JPH10310477A - Heat insulating refractory - Google Patents

Heat insulating refractory

Info

Publication number
JPH10310477A
JPH10310477A JP9114101A JP11410197A JPH10310477A JP H10310477 A JPH10310477 A JP H10310477A JP 9114101 A JP9114101 A JP 9114101A JP 11410197 A JP11410197 A JP 11410197A JP H10310477 A JPH10310477 A JP H10310477A
Authority
JP
Japan
Prior art keywords
strength
weight
parts
pts
fiber length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9114101A
Other languages
Japanese (ja)
Other versions
JP2958285B2 (en
Inventor
Yukihisa Matsuo
幸久 松尾
Kotaro Kuroda
浩太郎 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosaki Refractories Co Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP9114101A priority Critical patent/JP2958285B2/en
Publication of JPH10310477A publication Critical patent/JPH10310477A/en
Application granted granted Critical
Publication of JP2958285B2 publication Critical patent/JP2958285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/08Diatomaceous earth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1025Alkali-free or very low alkali-content materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Abstract

PROBLEM TO BE SOLVED: To obtain heat insulating refractories having satisfactory heat insulating property, volume stability, spalling resistance, strength and lightness in weight fit for a tunnel as well as for an industrial furnace and for construction and causing no harmfulness at the time of a fire. SOLUTION: The heat insulating refractories contains 11-15 pts.wt. (expressed in terms of CaO) alumina cement, 5-10 pts.wt. superfine powdery amorphous silica and 4-12 pts.wt. lightweight aggregate contg. <=9 wt.%, in total, of Na2 O and K2 O in refractories contg. sepiolite, wollastonite and reinforcing fibers, preferably 10-30 pts.wt. sepiolite of 100 μm to 3 mm average fiber length, 2-30 pts.wt. wollastonite of 50-500 μm average fiber length and 0.5-2 pts.wt. reinforcing fibers of 0.5-10 mm average fiber length. Vinylon fibers are suitable for use as the reinforcing fibers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トンネルあるいは
その他の建築用内装材料及び工業炉用断熱材料等として
好適に使用できる断熱性耐火物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-insulating refractory which can be suitably used as an interior material for a tunnel or other building and an insulating material for an industrial furnace.

【0002】[0002]

【従来の技術】従来からトンネルあるいはその他の建築
用内装材料及び工業炉用断熱材料等として、各種の断熱
性耐火物が使用されている。その中で、例えば、近年、
トンネルを自動車火災から保護する必要が高まってきて
いる。トンネル内で発生する自動車火災においては、被
災時の最高温度は炭化水素火災の場合、約1100°C
にも達することが知られている。この火災からコンクリ
ート構造物、鋼殻構造物及びコンクリートと鋼殻のハイ
ブリッド構造物等のトンネル構造物を断熱保護するため
に、適正な熱伝導率および厚みを有する内装材を用いる
とともに、内装材の特性として、火災中、熱的スポール
による亀裂及び反りを最小とし、火炎が構造物に直接触
れないようにすること、更に、住居等建築内装材料も含
めて火災時においては、避難上著しく有害なガスを発生
しない材料が要求されるようになった。
2. Description of the Related Art Conventionally, various heat-insulating refractories have been used as interior materials for tunnels or other buildings, heat-insulating materials for industrial furnaces, and the like. Among them, for example, in recent years,
The need to protect tunnels from car fires is increasing. In a car fire occurring in a tunnel, the maximum temperature at the time of the disaster is about 1100 ° C for a hydrocarbon fire.
It is also known to reach. In order to insulate and protect the tunnel structures such as concrete structures, steel shell structures and hybrid structures of concrete and steel shells from this fire, use interior materials with appropriate thermal conductivity and thickness, Characteristics include minimizing cracks and warpage due to thermal spalls during a fire and preventing the flame from directly touching the structure.Furthermore, in the event of a fire, including building interior materials such as dwellings, it is extremely harmful to evacuation. Materials that do not generate gas have become required.

【0003】また、火災時の消火活動時においては被水
によりスポーリングし亀裂が発生し易い環境に曝される
ことになるため、消火活動及び鎮火後の作業時において
は落下による二次災害を防止できる材料であることが必
要である。
[0003] In addition, during fire extinguishing activities during a fire, the vehicle is exposed to an environment where spalling and cracks are likely to occur due to the flooding. It must be a material that can be prevented.

【0004】一方、常用時においては、適当な強度を有
す必要があり、例えば、側壁に適用した場合において
は、清掃時の荷重に耐え得るものでなければならない。
また、施工時においては、作業性の点から軽量であるこ
とが望まれる。
On the other hand, in normal use, it is necessary to have an appropriate strength. For example, when applied to a side wall, it must be able to withstand the load during cleaning.
Also, at the time of construction, it is desired to be lightweight from the viewpoint of workability.

【0005】一般的な断熱ボード、断熱耐火板等とし
て、例えば、特開平2−212369号公報には、アル
ミナセメントをバインダーとし且つセルロース繊維を含
有してなる耐火板において、ウォラストナイト及びセピ
オライトを含む耐火板あるいは炭化珪素繊維及びウォラ
ストナイトを含む耐火板が開示されている。
[0005] As a general heat insulating board, a heat insulating fire-resistant plate, etc., for example, JP-A-2-212369 discloses a fire-resistant plate containing alumina cement as a binder and containing cellulose fibers, which contains wollastonite and sepiolite. A refractory plate containing silicon carbide fibers and wollastonite is disclosed.

