JPH10310486A - Production of single crystal and apparatus for pulling up single crystal - Google Patents

Production of single crystal and apparatus for pulling up single crystal

Info

Publication number
JPH10310486A
JPH10310486A JP11324097A JP11324097A JPH10310486A JP H10310486 A JPH10310486 A JP H10310486A JP 11324097 A JP11324097 A JP 11324097A JP 11324097 A JP11324097 A JP 11324097A JP H10310486 A JPH10310486 A JP H10310486A
Authority
JP
Japan
Prior art keywords
single crystal
magnetic field
electromagnet
crucible
quartz crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11324097A
Other languages
Japanese (ja)
Other versions
JP3552455B2 (en
Inventor
Hiroshi Koya
浩 小屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP11324097A priority Critical patent/JP3552455B2/en
Publication of JPH10310486A publication Critical patent/JPH10310486A/en
Application granted granted Critical
Publication of JP3552455B2 publication Critical patent/JP3552455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a single crystal which produces a single crystal having a uniform oxygen concn. SOLUTION: A pair of first and second electromagnets 8, 9 and an auxiliary third electromagnet 24 are disposed on the outer side of a chamber 2 of the apparatus 20 for pulling up the single crystal. A quartz crucible 3 is risen as the single crystal grows. A magnetic field is impressed thereon by the third electromagnet 24 so as to make up the cusp magnetic field by the second electromagnet 8. As a result, the intensity of the perpendicular magnetic field crossing the base of the quartz crucible 3 is kept approximately constant and even if a solidification rate rises, the convection near the base of the quartz crucible 3 is suppressed, by which the elution of the oxygen is substantially prevented and eventually the single crystal having the oxygen concn. uniform in an axial direction is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、MCZ法(磁場印
加チョクラルスキー法)を用いて、石英ルツボ内に収納
された半導体融液から単結晶を引き上げるに際し、酸素
濃度が軸方向に均一な単結晶を得ることができる単結晶
製造方法及び単結晶引上装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for pulling a single crystal from a semiconductor melt contained in a quartz crucible using an MCZ method (magnetic field applying Czochralski method). The present invention relates to a single crystal manufacturing method and a single crystal pulling apparatus capable of obtaining a single crystal.

【0002】[0002]

【従来の技術】従来、シリコン(Si)やガリウムヒ素
(GaAs)等の半導体単結晶を成長させる装置とし
て、MCZ法(磁場印加チョクラルスキー法)を用いた
単結晶引上装置が知られている。
2. Description of the Related Art Conventionally, as a device for growing a semiconductor single crystal such as silicon (Si) or gallium arsenide (GaAs), a single crystal pulling device using an MCZ method (magnetic field applying Czochralski method) is known. I have.

【0003】このような単結晶引上装置では、図5に示
すように、チャンバ2の内部に石英ルツボ3と、ヒータ
4とが配設されている。石英ルツボ3は二重ルツボであ
ってサセプタ5を介して昇降自在かつ回転自在な下軸6
に支持されている。また、ヒータ4は半導体融液を加熱
するためのものであり、石英ルツボ3の周囲に配置され
ている。
In such a single crystal pulling apparatus, a quartz crucible 3 and a heater 4 are provided inside a chamber 2 as shown in FIG. The quartz crucible 3 is a double crucible, and a lower shaft 6 that can be raised and lowered and rotatable via a susceptor 5.
It is supported by. The heater 4 is for heating the semiconductor melt, and is disposed around the quartz crucible 3.

【0004】チャンバ2上部からは、種結晶を下端部に
把持するワイヤ7が昇降自在にかつ回転自在に吊り下げ
られている。また、チャンバ2の外側には半導体融液の
対流を抑制するカスプ磁場を印加する電磁石8,9が設
置されている。
A wire 7 for holding a seed crystal at a lower end thereof is suspended from the upper portion of the chamber 2 so as to be able to move up and down and rotate freely. Electromagnets 8 and 9 for applying a cusp magnetic field for suppressing convection of the semiconductor melt are provided outside the chamber 2.

