier change, the oxygen and sulfur concentrations in the crude gas are measured. By adjusting the supply amount of water vapor in this way, it is possible to control the heat transfer tube to a region where the Cr oxide film is stably present.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を図に
より説明する。図1は本発明の実施の形態の熱回収ボイ
ラ構成を示すフローチャートである。本図に示すように
熱回収ボイラ1の粗生成ガス入口2から導かれた生成ガ
スは内部に配置された伝熱管4により熱回収され、粗生
成ガス出口3から排出される。水蒸気は水蒸気流量調節
弁9で流量が調節され、水蒸気配管10により水蒸気ノ
ズル11へ導かれ粗生成ガス入口2の近傍にて粗生成ガ
ス中に噴出する。また、粗生成ガス中の酸素濃度を計測
する酸素濃度計測装置5と硫黄濃度を計測する硫黄濃度
計測装置6が熱回収ボイラ1に配置され、これらの計測
装置から信号をAD変換器7を介して制御用のコンピユ
ータ8へ入力する。そして、コンピユータ8からの操作
信号により水蒸気流量調節弁9を操作する。本図では酸
素濃度計測装置5及び硫黄濃度計測装置6を熱回収ボイ
ラ1の上部、中部、下部の3ケ所に設置しているが、そ
の位置や数に限定されるものでは無く熱回収ボイラ1の
大きさや伝熱管4の位置により適宜変更しても良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing the configuration of the heat recovery boiler according to the embodiment of the present invention. As shown in this figure, the product gas led from the crude product gas inlet 2 of the heat recovery boiler 1 is recovered by the heat transfer tube 4 disposed inside, and discharged from the crude product gas outlet 3. The flow rate of the steam is adjusted by a steam flow rate control valve 9, guided to a steam nozzle 11 by a steam pipe 10, and jetted into the crude product gas near the crude product gas inlet 2. Further, an oxygen concentration measuring device 5 for measuring the oxygen concentration in the crude product gas and a sulfur concentration measuring device 6 for measuring the sulfur concentration are arranged in the heat recovery boiler 1, and a signal from these measuring devices is transmitted via an AD converter 7. To the computer 8 for control. Then, the steam flow control valve 9 is operated by an operation signal from the computer 8. In this figure, the oxygen concentration measuring device 5 and the sulfur concentration measuring device 6 are installed at three places of the upper part, the middle part and the lower part of the heat recovery boiler 1, but the position and the number are not limited. May be changed as appropriate according to the size of the heat transfer tube 4 and the position of the heat transfer tube 4.

【0006】図2は本発明の他の実施の形態の熱回収ボ
イラ構成を示すフローチャートである。本図では水蒸気
流量調節弁9、水蒸気配管10及び水蒸気ノズル11を
熱回収ボイラ1の上部、中部、下部の3ケ所に設置して
いるが、熱回収ボイラ1が大きい場合に偏流による不十
分な混合を防止できる。また、本図では水蒸気ノズル1
1の位置を固定しているが伝熱管4の数が多い場合に水
蒸気ノズル11の数を適宜増加させても良いし、可動式
にしても良い。酸素濃度計測装置5としては、石炭ガス
化装置の場合に石炭ガス化炉16で石炭を部分燃焼させ
るため粗生成ガス中の酸素濃度は極めて小さく、高感度
で応答生に優れた固体電解質のジルコニア(ZrO2
がセンサとして望ましい。一方、硫黄濃度計測装置6と
しては、広い範囲でイオン伝導性を示す固体電解質の硫
化カルシウム(CaS)がセンサとして望ましい。実際
の熱回収ボイラ1運転中の制御では、これらの計測装置
からの信号が変化し設定値を逸脱した場合には、水蒸気
ノズル11から水蒸気を熱回収ボイラ1内に噴出させ酸
素濃度計測装置5及び硫黄濃度計測装置6からの信号が
設定値となるようにする。
FIG. 2 is a flowchart showing the configuration of a heat recovery boiler according to another embodiment of the present invention. In this figure, the steam flow control valve 9, the steam pipe 10, and the steam nozzle 11 are installed at three places, that is, the upper, middle, and lower parts of the heat recovery boiler 1. Mixing can be prevented. In this figure, the steam nozzle 1
Although the position 1 is fixed, when the number of heat transfer tubes 4 is large, the number of steam nozzles 11 may be increased as appropriate, or may be movable. As the oxygen concentration measuring device 5, in the case of a coal gasifier, since the coal is partially burned in the coal gasifier 16, the oxygen concentration in the crude product gas is extremely low, and the solid electrolyte zirconia having high sensitivity and excellent response is provided. (ZrO 2 )
Is desirable as a sensor. On the other hand, as the sulfur concentration measuring device 6, calcium sulfide (CaS), which is a solid electrolyte exhibiting ionic conductivity in a wide range, is desirable as a sensor. In the actual control during the operation of the heat recovery boiler 1, when the signals from these measuring devices change and deviate from the set values, steam is injected from the steam nozzle 11 into the heat recovery boiler 1 to cause the oxygen concentration measuring device 5 And the signal from the sulfur concentration measuring device 6 is set to the set value.