【0006】[0006]

【発明が解決しようとする課題】前記公報記載の耐火板
も内装材の特性として、断熱性、容積安定性、耐スポー
ル性、強度、軽量性に優れ、更に有害性がない材料とし
て望まれてはいるが、断熱性及び軽量性と強度、また、
軽量性及び強度と容積安定性は一般に相反し易い特性で
あるため、これらの特性を全て満たすまでには至ってい
ない。この他の例として、幾つかの特性を満足するもの
を挙げることは可能であるが、これらの材料は、特に、
トンネル用の用途として開発・製造されたものではない
ため、断熱性も含めたトンネル等の建築用内装材として
の要求性能を充分満足しているとは言い難い。
The fire-resistant plate described in the above-mentioned publication is also desired as a material having excellent heat insulating properties, volume stability, spall resistance, strength and light weight as interior materials, and having no harmfulness. Yes, but heat insulation and lightness and strength,
Since lightness, strength, and volume stability are generally contradictory properties, they have not yet been satisfied with all of these properties. As another example, it is possible to mention one that satisfies some properties, but these materials are, in particular,
Since it was not developed and manufactured for use in tunnels, it cannot be said that it sufficiently satisfies the required performance of building interior materials such as tunnels, including heat insulation.

【0007】本発明は、工業炉用、建築用のみならずト
ンネル用としても十分な断熱性、容積安定性、耐スポー
ル性、強度、軽量性、更には火災時に有害性のない優れ
た断熱性耐火物を得ることにある。
[0007] The present invention provides sufficient heat insulating properties, volume stability, spall resistance, strength, light weight, and excellent heat insulating properties which are not harmful in case of fire, not only for use in industrial furnaces and buildings, but also for tunnels. Obtaining refractory.

【0008】[0008]

【課題を解決するための手段】本発明の断熱性耐火物
は、セピオライト、ウォラストナイト及び補強繊維を含
む耐火物中に、アルミナセメントをCaOとして11〜
15重量部、超微粉非晶質シリカを5〜10重量部、成
分中のNa2O及びK2Oの合量が9重量%以下である軽
量骨材を4〜12重量部含有する。
The heat-insulating refractory of the present invention is a refractory containing sepiolite, wollastonite and reinforcing fibers, which contains alumina cement as CaO and 11 to 11%.
15 parts by weight, 5 to 10 parts by weight of ultrafine amorphous silica, the total amount of Na 2 O and K 2 O in component a lightweight aggregate is less than 9% by weight containing 4 to 12 parts by weight.

【0009】平均繊維長が100μm〜3mmであるセ
ピオライトを10〜30重量部、平均繊維長が50〜5
00μmであるウォラストナイトを2〜30重量部、及
び平均繊維長が0.5〜10mmである補強繊維を0.
5〜2重量部含有することが好ましい。また、補強繊維
としてはビニロン繊維が適している。
10 to 30 parts by weight of sepiolite having an average fiber length of 100 μm to 3 mm, and an average fiber length of 50 to 5
2 to 30 parts by weight of wollastonite having a diameter of 00 μm and 0.2 to 30 parts by weight of a reinforcing fiber having an average fiber length of 0.5 to 10 mm.
It is preferable to contain 5 to 2 parts by weight. Further, vinylon fibers are suitable as reinforcing fibers.

【0010】[0010]

【発明の実施の形態】本発明の断熱性耐火物は、アルミ
ナセメント、超微粉非晶質シリカ、軽量骨材、セピオラ
イト、ウォラストナイトおよび補強繊維を含むことで、
断熱性、容積安定性、耐スポール性、強度、軽量性、不
燃性という相反する特性を併備して複合特性を有効に発
揮するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The heat insulating refractory of the present invention comprises alumina cement, ultrafine amorphous silica, lightweight aggregate, sepiolite, wollastonite and reinforcing fibers,
It has the contradictory properties of heat insulation, volume stability, spall resistance, strength, light weight, and nonflammability, and effectively exhibits composite properties.

【0011】具体的にこれらの特性値について、問題が
指摘されだしたトンネルにおける例で以下に説明する。
[0011] These characteristic values will be specifically described below using an example in a tunnel where a problem has been pointed out.

【0012】断熱性を十分に確保するには適正な熱伝導
率及び厚みを有する内装材を使用する必要がある。
In order to ensure sufficient heat insulation, it is necessary to use an interior material having an appropriate thermal conductivity and thickness.

【0013】図1は各種熱伝導率の内装材をトンネルに
設置した場合のトンネル構造物のコンクリート表面の温
度を試算した結果を示すグラフである。内装材の厚みは
断熱効果、強度、トンネル内空断面確保、軽量性、材料
単価の点からあまり厚く取れないため20〜30mmが
妥当である。コンクリートの許容温度を水酸化カルシウ
ムの脱水温度を考慮して350°Cとすると、必要な熱
伝導率は、同図よると0.4kcal/mh°C以下と
なり、好ましくは、0.25kcal/mh°C以下で
ある。火災時及び鎮火後の容積安定性として、背面まで
貫通する亀裂を防止するためには、1100°Cでの焼
成後の線変化率が−1.5%以下となるものが良い。耐
スポール性については、スポーリングテスト後に背面ま
で貫通する大きな亀裂が入っていないことが必要であ
る。
FIG. 1 is a graph showing the results of a trial calculation of the temperature of the concrete surface of a tunnel structure when interior materials having various thermal conductivities are installed in a tunnel. The thickness of the interior material is appropriately 20 to 30 mm because it cannot be made too thick in terms of heat insulation effect, strength, securing a cross section inside the tunnel, light weight, and material unit price. Assuming that the allowable temperature of concrete is 350 ° C. in consideration of the dehydration temperature of calcium hydroxide, the required thermal conductivity is 0.4 kcal / mh ° C. or less, preferably 0.25 kcal / mh, according to FIG. ° C or lower. In order to prevent cracks penetrating to the back surface as a volume stability at the time of fire and after extinguishment, a material having a linear change rate after firing at 1100 ° C. of −1.5% or less is preferable. Regarding the spall resistance, it is necessary that there is no large crack penetrating to the back surface after the spalling test.