【0005】従来の単結晶製造方法は、炉上部からアル
ゴンガスを供給しつつ、上方より種結晶を半導体融液に
浸漬させ、石英ルツボ3を回転させながら種結晶を引き
上げることにより、半導体の単結晶13を得るものであ
る。
In the conventional single crystal manufacturing method, the seed crystal is immersed in the semiconductor melt from above while supplying argon gas from the upper part of the furnace, and the seed crystal is pulled up while rotating the quartz crucible 3 to obtain a single crystal of the semiconductor. A crystal 13 is obtained.

【0006】単結晶の引上中には、図6(A)に示すよ
うに、石英ルツボ3の壁面と半導体融液が反応して、半
導体融液内に酸素が溶出するが、電磁石8,9によって
カスプ磁場11(点線で示す)が印加されると、石英ル
ツボ3の底面及び側面の両方に直角な磁界成分が加わる
ため、石英ルツボの内壁付近の対流が抑制される。言い
換えれば、溶解した酸素が石英ルツボ3の壁面付近に滞
留するため、さらなる酸素の溶解が起こりにくくなる。
During the pulling of the single crystal, as shown in FIG. 6 (A), the wall surface of the quartz crucible 3 reacts with the semiconductor melt, and oxygen is eluted in the semiconductor melt. When a cusp magnetic field 11 (shown by a dotted line) is applied by 9, a magnetic field component perpendicular to both the bottom surface and the side surface of the quartz crucible 3 is applied, so that convection near the inner wall of the quartz crucible is suppressed. In other words, the dissolved oxygen stays in the vicinity of the wall surface of the quartz crucible 3, so that it is difficult for oxygen to be further dissolved.

【0007】これに対して、半導体融液の表面に対して
は、磁界が平行であり直角成分がないので、表面の滞留
はほとんど抑制されず、酸素の蒸発が起こり易く、酸素
濃度が減少する。このように、カスプ磁場11を印加す
ることで、単結晶中の酸素濃度をその軸方向に沿ってあ
る程度均一となるように制御することができる。なお、
単結晶の成長に伴って半導体融液の液面12の位置が低
下するのを補うように、図6(B)に示すように石英ル
ツボ3が下軸6により上昇させられる。
On the other hand, since the magnetic field is parallel to the surface of the semiconductor melt and there is no right-angle component, stagnation on the surface is hardly suppressed, oxygen is easily evaporated, and the oxygen concentration decreases. . As described above, by applying the cusp magnetic field 11, the oxygen concentration in the single crystal can be controlled to be uniform to some extent along the axial direction. In addition,
As shown in FIG. 6B, the quartz crucible 3 is raised by the lower shaft 6 so as to compensate for the lowering of the liquid level 12 of the semiconductor melt as the single crystal grows.

【0008】[0008]

【発明が解決しようとする課題】ところで、シリコン単
結晶における酸素濃度は厳密に制御されなければならな
い重要な品質要因であり、特に要求されるのは酸素濃度
の分布が均一であるということである。
Incidentally, the oxygen concentration in a silicon single crystal is an important quality factor that must be strictly controlled, and particularly required is that the oxygen concentration distribution is uniform. .

【0009】しかし、従来の単結晶引上装置10では、
図3に示すように、石英ルツボ3が上昇して単結晶の固
化率g(0≦g≦1)が増すにつれて、石英ルツボ3の
底面を横切る磁場強度が次第に減少する。磁場強度の減
少は酸素の溶出量の増大を招き、図4に示すように例え
ば固化率が0.4を超えると酸素濃度(Oi)が上昇す
る。言い換えれば、得られた単結晶はトップ側に比較し
てボトム側で酸素濃度が高くなり、すなわち軸方向に対
する酸素濃度が不均一となるという欠点があった。
However, in the conventional single crystal pulling apparatus 10,
As shown in FIG. 3, as the quartz crucible 3 rises and the solidification rate g (0 ≦ g ≦ 1) of the single crystal increases, the magnetic field strength across the bottom surface of the quartz crucible 3 gradually decreases. A decrease in the magnetic field strength causes an increase in the amount of oxygen eluted. For example, as shown in FIG. 4, when the solidification rate exceeds 0.4, the oxygen concentration (Oi) increases. In other words, the obtained single crystal has a disadvantage that the oxygen concentration is higher at the bottom side than at the top side, that is, the oxygen concentration in the axial direction is not uniform.