【0007】図3は典型的なFe−S−O平衡状態図表
である。本図は500℃におけるFe−S−O系の平衡
状態図で、酸素濃度、硫黄濃度に関しCr酸化物が安定
に存在する領域Aであったものが硫黄濃度が大きく酸素
濃度が小さくなる石炭ガス化炉16の運転条件の変化に
より、Cr硫化物が安定に存在する領域Bへ移行する可
能性がある。この場合に伝熱管4のCr酸化皮膜が硫化
しH2Sに対する耐食性を失う可能性がある。このよう
な状態で粗生成ガス中に水蒸気を加え硫黄濃度(本図で
は硫黄分圧)を小さくし、かつ酸素濃度(本図では酸素
分圧)を大きくして再び領域Aへ戻すことができる。
FIG. 3 is a typical Fe-SO equilibrium diagram. This figure is an equilibrium diagram of the Fe—SO system at 500 ° C. In the region A where the Cr oxide is stably present with respect to the oxygen concentration and the sulfur concentration, the coal gas having a large sulfur concentration and a small oxygen concentration is shown. Due to a change in the operating conditions of the gasification furnace 16, there is a possibility that the furnace shifts to a region B where Cr sulfide is stably present. In this case, there is a possibility that the Cr oxide film of the heat transfer tube 4 is sulfided and loses corrosion resistance to H 2 S. In this state, steam can be added to the crude product gas to reduce the sulfur concentration (sulfur partial pressure in this figure) and increase the oxygen concentration (oxygen partial pressure in this figure) to return to the region A again. .

【0008】図4は本発明の実施の形態の伝熱管構成を
示す縦断面図である。本図に示すように伝熱管4は外管
12、内管13から構成される二重管構造である。外管
12にはCrを8Wt%以上含むCr基合金鋼のSTB
A27(9Cr2Mo)、SA213T91(9Cr1
Mo,Nb,V)等の9Cr系、12CrMoVの12
Cr系、SUS430等の18Cr系が使用可能で、内
管13は炭素鋼が使用可能である。二重管構造以外の構
造のCrを8Wt%以上含む外管12だけの単一材料で
あっても良いし、Cr拡散処理(クロマイズ)した材
料、溶射または肉盛によりCrを8Wt%以上含む材料
を内管13の表面にコーティングしても良い。要するに
伝熱管4の粗生成ガス側表面にCrを8Wt%以上含む
構造であれば良い。
FIG. 4 is a longitudinal sectional view showing the configuration of the heat transfer tube according to the embodiment of the present invention. As shown in this figure, the heat transfer tube 4 has a double tube structure composed of an outer tube 12 and an inner tube 13. The outer tube 12 is made of a Cr-based alloy steel STB containing 8 Wt% or more of Cr.
A27 (9Cr2Mo), SA213T91 (9Cr1
Mo, Nb, V) 9Cr-based, 12CrMoV 12
18Cr-based such as Cr-based and SUS430 can be used, and carbon steel can be used for the inner tube 13. A single material of only the outer tube 12 containing 8 Wt% or more of Cr having a structure other than the double tube structure may be used, or a material subjected to Cr diffusion treatment (chromized), a material containing 8 Wt% or more of Cr by thermal spraying or overlaying may be used. May be coated on the surface of the inner tube 13. In short, any structure may be used as long as the surface of the heat transfer tube 4 on the crude product gas side contains 8 Wt% or more of Cr.