【0014】軽量性については、作業性を考慮すると1
0kg以下が好ましいと思われる。内装材の広さについ
ては、小さ過ぎると作業能率が落ち、大き過ぎると取り
付け作業性に支障がでることがあるので、これを考慮す
ると600×600mm程度が妥当と考えられる。この
形状で10kg以下となるかさ比重は1.4未満であ
り、好ましくは1.1以下となるものが良い。
Regarding lightness, considering workability, 1
0 kg or less seems to be preferable. Regarding the size of the interior material, if it is too small, the work efficiency will be reduced, and if it is too large, the installation workability may be hindered. Therefore, considering this, about 600 × 600 mm is considered appropriate. The bulk specific gravity which becomes 10 kg or less in this shape is less than 1.4, preferably 1.1 or less.

【0015】常用時の外荷重としては、天井部には作用
しないが側壁部には清掃荷重が作用する。この荷重は、
道路公団発行の「トンネル内装工設計要領(案)」よる
と清掃荷重は50kgf/mと記載されている。この荷
重から内装材の必要強度を算出すると20kgf/cm
2になる(安全率は3とした)。
As a normal external load, the cleaning load does not act on the ceiling portion but acts on the side wall portion. This load is
According to the "Tunnel Interior Construction Design Guidelines (draft)" issued by the Highway Public Corporation, the cleaning load is described as 50 kgf / m. When the required strength of the interior material is calculated from this load, it is 20 kgf / cm
2 (safety factor is 3).

【0016】不燃性については、避難上著しく有害なガ
スの発生がないよう建設省告示第1828号に示される
基材試験及び表面試験を満足する必要がある。
With respect to nonflammability, it is necessary to satisfy the base material test and the surface test shown in Notification No. 1828 of the Ministry of Construction in order to prevent generation of gas which is extremely harmful for evacuation.

【0017】本発明に用いるアルミナセメントは、バイ
ンダーとして使用するものであり、含有するCaOに換
算して10〜15重量部になることが好ましい。10重
量部未満の場合は強度向上の効果は小さく、また、これ
に起因し耐スポール性も低下するので好ましくない。1
5重量部を越えると価格が高くなるため規定範囲外とし
た。アルミナセメントの種類は、上記CaO含有量を満
足しておれば特に他の制限を受けるものではなく、例え
ば、JIS R 2511に規定される第1種〜第5種
の耐火物用アルミナセメントの中から選択して使用する
ことができる。超微粉非晶質シリカは、アルミナセメン
トの中間温度における強度低下防止材として使用され
る。アルミナセメントのみの場合では、加熱時における
結晶水の脱水に伴う体積変化により強度が低下する。し
かしながら、超微粉非晶質シリカを併用すると、このシ
リカは0.3μm程度の極小径のものであるため反応性
が高く、C−A−S−H系の水和物あるいはゲルを形成
するため、結晶水の脱水温度が上昇し、且つブロードな
脱水特性を示し、強度低下が抑制される。また、この反
応により養生強度も高くなるため成形品の取り扱いが容
易となる。
The alumina cement used in the present invention is used as a binder and preferably accounts for 10 to 15 parts by weight in terms of CaO contained. If the amount is less than 10 parts by weight, the effect of improving the strength is small, and the spall resistance is also reduced due to this, which is not preferable. 1
If the amount exceeds 5 parts by weight, the price becomes high, so that it is out of the specified range. The type of alumina cement is not particularly limited as long as it satisfies the above-mentioned CaO content. For example, among the first to fifth types of alumina cement for refractories specified in JIS R 2511, You can choose from. Ultrafine powder amorphous silica is used as a material for preventing strength reduction at an intermediate temperature of alumina cement. In the case of using only alumina cement, the strength decreases due to a volume change accompanying dehydration of crystallization water during heating. However, when ultrafine amorphous silica is used in combination, the silica has a very small diameter of about 0.3 μm and thus has high reactivity, and forms a CASH hydrate or gel. In addition, the dehydration temperature of the water of crystallization rises, and broad dehydration characteristics are exhibited, and a decrease in strength is suppressed. Further, the curing strength is also increased by this reaction, so that the molded article can be easily handled.

【0018】超微粉非晶質シリカとしては、シリカフュ
ーム、マイクロシリカ等を用いることができる。超微粉
非晶質シリカの使用量は、5〜10重量部が好適であ
る。5重量部未満の場合は強度低下抑制効果が小さく耐
スポール性が低下し、更に反りも発生するので好ましく
ない。10重量部を越えると、過焼結となるため焼成収
縮が大となり耐スポール性も低下するので好ましくな
い。
As the ultrafine powder amorphous silica, silica fume, microsilica and the like can be used. The use amount of the ultrafine amorphous silica is preferably 5 to 10 parts by weight. If the amount is less than 5 parts by weight, the effect of suppressing a decrease in strength is small, the spall resistance is reduced, and furthermore, warpage occurs, which is not preferable. If the amount exceeds 10 parts by weight, oversintering occurs, so that firing shrinkage increases and spall resistance decreases, which is not preferable.