【0010】また、単結晶の引上中は、引上機構の引き
上げ速度を変化させて、単結晶の直径が常に一定となる
ように制御される。例えば、引き上げ速度が0.5mm
/分以下に低速化したとき、フリー化率(単結晶率)の
低下を招き、高品質の単結晶が得られないという欠点も
あった。
During the pulling of the single crystal, the pulling speed of the pulling mechanism is changed so that the diameter of the single crystal is controlled to be always constant. For example, the lifting speed is 0.5 mm
When the speed is reduced to not more than / min, the free ratio (single crystal ratio) is reduced, and there is also a disadvantage that a single crystal of high quality cannot be obtained.

【0011】そこで、本発明は上記事情に鑑みてなされ
たもので、酸素濃度が軸方向に均一であり、かつフリー
化率の低下が少ない単結晶を得ることができる単結晶製
造方法及び単結晶引上装置を提供するものである。
Accordingly, the present invention has been made in view of the above circumstances, and a method for producing a single crystal capable of obtaining a single crystal having a uniform oxygen concentration in the axial direction and a small decrease in the free ratio is provided. A lifting device is provided.

【0012】[0012]

【課題を解決するための手段】上述の課題を解決するた
め、請求項1及び3記載の発明は、ルツボ内に収容した
半導体融液から単結晶を引き上げるに際して、前記ルツ
ボの上下に配された第1の及び第2の電磁石により前記
ルツボにカスプ磁場を印加し、さらに、前記第2の磁石
によるカスプ磁場を補強するため、前記第2の電磁石の
下側に設けられた第3の電磁石により磁場を前記ルツボ
に印加することを特徴とする。
According to the first and third aspects of the present invention, when a single crystal is pulled from a semiconductor melt contained in a crucible, the single crystal is disposed above and below the crucible. A cusp magnetic field is applied to the crucible by the first and second electromagnets, and further, by a third electromagnet provided below the second electromagnet to reinforce the cusp magnetic field by the second magnet. A magnetic field is applied to the crucible.

【0013】この発明においては、第1及び第2の電磁
石に励磁電流が供給され、ルツボにカスプ磁場が印加さ
れる。また、単結晶の成長に伴って半導体融液の液面レ
ベルの位置が低下するのを補うようにルツボが上昇させ
られるとともに、第3の電磁石が発生させるカスプ磁場
が第2の電磁石の磁場を補強するようにルツボに印加さ
れる。したがって、ルツボの位置が上昇しても、ルツボ
の壁面を通過する垂直磁場強度が減少せず、ルツボ内の
対流を抑制して酸素が溶出しにくくし、結果として軸方
向に酸素濃度が均一な単結晶を得ることができる。
In the present invention, an exciting current is supplied to the first and second electromagnets, and a cusp magnetic field is applied to the crucible. Further, the crucible is raised so as to compensate for the lowering of the liquid level of the semiconductor melt as the single crystal grows, and the cusp magnetic field generated by the third electromagnet reduces the magnetic field of the second electromagnet. Applied to the crucible to reinforce. Therefore, even if the position of the crucible rises, the strength of the vertical magnetic field passing through the wall of the crucible does not decrease, and convection in the crucible is suppressed, making it difficult for oxygen to elute, and as a result, the oxygen concentration is uniform in the axial direction. A single crystal can be obtained.