【0009】図5は本発明の実施の形態のCr含有量と
腐食量の関係を示す図表である。本図の横軸はCr含有
量(Wt%)を示し、縦軸は粗生成ガス雰囲気における
腐食量でCrを含まない炭素鋼の腐食量を100として
いる。黒の正方形はガス雰囲気中のH2S濃度1,00
0ppm、水蒸気濃度20vol%の場合を表し、黒の
菱形はガス雰囲気中のH2S濃度1,000ppm、水
蒸気濃度10vol%の場合を表している。本図から明
らかなように何れの場合もCr含有量が増加するに従い
腐食量は低下している。特にCr含有量が8Wt%以上
で水蒸気濃度20vol%の場合は殆ど腐食は増加しな
い。これはCr含有量が多い材料では、水蒸気濃度が2
0vol%になると材料表面にH2S腐食に対して保護
能力を有するCrリッチな酸化皮膜が形成されるためで
ある。本図から導きだされる結論は、材料中のCr含有
量が少なくとも8Wt%で望ましくは12Wt%以上必
要であり、水蒸気濃度が20vol%未満ではCr含有
量が8Wt%であってもCr酸化皮膜の形成が不十分で
あるということである。
FIG. 5 is a table showing the relationship between the Cr content and the corrosion amount according to the embodiment of the present invention. The abscissa in this figure indicates the Cr content (Wt%), and the ordinate indicates the amount of corrosion in a crude gas atmosphere and the amount of corrosion of carbon steel not containing Cr is 100. The black square indicates the H 2 S concentration in the gas atmosphere of 1,000.
0 ppm and a water vapor concentration of 20 vol% are shown, and black diamonds represent a case where the H 2 S concentration in the gas atmosphere is 1,000 ppm and the water vapor concentration is 10 vol%. As is clear from this figure, in all cases, the corrosion amount decreases as the Cr content increases. In particular, when the Cr content is 8 Wt% or more and the water vapor concentration is 20 vol%, the corrosion hardly increases. This is because the material having a high Cr content has a water vapor concentration of 2
This is because a Cr-rich oxide film having a protective ability against H 2 S corrosion is formed on the surface of the material at 0 vol%. The conclusion drawn from this figure is that the Cr content in the material is at least 8 Wt%, preferably 12 Wt% or more, and when the water vapor concentration is less than 20 vol%, the Cr oxide film is formed even if the Cr content is 8 Wt%. Is insufficiently formed.