【0019】軽量骨材は、軽量化、低熱伝導率化を目的
に添加するものである。しかしながら、過剰添加時には
焼成収縮が増大するので、Na2OとK2Oの含有合量が
9重量%以下のものを4〜12重量部用いるが好適であ
る。Na2OとK2Oの含有合量が9重量%を越える骨材
を使用した場合、骨材自身が溶融するので好ましくな
い。使用量は4重量部未満では軽量化、断熱化の効果が
小さく、12重量部を越える過剰添加の場合には、組織
がポーラスとなるため中間強度の低下が大きく、また、
過焼結となるため焼成収縮が大となり耐スボール性も悪
化するので好ましくない。
The lightweight aggregate is added for the purpose of weight reduction and low thermal conductivity. However, since the firing shrinkage increases when excessively added, it is preferable to use 4 to 12 parts by weight of Na 2 O and K 2 O having a total content of 9% by weight or less. It is not preferable to use an aggregate containing more than 9% by weight of Na 2 O and K 2 O because the aggregate itself melts. If the amount is less than 4 parts by weight, the effect of weight reduction and heat insulation is small, and if it is excessively added over 12 parts by weight, the structure becomes porous and the decrease in intermediate strength is large.
Since oversintering results in large firing shrinkage and poor ball resistance, it is not preferable.

【0020】軽量骨材の種類は、Na2OとK2Oの含有
合量が上記の上限を超えなければ、特に限定されるもの
ではなく、例えば、黒曜石、真珠岩、松脂岩のような天
然ガラス岩の焼成発泡体として三井パーライト(三井金
属鉱業(株)製)、シラス中の火山ガラス粒子を焼成発
砲させたシラスバルーン(岡崎工業(株)製)、中空軽
量骨材としてマイクロセルズ(秩父小野田(株)製)及
びフィライト(日本フィライト(株)製)、軽量シャモ
ットとして大村Dシャモット(大村耐火(株)製)等が
ある。
The type of the lightweight aggregate is not particularly limited as long as the content of Na 2 O and K 2 O does not exceed the above-mentioned upper limit, and examples thereof include obsidian, perlite and pine stone. Mitsui perlite (made by Mitsui Mining & Smelting Co., Ltd.) as fired foam of natural glass rock, Shirasu balloon (made by Okazaki Kogyo Co., Ltd.) made by firing and firing volcanic glass particles in Shirasu, and Microcells (made of hollow lightweight aggregate) There are Chichibu Onoda Co., Ltd.) and Philite (Nippon Philite Co., Ltd.), and Omura D Chamotte (Omura Fire Inc.) as a lightweight chamotte.

【0021】本発明には、セピオライトとウォラストナ
イトの2種類の無機繊維を使用する。セピオライトは、
繊維補強、断熱性、軽量性及び成形時の保形性を付与す
るために使用するものであるが、単独使用では、多量に
使用した場合、加熱時に吸保水及び結晶水の脱水に伴う
強度低下、焼成収縮、反りの弊害が大きく、自ずと量的
制限を受け、断熱化及び軽量化の効果を十分に享受する
ことはできない。
In the present invention, two types of inorganic fibers, sepiolite and wollastonite, are used. Sepiolite is
It is used to provide fiber reinforcement, heat insulation, light weight, and shape retention during molding.However, when used alone, when used in large quantities, strength decreases due to dehydration of water absorption and dehydration of water during heating. In addition, there is a large adverse effect of firing shrinkage and warpage, and the amount is naturally limited, and the effects of heat insulation and weight reduction cannot be fully enjoyed.

【0022】一方、ウォラストナイトは強度向上、焼成
収縮抑制及び反り抑制の効果があるものの、かさ比重が
2.8〜3.0と重いため、断熱性、軽量性の点で不利
であり、また、成形時には繊維自身の抵抗が大のため、
成形ができないという欠点を有している。そこで、両繊
維の添加効果を最大限に発揮させ、相反する、断熱性、
軽量性、強度、容積安定性を高めるべく鋭意検討を行っ
た結果、ある特定の組み合わせの場合においてのみ可能
になるとの知見を得て、本発明を完成するに至った。
On the other hand, wollastonite has the effects of improving strength, suppressing sintering shrinkage, and suppressing warpage, but is disadvantageous in terms of heat insulation and lightness due to its heavy bulk specific gravity of 2.8 to 3.0. Also, the resistance of the fiber itself during molding is large,
It has the disadvantage that molding cannot be performed. Therefore, the effect of adding both fibers is maximized,
As a result of intensive studies to enhance the lightness, strength, and volume stability, the present inventors have found that it is possible only in a specific combination to complete the present invention.