【0014】請求項2及び4に記載した発明は、前記単
結晶の固化率の上昇に比例して、前記第3の電磁石に対
する励磁電流を増加させることを特徴とするものであ
る。すなわち、第3の電磁石が発生させるカスプ磁場を
第2の電磁石の磁場を補うように徐々に増大させること
により、ルツボの底面を通過する垂直磁場強度が略一定
に維持され、結果として軸方向に酸素濃度が均一な単結
晶を得ることができる。
According to a second aspect of the present invention, the exciting current for the third electromagnet is increased in proportion to an increase in the solidification rate of the single crystal. That is, by gradually increasing the cusp magnetic field generated by the third electromagnet so as to supplement the magnetic field of the second electromagnet, the intensity of the vertical magnetic field passing through the bottom surface of the crucible is maintained substantially constant, and as a result, A single crystal having a uniform oxygen concentration can be obtained.

【0015】[0015]

【発明の実施の形態】続いて、本発明に係る単結晶引上
装置及び単結晶引上方法について、図面を参照して詳細
に説明する。本発明に係る単結晶引上装置20では、チ
ャンバ2の内部に、石英ルツボ3、ヒータ4とが配設さ
れている。
Next, a single crystal pulling apparatus and a single crystal pulling method according to the present invention will be described in detail with reference to the drawings. In a single crystal pulling apparatus 20 according to the present invention, a quartz crucible 3 and a heater 4 are provided inside a chamber 2.

【0016】石英ルツボ3は椀状又は有底筒状の二重ル
ツボであってチャンバ2の内部の略中央部に配置され、
サセプタ5を介して昇降自在かつ回転自在な下軸6に連
結されている。この石英ルツボ3内には半導体融液(加
熱溶融された半導体単結晶の原料)21が貯留されてい
る。
The quartz crucible 3 is a double crucible having a bowl shape or a bottomed cylindrical shape, and is disposed at a substantially central portion inside the chamber 2.
The susceptor 5 is connected to a vertically movable and rotatable lower shaft 6. A semiconductor melt (a raw material of a semiconductor single crystal melted by heating) 21 is stored in the quartz crucible 3.

【0017】ヒータ4は半導体の原料を加熱融解すると
ともに、それによって生じた半導体融液21を保温する
ためのものであり、石英ルツボ3の周囲に設置されてい
る。このヒータ4とチャンバ2との間にはヒートシール
ド22が配置されている。
The heater 4 serves to heat and melt the semiconductor raw material and keep the semiconductor melt 21 generated thereby, and is installed around the quartz crucible 3. A heat shield 22 is arranged between the heater 4 and the chamber 2.

【0018】チャンバ2の上部には、単結晶引上機構及
びチャンバ2内にアルゴンガス(Ar)等の不活性ガス
を導入する導入口23が設けられている。単結晶引上機
構の一部であるワイヤ7は、回転しつつ上下動するよう
に構成されている。ワイヤ7の下端部には種結晶が取り
付けられている。
The upper portion of the chamber 2 is provided with a single crystal pulling mechanism and an inlet 23 for introducing an inert gas such as an argon gas (Ar) into the chamber 2. The wire 7 which is a part of the single crystal pulling mechanism is configured to move up and down while rotating. A seed crystal is attached to the lower end of the wire 7.

【0019】ところで、単結晶引上装置20では、チャ
ンバ2の外側に一対の第1及び第2の電磁石8,9と、
補助用の第3の電磁石24とが配設されている。第1及
び第2の電磁石8,9はリング状をなし、石英ルツボ3
の融液液面12に対して等距離となるように、上下に距
離dだけ離れて配置されている。そして、第1の電磁石
8と第2の電磁石9は励磁電流の向きが異なっており、
同極同士が対向する。
In the single crystal pulling apparatus 20, a pair of first and second electromagnets 8 and 9 are provided outside the chamber 2.
An auxiliary third electromagnet 24 is provided. The first and second electromagnets 8 and 9 are ring-shaped, and the quartz crucible 3
Are vertically spaced apart by a distance d so as to be equidistant with respect to the melt surface 12. The direction of the exciting current is different between the first electromagnet 8 and the second electromagnet 9,
The same poles face each other.