【0010】次に伝熱管4の粗生成ガス側表面にCr酸
化皮膜を形成する方法について説明する。Cr酸化皮膜
の形成は熱回収ボイラの建設後の運転開始時期に水蒸気
酸化により行う。Cr酸化皮膜は比較的短時間で形成さ
れるので数十時間水蒸気を注入すればよい。しかし、熱
回収ボイラの運転停止時には生成したCr酸化皮膜が剥
離する恐れがあるから起動毎に数十時間水蒸気を注入す
ることが望ましい。注入する水蒸気の濃度はCr酸化皮
膜形成の点からは20vol%以上多いほど良いが、過
剰になると生成ガスの下流の脱塵装置、脱硫装置が湿式
の場合に注入した水蒸気が全て凝縮して水となって生成
ガス量が減少したり、脱塵装置、脱硫装置からの排水が
増加して水処理の負担が増加して石炭ガス化複合発電装
置の発電効率を低下させるから50Vol%以下が望ま
しい。
Next, a method of forming a Cr oxide film on the surface of the heat transfer tube 4 on the side of the crude gas will be described. The formation of the Cr oxide film is performed by steam oxidation at the start of operation after the construction of the heat recovery boiler. Since the Cr oxide film is formed in a relatively short time, steam may be injected for several tens of hours. However, when the operation of the heat recovery boiler is stopped, the generated Cr oxide film may be peeled off, so that it is desirable to inject steam for several tens of hours each time the heat recovery boiler is started. The concentration of water vapor to be injected is preferably as high as 20 vol% or more from the viewpoint of formation of a Cr oxide film. However, if the concentration is excessive, when the dust removal device and the desulfurization device downstream of the generated gas are wet, all the injected water vapor condenses and becomes water. As a result, the amount of generated gas decreases, and the drainage from the dedusting device and the desulfurization device increases, thereby increasing the burden of water treatment and reducing the power generation efficiency of the integrated coal gasification combined cycle power plant. .

【0011】[0011]

【発明の効果】本発明によれば、Crを含む熱回収ボイ
ラ伝熱管の表面にH2Sに対して耐食性を有するCrの
酸化皮膜が熱回収ボイラの運転開始時期に水蒸気酸化に
より形成され、安価な材料を用いて腐食を防止し熱回収
ボイラ伝熱管の信頼性と経済性を高める効果が得られ
る。
According to the present invention, a Cr oxide film having corrosion resistance to H 2 S is formed on the surface of a heat recovery boiler heat transfer tube containing Cr by steam oxidation at the start of operation of the heat recovery boiler. The effect of preventing corrosion by using inexpensive materials and improving the reliability and economy of the heat recovery boiler heat transfer tubes can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の熱回収ボイラ構成を示す
フローチャートである。
FIG. 1 is a flowchart showing a configuration of a heat recovery boiler according to an embodiment of the present invention.

【図2】本発明の他の実施の形態の熱回収ボイラ構成を
示すフローチャートである。
FIG. 2 is a flowchart showing a configuration of a heat recovery boiler according to another embodiment of the present invention.

【図3】典型的なFe−S−O平衡状態図表である。FIG. 3 is a typical Fe—SO equilibrium diagram.

【図4】本発明の実施の形態の伝熱管構成を示す縦断面
図である。
FIG. 4 is a longitudinal sectional view showing a heat transfer tube configuration according to the embodiment of the present invention.

【図5】本発明の実施の形態のCr含有量と腐食量の関
係を示す図表である。
FIG. 5 is a table showing a relationship between a Cr content and a corrosion amount according to the embodiment of the present invention.

【図6】一般的な石炭ガス化複合発電装置の構成を示す
フローチャートである。
FIG. 6 is a flowchart showing a configuration of a general integrated coal gasification combined cycle device.

【符号の説明】[Explanation of symbols]

1 熱回収ボイラ 2 粗生成ガス入口 3 粗生成ガス出口 4 伝熱管 5 酸素濃度計測装置 6 硫黄濃度計測装置 7 AD変換器 8 コンピユータ 9 水蒸気流量調節弁 10 水蒸気配管 11 水蒸気ノズル 12 外管 13 内管 14 石炭 15 酸化剤 16 石炭ガス化炉 17 脱塵装置 18 脱硫装置 19 ガスタービン 20 排熱回収ボイラ 21 蒸気タービン 22 復水器 DESCRIPTION OF SYMBOLS 1 Heat recovery boiler 2 Crude gas inlet 3 Crude gas outlet 4 Heat transfer tube 5 Oxygen concentration measuring device 6 Sulfur concentration measuring device 7 A / D converter 8 Computer 9 Steam flow control valve 10 Steam piping 11 Steam nozzle 12 Outer tube 13 Inner tube 14 Coal 15 Oxidizer 16 Coal Gasifier 17 Dust Removal Device 18 Desulfurization Device 19 Gas Turbine 20 Waste Heat Recovery Boiler 21 Steam Turbine 22 Condenser