【0023】セピオライトは、化学式(OH24(O
H)4Mg8Si1230・6〜8H2Oで表される珪酸マ
グネシウム化合物であり、結晶構造は粘土の分類上、一
次元構造粘土に分類される。したがって、構造上空間が
多いこと及びその空間に[OH]-を持っているため、
水の吸着力が高く自重の100〜120%もの水分を吸
保水する性質がある。したがって、無機補強繊維として
の機能の他に断熱性、軽量性としの機能を併備させるこ
とができる。即ち、成形時には含水状態を維持している
が、乾燥処置により吸保水が脱水し内部に微細な空隙を
残すため、軽量化及び断熱化を図ることができる。更
に、レオロジー的にはチクソトロピックな性質を有すた
め低圧で成形しても保形性を得ることができる。また、
上述した低圧成形の場合で均質な成形体を得るには混練
物をスリップ状にする必要があるが、この際、セピオラ
イトの保水力が高いためブリージングも抑制することが
できる。
Sepiolite has the chemical formula (OH 2 ) 4 (O
H) a magnesium silicate compound represented by the 4 Mg 8 Si 12 O 30 · 6~8H 2 O, the crystal structure on the classification of the clay, are classified into a one-dimensional structure clay. Therefore, [OH] is often structural space and in the space - because it has,
It has a high water adsorbing power and has a property of absorbing and retaining as much as 100 to 120% of its own weight. Therefore, in addition to the function as the inorganic reinforcing fiber, it is possible to provide a function of heat insulation and light weight. That is, although the water-containing state is maintained at the time of molding, the water absorption and dehydration is dehydrated by the drying treatment, and fine voids are left inside, so that weight reduction and heat insulation can be achieved. Furthermore, since it has rheologically thixotropic properties, shape retention can be obtained even when molded at low pressure. Also,
In the case of the above-mentioned low-pressure molding, it is necessary to make the kneaded material slip-like in order to obtain a homogeneous molded body. In this case, since the water retention capacity of sepiolite is high, breathing can be suppressed.

【0024】セピオライトは、平均繊維長が100μm
〜3mmであるものを10〜30重量部使用することが
好ましい。平均繊維長が100μm未満では加圧脱水成
形時の締まりが不十分となり、成形が不可となるかある
いは保形性が悪くなり厚み方向の胴膨れが発生するとい
う問題が生じる。3mmを越えると、吸保水及び結晶水
の脱水に起因して焼成収縮及び反りが大となること、耐
スポール性が低下すること、粉砕及び整粒が不完全とな
り、塊状のセピオライトが混入し製品の均質性を阻害す
ること等で好ましくない。使用量が10重量部未満の場
合は、熱伝導率が高くなること、繊維長が100μm未
満の場合と同様に成形が不可となるため等で好ましくな
い。30重量部を越える場合は、吸保水及び結晶水の脱
水に起因して中間強度の低下が大となるため好ましくな
く、更に過焼結となるため焼成収縮及び反りが大とな
る、耐スポール性が低下するので好ましくない。
Sepiolite has an average fiber length of 100 μm
It is preferable to use 10 to 30 parts by weight having a diameter of 3 to 3 mm. If the average fiber length is less than 100 μm, the tightening at the time of pressurized dehydration molding becomes insufficient, and molding becomes impossible, or the shape retention is deteriorated, causing a problem that bulging occurs in the thickness direction. If it exceeds 3 mm, the shrinkage and warpage of sintering will increase due to the dehydration of water and water of crystallization, the spall resistance will decrease, the crushing and sizing will be incomplete, and the bulk sepiolite will be mixed. It is not preferable because it impairs the homogeneity. If the amount is less than 10 parts by weight, the thermal conductivity becomes high, and molding becomes impossible as in the case where the fiber length is less than 100 μm. If the amount exceeds 30 parts by weight, the decrease in the intermediate strength due to the dehydration of the water for absorption and retention and the crystallization water is not preferable because it is unfavorable. Further, over-sintering leads to large firing shrinkage and warpage. Is undesirably reduced.

【0025】ウオラストナイトは、化学式CaSiO3
またはCaO・SiO2で表される珪酸カルシウ化合物
であり、βウォラストナイトの結晶構造は針状や長柱状
である。また、その形状は破砕されているため、長さ、
断面方向が不均一であり、具体的にはテーパーを有して
いたり、凹凸があったり、クサビ状であったりする。し
たがって、組織の中でクサビ効果を生じるため、硬化後
から中間温度域における強度向上、焼成収縮抑制、反り
抑制の効果がある。
Wollastonite has the chemical formula CaSiO 3
Alternatively, it is a calcium silicate compound represented by CaO.SiO 2 , and β wollastonite has a needle-like or long columnar crystal structure. Also, because the shape is crushed, length,
The cross-sectional direction is non-uniform, specifically, tapered, uneven, or wedge-shaped. Therefore, since a wedge effect is generated in the structure, there is an effect of improving strength, suppressing firing shrinkage, and suppressing warpage in an intermediate temperature range after curing.

【0026】ウォラストナイトは、平均繊維長が50〜
500μmであるウォラストナイトを2〜30重量部使
用することが好ましい。平均繊維長が50μm未満では
焼成収縮、反りの抑制効果が小さく、500μmを越え
る場合は成形時の締まりが悪いため強度は向上せず、耐
スポール性も低下するため好ましくない。
Wollastonite has an average fiber length of 50 to
It is preferable to use 2 to 30 parts by weight of wollastonite of 500 μm. If the average fiber length is less than 50 μm, the effect of suppressing sintering shrinkage and warpage is small, and if it exceeds 500 μm, the strength is not improved due to poor tightening during molding, and the spall resistance is undesirably reduced.

【0027】使用量が2重量部未満では焼成収縮、反り
の抑制効果が小さく、30重量部を越える場合は過焼結
となり焼成収縮が大になる、耐スポール性が低下する問
題が生じるため好ましくない。
If the amount is less than 2 parts by weight, the effect of suppressing firing shrinkage and warpage is small, and if it exceeds 30 parts by weight, oversintering will result in increased firing shrinkage and reduced spall resistance. Absent.