【0020】第3の電磁石24もリング状をなし、第2
の電磁石9から距離d′だけ離れて設置されている。こ
の第3の電磁石24に印加される励磁電流は第2の電磁
石9と同じ向きに設定されるとともに、石英ルツボ3の
上昇に対応して図示しない制御手段により可変される。
The third electromagnet 24 also has a ring shape,
Is installed at a distance d ′ from the electromagnet 9. The exciting current applied to the third electromagnet 24 is set in the same direction as the second electromagnet 9 and is varied by control means (not shown) in response to the rise of the quartz crucible 3.

【0021】以上のように構成された単結晶引上装置2
0による単結晶製造方法について説明する。図1におい
て、チャンバ2上部から炉底にかけてアルゴンガスを供
給するとともに、ヒータ4によって石英ルツボ3内の半
導体原料を溶融し、ワイヤ7の下端に把持された種結晶
を下降させて半導体融液に浸漬させる。次いで、石英ル
ツボ3を下軸6により回転させつつ、種結晶をこれとは
逆方向に回転させながら引き上げ、単結晶13を成長さ
せる。
Single crystal pulling apparatus 2 constructed as described above
A method for producing a single crystal according to Example 0 will be described. In FIG. 1, while supplying argon gas from the upper part of the chamber 2 to the furnace bottom, the semiconductor raw material in the quartz crucible 3 is melted by the heater 4, and the seed crystal held at the lower end of the wire 7 is lowered to form a semiconductor melt. Let it soak. Next, while rotating the quartz crucible 3 by the lower shaft 6, the seed crystal is pulled up while rotating in the opposite direction to grow the single crystal 13.

【0022】図2(A)に示すように、第1及び第2の
電磁石8,9に励磁電流が供給され、石英ルツボ3にカ
スプ磁場11が印加される。また、図2(B)に示すよ
うに、単結晶13の成長に伴って半導体融液の液面12
の位置が低下するのを補うように、石英ルツボ3が下軸
6により上昇させられ、半導体融液の液面12がカスプ
磁場11に対して一定の位置に保たれる。
As shown in FIG. 2A, an exciting current is supplied to the first and second electromagnets 8 and 9, and a cusp magnetic field 11 is applied to the quartz crucible 3. As shown in FIG. 2B, the liquid level 12 of the semiconductor melt is increased with the growth of the single crystal 13.
The quartz crucible 3 is raised by the lower shaft 6 so as to compensate for the lowering of the position, and the liquid level 12 of the semiconductor melt is maintained at a constant position with respect to the cusp magnetic field 11.

【0023】第3の電磁石24には、単結晶13が例え
ば固化率0.35を超えた時点で励磁電流の供給が開始
される。固化率が0.35である時点を基準としたの
は、図4に示したとおり、固化率が0.4を超えると酸
素濃度(Oi)が上昇することに基づくものである。
The excitation current is supplied to the third electromagnet 24 when the single crystal 13 exceeds, for example, the solidification rate of 0.35. The time when the solidification rate is 0.35 is based on the fact that the oxygen concentration (Oi) increases when the solidification rate exceeds 0.4, as shown in FIG.

【0024】そして、固化率の上昇に比例して第3の電
磁石24に対する励磁電流I2を増加させる。具体的に
は、固化率をg、第2の電磁石9の励磁電流値I1、係
数をk(例えば、2.0≦k≦3.0)、第1の電磁石
8と第2の電磁石9との距離をd、第2の電磁石9と第
3の電磁石24との距離をd′とするとき、第3の電磁
石24に対する励磁電流I2は、 I2=g×I1×k×(d′/d) …… (1) となるように可変させる。
Then, the exciting current I2 to the third electromagnet 24 is increased in proportion to the increase in the solidification rate. Specifically, the solidification rate is g, the exciting current value I1 of the second electromagnet 9, the coefficient is k (for example, 2.0 ≦ k ≦ 3.0), and the first electromagnet 8 and the second electromagnet 9 Is the distance d and the distance between the second electromagnet 9 and the third electromagnet 24 is d ′, the exciting current I2 to the third electromagnet 24 is I2 = g × I1 × k × (d ′ / d ) …… (1) Variable so that