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 石炭をガス化し粗生成ガスを得る石炭ガ
ス化炉と、該粗生成ガスから熱を回収する熱回収ボイラ
とを有する石炭ガス化装置において、 前記熱回収ボイラの伝熱管の前記粗生成ガス側表面は少
なくともCrを8Wt%含むCr基合金鋼であることを
特徴とする石炭ガス化装置。
1. A coal gasification apparatus comprising: a coal gasifier for gasifying coal to obtain a crude product gas; and a heat recovery boiler for recovering heat from the crude product gas, wherein the heat transfer tube of the heat recovery boiler A coal gasifier comprising a crude gas side surface made of a Cr-based alloy steel containing at least 8 Wt% of Cr.
【請求項2】 石炭をガス化し粗生成ガスを得る石炭ガ
ス化炉と、該粗生成ガスから熱を回収する熱回収ボイラ
とを有する石炭ガス化装置において、 前記熱回収ボイラの伝熱管の前記粗生成ガス側表面は少
なくともCrを8Wt%含むCr基合金鋼であり、前記
熱回収ボイラの前記粗生成ガス入口側に水蒸気を供給す
る水蒸気供給手段を設けたことを特徴とする石炭ガス化
装置。
2. A coal gasifier comprising: a coal gasifier for gasifying coal to obtain a crude product gas; and a heat recovery boiler for recovering heat from the crude product gas, wherein the heat transfer tube of the heat recovery boiler is provided. A coal gasification apparatus characterized in that a surface of the crude gas side is a Cr-based alloy steel containing at least 8 Wt% of Cr, and steam supply means for supplying steam to the crude gas inlet side of the heat recovery boiler is provided. .
【請求項3】 石炭をガス化し粗生成ガスを得る石炭ガ
ス化炉と、該粗生成ガスから熱を回収する熱回収ボイラ
とを有する石炭ガス化装置において、 前記熱回収ボイラの伝熱管の前記粗生成ガス側表面は少
なくともCrを8Wt%含むCr基合金鋼であり、前記
熱回収ボイラの前記粗生成ガス入口側に水蒸気を供給す
る水蒸気供給手段と、前記熱回収ボイラ内の前記粗生成
ガス中の酸素濃度及び硫黄濃度を計測する酸素濃度及び
硫黄濃度計測手段と、該酸素濃度及び硫黄濃度計測手段
が計測した酸素濃度及び硫黄濃度により前記水蒸気の供
給量を制御する水蒸気供給量制御手段とを設けたことを
特徴とする石炭ガス化装置。
3. A coal gasifier having a coal gasifier for gasifying coal to obtain a crude product gas and a heat recovery boiler for recovering heat from the crude product gas, wherein the heat transfer tube of the heat recovery boiler The crude product gas side surface is a Cr-based alloy steel containing at least 8 Wt% of Cr, a steam supply means for supplying steam to the crude product gas inlet side of the heat recovery boiler, and the crude product gas in the heat recovery boiler. Oxygen concentration and sulfur concentration measurement means for measuring the oxygen concentration and sulfur concentration in, and steam supply amount control means for controlling the supply amount of the steam by the oxygen concentration and sulfur concentration measured by the oxygen concentration and sulfur concentration measurement means, A coal gasifier comprising:
【請求項4】 石炭をガス化し粗生成ガスを得る石炭ガ
ス化炉と、該粗生成ガスから熱を回収する熱回収ボイラ
とを有する石炭ガス化装置において、 前記熱回収ボイラの伝熱管の前記粗生成ガス側表面を少
なくともCrを8Wt%含むCr基合金鋼で形成し、前
記熱回収ボイラの運転開始時に前記熱回収ボイラの前記
粗生成ガス入口側に前記粗生成ガスの20〜50Vol
%を占める水蒸気を供給することを特徴とする石炭ガス
化装置の運転方法。
4. A coal gasifier having a coal gasifier for gasifying coal to obtain a crude product gas and a heat recovery boiler for recovering heat from the crude product gas, wherein the heat transfer tube of the heat recovery boiler The crude product gas side surface is formed of a Cr-based alloy steel containing at least 8 Wt% of Cr, and at the start of operation of the heat recovery boiler, 20 to 50 Vol of the crude product gas is supplied to the crude product gas inlet side of the heat recovery boiler.
% Of steam, the method comprising operating a coal gasifier.
JP9122339A 1997-05-13 1997-05-13 Coal gasifying device and operation method therefor Pending JPH10311502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9122339A JPH10311502A (en) 1997-05-13 1997-05-13 Coal gasifying device and operation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9122339A JPH10311502A (en) 1997-05-13 1997-05-13 Coal gasifying device and operation method therefor