【0028】補強繊維としての有機繊維は、成形後強度
を向上せしめハンドリング時の割れ、亀裂の発生を防止
し、また、乾燥強度(製品強度)を向上させるために使
用するものである。有機繊維の素材としては、セメント
をバインダーとしているため、耐アルカリ性を具備する
ビニロン、ポリプロピレン、アラミド、ポリエチレン、
ポリアクリロニトロル、ポリアミドなどが好適である。
Organic fibers as reinforcing fibers are used to improve the strength after molding, prevent cracks and cracks from occurring during handling, and improve the dry strength (product strength). As a material of the organic fiber, since cement is used as a binder, vinylon, polypropylene, aramid, polyethylene having alkali resistance,
Polyacrylonitrile, polyamide and the like are preferred.

【0029】有機繊維の好適範囲は、平均繊維長が0.
5〜10mmであり使用量は0.5〜2重量部である。
平均繊維長が0.5mm未満では成形直後のハンドリン
グで折れが発生し、10mmを越える場合には混練中の
水分が過剰となり強度が低下し耐スポール性が悪化する
ので好ましくない。使用量が0.5重量部未満では成形
直後のハンドリングで折れが発生するため好ましくな
い。2重量部を越える場合は焼成後の空孔が多くなるの
で中間強度の低下率及び焼成収縮が大となり、耐スポー
ル性が低下するため好ましくない。
The preferred range of the organic fiber is such that the average fiber length is 0.1.
It is 5 to 10 mm and the used amount is 0.5 to 2 parts by weight.
If the average fiber length is less than 0.5 mm, breakage occurs in handling immediately after molding, and if it exceeds 10 mm, moisture during kneading becomes excessive and strength is reduced, resulting in poor spall resistance. If the amount used is less than 0.5 parts by weight, it is not preferable because breakage occurs in handling immediately after molding. If the amount exceeds 2 parts by weight, the number of voids after firing increases, so that the rate of decrease in intermediate strength and firing shrinkage increase, and the spall resistance decreases, which is not preferable.

【0030】有機繊維の中でも特にビニロンは種々の点
で優れた特性を示す。ビニロンは、鎖状高分子であるポ
リビニールアルコール(PVA)を原料としている。こ
のため、他の有機繊維に比較し、耐アルカリ性、繊維強
度(引張り強度15×103kgf/cm2)及びマトリ
ックスとの界面接着強度が良好なため、材料中に混入し
た時の補強効果に優れている。また、耐熱性については
製造過程において[OH]-を低減することで高めるこ
とができる。このため、成形直後から乾燥時に至るまで
高強度を達成することができ、また、常用時においても
強度の経年劣化は殆どなく安定した強度を維持できる。
更に、ビニロンは酸素、炭素、水素からなるPVAが原
料であるため、火災時の燃焼時においても窒素系、硫黄
系の有毒ガスを発生させることがなく、安全性の点でも
優れた繊維と言える。
Among the organic fibers, vinylon shows excellent characteristics in various points. Vinylon is made from polyvinyl alcohol (PVA), which is a chain polymer. For this reason, compared with other organic fibers, alkali resistance, fiber strength (tensile strength: 15 × 10 3 kgf / cm 2 ) and interfacial adhesive strength with the matrix are better, and the reinforcing effect when mixed into the material is improved. Are better. Further, the heat resistance can be increased by reducing [OH] in the manufacturing process. Therefore, high strength can be achieved from immediately after molding to the time of drying, and even during normal use, there is almost no deterioration of strength over time, and stable strength can be maintained.
Furthermore, since vinylon is a raw material of PVA composed of oxygen, carbon, and hydrogen, it does not generate nitrogen-based or sulfur-based toxic gas even during combustion in a fire, and can be said to be an excellent fiber in terms of safety. .

【0031】本発明の断熱性耐火物を製造するには、従
来の加圧脱水成形と同様の工程が採用され得る。例え
ば、加圧脱水成形法で、セピオライトの吸保持水機能を
利用するためには、低圧の方が良く、加圧力は5〜50
kgf/cm2が好ましい。加圧力が5kgf/cm2
満の場合は締まり不足のため成形体が得られず、50k
gf/cm2を越える場合は、セピオライトが含水した
水を必要以上に排水するため、かさ比重が大きくなった
り、断熱効果が小さくなる等の問題が生じ、更に、40
0kgf/cm2を越える場合には、乾燥後に亀裂の発
生が生じることがあり好ましくない。
In order to produce the heat-insulating refractory of the present invention, the same steps as those in the conventional pressure dehydration molding can be employed. For example, in order to utilize the absorption / retention water function of sepiolite in the pressure dehydration molding method, a lower pressure is better, and a pressing force is 5 to 50.
kgf / cm 2 is preferred. When the pressing force is less than 5 kgf / cm 2, a compact cannot be obtained due to insufficient tightening.
If it exceeds gf / cm 2 , the water containing sepiolite will be drained more than necessary, causing problems such as an increase in bulk specific gravity and a decrease in the heat insulating effect.
If it exceeds 0 kgf / cm 2 , cracks may occur after drying, which is not preferable.

【0032】また、軽量骨材の中にでもパーライトのよ
うな低強度の骨材については、高圧成形を行った場合骨
材自身が破壊することがあるため断熱性、軽量性を損な
うことのあるが、このような骨材を使用する場合には加
圧力は50kgf/cm2以下にすると良い。
In the case of low-strength aggregates such as pearlite even in the case of lightweight aggregates, when high-pressure molding is performed, the aggregates themselves may be destroyed, which may impair the heat insulating properties and lightness. However, when such an aggregate is used, the pressing force is preferably set to 50 kgf / cm 2 or less.