【0025】すなわち、図3に示すように、従来では固
化率の上昇に伴って石英ルツボ3の底面を横切る磁場強
度が次第に減少していたが、第3の電磁石24により発
生する磁場が第2の電磁石9の磁場を補強するように徐
々に増大することにより、石英ルツボ3の底面を通過す
る垂直磁場強度が略一定に維持される。
That is, as shown in FIG. 3, the magnetic field strength across the bottom surface of the quartz crucible 3 gradually decreases as the solidification rate increases in the related art, but the magnetic field generated by the third electromagnet 24 becomes the second magnetic field. Is gradually increased so as to reinforce the magnetic field of the electromagnet 9, the intensity of the vertical magnetic field passing through the bottom surface of the quartz crucible 3 is maintained substantially constant.

【0026】また、第1及び第2の電磁石8,9の距離
dに対する第2の電磁石9から第3の電磁石24までの
距離d′の比率、すなわちd′/dに対応して第3の電
磁石24の励磁電流値I2を制御することにより、第3
の電磁石24の設置位置を任意に設定した場合にも略一
定の磁場強度が得られる。例えば、同図に示すように、
d′=dとした場合、d′=0.7×dとした場合、
d′=0.3×dとした場合のいずれにおいても固化率
gの上昇に対して略一定の磁場強度を得ることができ
た。
The ratio of the distance d 'from the second electromagnet 9 to the third electromagnet 24 with respect to the distance d between the first and second electromagnets 8 and 9, that is, the third ratio corresponding to d' / d. By controlling the exciting current value I2 of the electromagnet 24, the third
When the installation position of the electromagnet 24 is set arbitrarily, a substantially constant magnetic field strength can be obtained. For example, as shown in FIG.
When d ′ = d, and d ′ = 0.7 × d,
In each case where d ′ = 0.3 × d, a substantially constant magnetic field intensity could be obtained with respect to the increase in the solidification rate g.

【0027】以上のように、固化率の上昇に伴って第3
の電磁石24による磁場を印加させることにより、石英
ルツボ3の底面を横切る垂直磁場強度を略一定とするこ
とができ、固化率が上昇しても石英ルツボ3の底面付近
の対流を抑制して酸素が溶出しにくくし、結果として軸
方向に酸素濃度が均一な単結晶13を得ることができ
る。
As described above, as the solidification rate increases, the third
By applying a magnetic field from the electromagnet 24, the vertical magnetic field strength across the bottom surface of the quartz crucible 3 can be made substantially constant, and even if the solidification rate increases, convection near the bottom surface of the quartz crucible 3 is suppressed to reduce oxygen. Is difficult to elute, and as a result, a single crystal 13 having a uniform oxygen concentration in the axial direction can be obtained.

【0028】また、単結晶の引上中は、引上機構の引き
上げ速度を変化させて、単結晶の直径が常に一定となる
ように制御される。表1は、標準値を1とした場合のフ
リー化率(単結晶率)の引き上げ速度に対する変化を示
す。引き上げ速度が例えば0.65mm/分以下となる
と、従来の単結晶引上装置ではフリー化率の低下を招い
ていたが、本発明の単結晶引上装置ではフリー化率の低
下がみられず、高品質の単結晶が得られる。
During the pulling of the single crystal, the pulling speed of the pulling mechanism is changed so that the diameter of the single crystal is controlled to be always constant. Table 1 shows a change in the free ratio (single crystal ratio) with respect to the pulling speed when the standard value is set to 1. When the pulling speed is, for example, 0.65 mm / min or less, the freeing rate is reduced in the conventional single crystal pulling apparatus, but the freeing rate is not reduced in the single crystal pulling apparatus of the present invention. A high quality single crystal can be obtained.

【0029】[0029]

【表1】 [Table 1]

【0030】なお、この実施の形態では、本発明を二重
ルツボを使用したMCZ法による単結晶製造方法に適用
した場合について説明したが、一重ルツボを使用したバ
ッチ式による単結晶の製造にも適用できることはいうま
でもない。
In this embodiment, the case where the present invention is applied to a single crystal production method by the MCZ method using a double crucible has been described. However, the present invention is also applicable to the production of a single crystal by a batch method using a single crucible. It goes without saying that it can be applied.