Publications (1)

Publication Number Publication Date
JPH10311502A true JPH10311502A (en) 1998-11-24

Family

ID=14833524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9122339A Pending JPH10311502A (en) 1997-05-13 1997-05-13 Coal gasifying device and operation method therefor

Country Status (1)

Country Link
JP (1) JPH10311502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521660A (en) * 2005-12-21 2009-06-04 エクソンモービル リサーチ アンド エンジニアリング カンパニー Corrosion resistant material for suppressing fouling, heat transfer device having improved corrosion resistance and fouling resistance, and method for suppressing fouling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521660A (en) * 2005-12-21 2009-06-04 エクソンモービル リサーチ アンド エンジニアリング カンパニー Corrosion resistant material for suppressing fouling, heat transfer device having improved corrosion resistance and fouling resistance, and method for suppressing fouling

Similar Documents

Publication Publication Date Title
AU679655B2 (en) Partial oxidation process with production of power
Chapel et al. Recovery of CO2 from flue gases: commercial trends
US4875436A (en) Waste heat recovery system
WO1986001579A1 (en) Boiler capable of recovering waste heat and having denitration devices
WO1995007751A1 (en) Exhaust gas boiler
EP1023558A1 (en) Method and apparatus for generating electric power by combusting wastes
US4880378A (en) Combustion plant with a device for reducing nitrogen oxides in flue gases
JP2002541044A5 (en)
JP3556728B2 (en) Exhaust gas denitration method and apparatus
JPH10311502A (en) Coal gasifying device and operation method therefor
JP2000048844A (en) Integrated coal gasification fuel cell combined cycle power plant
AU2010201912B2 (en) Method and apparatus for sealing an annulus
JP3786759B2 (en) Gas generator
JP3615878B2 (en) Gasification combined power generation facility
JP4658350B2 (en) Method and apparatus for reducing sulfur compounds
US20230365406A1 (en) Sulfur Recovery Unit with Fuel Gas Firing
JP2004184044A (en) Exhaust heat recovery device
Natesan High-temperature corrosion in power-generating systems.
WO2019176119A1 (en) Boiler facility and thermal power generation facility
JPH10290912A (en) Coal gasification combined power generator and its operation
SU391058A1 (en) METHOD OF GASIFICATION OF MAZUT
JPH06228575A (en) Purification of high-temperature reducing gas
Camozzi-Snamprogetti–Italy ENI REFINING & MARKETING SANNAZZARO GASIFICATION PLANT PROJECT UPDATE AND START UP EXPERIENCE
JPH06264072A (en) Process and apparatus for protecting catalyst in reformer
JPH11293261A (en) Power generation process responsive to power consumption and at least using garbage as raw material and power generation apparatus used therefor