【0033】かくして、本発明による上述した複合効果
を以て初めて断熱性、容積安定性、耐スポール性、強
度、軽量性、不燃性を具備した内装材を安価に製造する
ことが可能になる。
Thus, it is possible to produce inexpensively an interior material having heat insulation, volume stability, spall resistance, strength, light weight, and noncombustibility only for the above-described combined effects according to the present invention.

【0034】[0034]

【実施例】実施例及び比較例を表1〜6に示すが、本発
明はこれに限るものではない。
EXAMPLES Examples and comparative examples are shown in Tables 1 to 6, but the present invention is not limited thereto.

【0035】表1〜6に示す実施例及び比較例の配合
に、タップフローが約200〜230mmになるよう水
を添加しスリップ状の混練物を得た。
Water was added to the formulations of Examples and Comparative Examples shown in Tables 1 to 6 so that the tap flow became about 200 to 230 mm to obtain a slip-shaped kneaded product.

【0036】得られた混練物を40×160mm(曲げ
強さ、かさ比重、線変化率、反り測定用)、114×2
30mm(熱伝導率測定用)、300×300mm(耐
スポール性測定用)、40×40mm(基材試験用)、
220×220mm(表面試験用)の成形枠の中に入
れ、10kgf/cm2の圧力で加圧脱水成形し、常温
で16〜20時間養生し、硬化させた成形板を110°
Cで24時間乾燥して断熱性耐火物を得た(厚みは基材
試験用が50mm、その他が20〜25mm程度)。
The obtained kneaded material was measured for 40 × 160 mm (for measuring bending strength, bulk specific gravity, linear change rate, warpage), 114 × 2.
30 mm (for measuring thermal conductivity), 300 × 300 mm (for measuring spall resistance), 40 × 40 mm (for testing substrate),
Put into a 220 × 220 mm (for surface test) molding frame, press-dehydrate under pressure of 10 kgf / cm 2 , cure at room temperature for 16 to 20 hours, and cure the cured plate at 110 °
C was dried for 24 hours to obtain a heat-insulating refractory (the thickness was about 50 mm for the substrate test and about 20 to 25 mm for the others).

【0037】断熱性耐火物の評価は以下の方法で行っ
た。
The evaluation of the heat-insulating refractory was performed by the following method.

【0038】曲げ強さ:JIS R 2553(キャス
タブル耐火物の強さ試験方法) かさ比重:かさ比重は以下に示す真空法にて測定した。
Bending strength: JIS R 2553 (Test method for strength of castable refractories) Bulk specific gravity: Bulk specific gravity was measured by a vacuum method shown below.

【0039】(1)試料を110°Cで恒量になるまで
乾燥し、乾燥質量W1(g)とする。 (2)試料を水銀差圧≦7mmで減圧脱気し、3.8k
gf/cm2の圧力下で20分間飽油させた後、大気圧
に戻して2時間保持する。
(1) The sample is dried at 110 ° C. until a constant weight is obtained, and a dry mass W1 (g) is obtained. (2) Degas the sample under reduced pressure at a mercury differential pressure ≤ 7 mm, and
After being saturated with oil for 20 minutes under a pressure of gf / cm 2 , the pressure is returned to the atmospheric pressure and maintained for 2 hours.

【0040】(3)飽油試料の油中質量W2(g)を測
定する。
(3) The mass W2 (g) of the oil-saturated sample in oil is measured.

【0041】(4)飽油試料を油中から取り出し、飽油
質量W3(g)を測定する。
(4) An oil-saturated sample is taken out of the oil, and the oil-saturated mass W3 (g) is measured.

【0042】 かさ比重={W1/(W3−W2)}×油の比重 線変化率:JIS R 2554 (キャスタブル耐火
物の線変化率試験方法) 反り :JIS R 2203 (耐火れんがのそりの
測定方法) 熱伝導率:熱伝導率λ(Kcal/mh°C)は以下に
示す熱流法にて測定した。
Bulk specific gravity = {W1 / (W3-W2)} × specific gravity of oil Linear change rate: JIS R 2554 (Test method for linear change rate of castable refractories) Warpage: JIS R 2203 (Measurement method of refractory brick warpage) ) Thermal conductivity: Thermal conductivity λ (Kcal / mh ° C) was measured by the following heat flow method.

【0043】図2は測定時の概要を示す図である。FIG. 2 is a diagram showing an outline at the time of measurement.

【0044】(1) 試料の加熱面側に測温用溝を設
け、加熱面と測温溝間の厚みd(m)を測る。
(1) A groove for temperature measurement is provided on the heating surface side of the sample, and the thickness d (m) between the heating surface and the temperature measurement groove is measured.

【0045】(2) この溝にR型熱電対を耐火モルタ
ルを用いて取り付け、試験炉にセットする。
(2) An R-type thermocouple is attached to this groove using a refractory mortar, and set in a test furnace.

【0046】(3) 毎分6°Cで昇温し、炉内温度が
1000°Cになった時の加熱面温度T1(°C)、放
熱面温度T2(°C)、熱流密度Q(Kcal/m
2h)を測定する。
(3) The temperature rises at 6 ° C. per minute, and the heating surface temperature T 1 (° C.), the heat radiation surface temperature T 2 (° C.), and the heat flow density Q (when the furnace temperature reaches 1000 ° C.) Kcal / m
2 ) Measure h).

【0047】熱伝導率=(Q・d)/(T1−T2) 耐スポール性:スポーリングテストは以下に示す方法で
実施した。
Thermal conductivity = (Q · d) / (T1−T2) Spall resistance: The spall test was carried out by the following method.