【0031】[0031]

【発明の効果】以上説明したように、請求項1及び3の
発明によれば、単結晶の成長に伴ってルツボが上昇して
も、ルツボの底面を横切る垂直磁場が減少しないので、
ルツボ内部の対流が抑制されて酸素が溶出しにくくな
り、軸方向に酸素濃度が均一な単結晶が得られるととも
に、引上速度を低下させてもフリー化率の低下がなく高
品質な単結晶を得ることができる。
As described above, according to the first and third aspects of the present invention, even if the crucible rises as the single crystal grows, the vertical magnetic field crossing the bottom of the crucible does not decrease.
The convection inside the crucible is suppressed, making it difficult for oxygen to elute, and a single crystal with a uniform oxygen concentration in the axial direction can be obtained. Can be obtained.

【0032】請求項2及び3の発明によれば、第3の電
磁石が発生させるカスプ磁場を第2の電磁石の磁場を補
うように徐々に増大させられるので、ルツボの底面を通
過する垂直磁場強度が略一定に維持され、結果として軸
方向に酸素濃度が均一な単結晶を得ることができる。
According to the second and third aspects of the present invention, the cusp magnetic field generated by the third electromagnet can be gradually increased so as to supplement the magnetic field of the second electromagnet. Is maintained substantially constant, and as a result, a single crystal having a uniform oxygen concentration in the axial direction can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の単結晶引上装置の構成を示す断面図
である。
FIG. 1 is a cross-sectional view showing a configuration of a single crystal pulling apparatus of the present invention.

【図2】 本発明におけるルツボに印加されたカスプ磁
場を示す図である。
FIG. 2 is a diagram showing a cusp magnetic field applied to a crucible according to the present invention.

【図3】 固化率と磁場との関係を示すグラフである。FIG. 3 is a graph showing a relationship between a solidification rate and a magnetic field.

【図4】 固化率と酸素濃度の関係を示すグラフであ
る。
FIG. 4 is a graph showing a relationship between a solidification rate and an oxygen concentration.

【図5】 従来の単結晶引上装置の構成を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing a configuration of a conventional single crystal pulling apparatus.

【図6】 従来におけるルツボに印加されたカスプ磁場
を示す図である。
FIG. 6 is a diagram showing a conventional cusp magnetic field applied to a crucible.

【符号の説明】[Explanation of symbols]

2 チャンバ 3 石英ルツボ 4 ヒータ 6 下軸 8 第1の電磁石 9 第2の電磁石 10,20 単結晶引上装置 13 単結晶 24 第3の電磁石 2 Chamber 3 Quartz crucible 4 Heater 6 Lower shaft 8 First electromagnet 9 Second electromagnet 10, 20 Single crystal pulling device 13 Single crystal 24 Third electromagnet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ルツボ内に収容した半導体融液から単結
晶を引き上げるに際して、 前記ルツボの上下に配された第1の及び第2の電磁石に
より前記ルツボにカスプ磁場を印加し、 さらに、前記第2の磁石によるカスプ磁場を補強するた
め、前記第2の電磁石の下側に設けられた第3の電磁石
により磁場を前記ルツボに印加することを特徴とする単
結晶製造方法。
When a single crystal is pulled from a semiconductor melt contained in a crucible, a cusp magnetic field is applied to the crucible by first and second electromagnets disposed above and below the crucible; A method for producing a single crystal, wherein a magnetic field is applied to the crucible by a third electromagnet provided below the second electromagnet in order to reinforce a cusp magnetic field generated by the second magnet.
【請求項2】 前記単結晶の固化率の上昇に比例して、
前記第3の電磁石に対する励磁電流を増加させることを
特徴とする請求項1記載の単結晶製造方法。
2. In proportion to an increase in the solidification rate of the single crystal,
2. The method according to claim 1, wherein the exciting current for the third electromagnet is increased.
【請求項3】 ルツボ内に収容した半導体融液から単結
晶を引き上げる単結晶引上装置であって、 前記ルツボの上下に配され、前記半導体融液にカスプ磁
場を印加する第1及び第2の電磁石と、 前記第2の磁石によるカスプ磁場を補強するために前記
第2の電磁石の下側に設けられて前記ルツボに磁場を印
加する第3の電磁石と、を備えたことを特徴とする単結
晶引上装置。
3. A single crystal pulling apparatus for pulling a single crystal from a semiconductor melt contained in a crucible, wherein the first and second crystals are arranged above and below the crucible and apply a cusp magnetic field to the semiconductor melt. And a third electromagnet provided below the second electromagnet for applying a magnetic field to the crucible to reinforce a cusp magnetic field generated by the second magnet. Single crystal pulling device.
【請求項4】 前記単結晶の固化率の上昇に比例して、
前記第3の電磁石に対する励磁電流を増加させる制御手
段を備えたことを特徴とする請求項3記載の単結晶引上
装置。
4. In proportion to an increase in the solidification rate of the single crystal,
The single crystal pulling apparatus according to claim 3, further comprising control means for increasing an exciting current to the third electromagnet.
JP11324097A 1997-04-30 1997-04-30 Single crystal manufacturing method and single crystal pulling apparatus Expired - Fee Related JP3552455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11324097A JP3552455B2 (en) 1997-04-30 1997-04-30 Single crystal manufacturing method and single crystal pulling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11324097A JP3552455B2 (en) 1997-04-30 1997-04-30 Single crystal manufacturing method and single crystal pulling apparatus

Publications (2)

Publication Number Publication Date
JPH10310486A true JPH10310486A (en) 1998-11-24
JP3552455B2 JP3552455B2 (en) 2004-08-11

Family

ID=14607128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11324097A Expired - Fee Related JP3552455B2 (en) 1997-04-30 1997-04-30 Single crystal manufacturing method and single crystal pulling apparatus

Country Status (1)

Country Link
JP (1) JP3552455B2 (en)

Also Published As

Publication number Publication date
JP3552455B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
JP5344822B2 (en) Control of melt-solid interface shape of growing silicon crystal using variable magnetic field
KR101000326B1 (en) Apparatus for pulling silicon single crystal
KR100881172B1 (en) Magnetic field application method of pulling silicon single crystal
US7771530B2 (en) Process and apparatus for producing a silicon single crystal
JPH10297994A (en) Growth of silicon single crystal
JP3086850B2 (en) Method and apparatus for growing single crystal
EP1908861A1 (en) Silicon single crystal pulling apparatus and method thereof
JP2004189559A (en) Single crystal growth method
JPH09194289A (en) Apparatus for pulling up single crystal
JP3132412B2 (en) Single crystal pulling method
JP3528888B2 (en) Apparatus and method for producing silicon single crystal
JP3552455B2 (en) Single crystal manufacturing method and single crystal pulling apparatus
JP4314974B2 (en) Silicon single crystal manufacturing method and silicon single crystal
JP3750440B2 (en) Single crystal pulling method
GB2084046A (en) Method and apparatus for crystal growth
JP2001019592A (en) Device for pulling single crystal
KR20050047348A (en) A manufacturing method for silicon ingot
KR100831052B1 (en) Method for controlling oxygen content in silicon single crystalline ingot, ingot produced thereby
JPS58181792A (en) Apparatus for pulling up single crystal silicon
KR100868192B1 (en) Method of manufacturing semiconductor single crystal using variable magnetic field control, apparatus using the same and semiconductor single crystal ingot
JP2000211990A (en) Single crystal pulling apparatus and method
JPH05221781A (en) Device for pulling up single crystal
JP2759105B2 (en) Single crystal manufacturing method
JP2004189557A (en) Method for growing single crystal
JP2001199793A (en) Single crystal pull device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040413

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040426

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100514

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130514

LAPS Cancellation because of no payment of annual fees