【0048】図3及び図4はスポーリングテストの概要
を示す図で、 (1) 試料を蓋にセットする。
FIGS. 3 and 4 show the outline of the spalling test. (1) A sample is set on a lid.

【0049】(2) 1100°Cで保定した電気炉に
試料付きの蓋を取り付け1時間加熱する。
(2) A lid with a sample was attached to an electric furnace maintained at 1100 ° C. and heated for 1 hour.

【0050】(3) 加熱後、直ぐに蓋を外し10分間
噴霧状の水で試料を水冷した後放冷する。
(3) Immediately after the heating, the lid is removed, and the sample is water-cooled with spray water for 10 minutes and then left to cool.

【0051】基材試験及び表面試験:建設省告示第18
28号(基材試験方法、表面試験方法) 表1は、アルミナセメントと超微粉非晶質シリカの量的
影響を示した例である。
Base material test and surface test: Notification of Ministry of Construction No. 18
No. 28 (substrate test method, surface test method) Table 1 is an example showing the quantitative effects of alumina cement and ultrafine amorphous silica.

【0052】[0052]

【表1】 表1の実施例1〜5に示す様に、適量のセメントと超微
粉非晶質シリカを使用した場合には、乾燥後の強度が高
く焼成後の強度低下率が小さいことから、耐スポーリン
グ性は良好であった。これに対して、セメント量が少な
い比較例1の場合は、強度が低いため耐スポーリング性
が不良であった。また、超微粉非晶質シリカ量が少ない
比較例2と、使用しなかった比較例3は、セメントボン
ドの補強効果に劣るため焼成後の強度低下率が大きく、
耐スポーリング性は不良であった。また、逆に、超微粉
非晶質シリカ量が多い比較例4の場合は、線変化率が大
きく過焼結傾向を示しており耐スポーリング性は不良で
あった。セメントをポルトランドセメントに置換した比
較例5は、比較例1〜3と同様、強度が低く、更に焼成
後の強度低下率が大きかったため耐スポーリング性は不
良であった。
[Table 1] As shown in Examples 1 to 5 in Table 1, when an appropriate amount of cement and ultrafine amorphous silica were used, the strength after drying was high and the rate of decrease in strength after firing was small. The properties were good. On the other hand, in the case of Comparative Example 1 in which the amount of cement was small, the spalling resistance was poor due to low strength. Further, Comparative Example 2 in which the amount of the ultrafine powder amorphous silica was small and Comparative Example 3 in which the amount was not used were inferior in the reinforcing effect of the cement bond, so that the strength reduction rate after firing was large,
The spalling resistance was poor. Conversely, in the case of Comparative Example 4 in which the amount of the ultrafine powdered amorphous silica was large, the linear change rate was large, indicating an oversintering tendency, and the spalling resistance was poor. Comparative Example 5, in which the cement was replaced with Portland cement, had low strength and a large rate of decrease in strength after firing, as in Comparative Examples 1 to 3, and thus had poor spalling resistance.

【0053】表2は軽量骨材のアルカリ成分及び使用量
の影響を示したものである。
Table 2 shows the influence of the alkali component and the amount of the lightweight aggregate.

【0054】[0054]

【表2】 表2の実施例6,2,7に示す様に、適正量以下のアル
カリ量を含有する軽量骨材を適量使用した場合には、強
度低下及び過焼結を抑制しつつ軽量化、低熱伝導率化を
図ることができたが、軽量骨材の使用量が少ない比較例
6の場合にはかさ比重は大きく、熱伝導率は高かった。
逆に、使用量が多いか、あるいはアルカリ量が高い軽量
骨材を使用し、総計アルカリ量が適正量を越えた比較例
7,8の場合は、過焼結となり耐スポーリング性が悪化
した。
[Table 2] As shown in Examples 6, 2, and 7 in Table 2, when an appropriate amount of a lightweight aggregate containing an alkali amount equal to or less than an appropriate amount is used, a reduction in weight and a reduction in heat conduction while suppressing strength reduction and oversintering are suppressed. Although the ratio could be increased, the bulk specific gravity was large and the thermal conductivity was high in the case of Comparative Example 6 in which the amount of the lightweight aggregate used was small.
Conversely, in the case of Comparative Examples 7 and 8 in which a large amount of used or a lightweight aggregate having a high alkali amount was used and the total alkali amount exceeded an appropriate amount, oversintering was caused and the spalling resistance was deteriorated. .

【0055】表3は、セピオライトの繊維長及び使用量
の影響を示したものである。
Table 3 shows the effect of the fiber length and the amount of sepiolite used.

【0056】[0056]

【表3】 表3の実施例2,8,9〜11に示す様に、適正な長さ
及び量のセピオライトを使用した場合には、必要な強
度、かさ比重、熱伝導率を有していたが、比較例9,1
0に示す様に、繊維長が短いあるいは長い場合には均質
な製品ができないか、あるいは成形ができない等の問題
があった。比較例11〜13に見られる様に、セピオラ
イト量が少ない場合は成形ができない、必要なかさ比重
及び熱伝導率が確保できない等の問題があり、逆に多い
場合は過焼結傾向を示し耐スポーリング性が低下した。
[Table 3] As shown in Examples 2, 8, 9 to 11 in Table 3, when the proper length and amount of sepiolite were used, the required strength, bulk specific gravity, and thermal conductivity were obtained. Example 9.1
As shown in FIG. 0, when the fiber length is short or long, there is a problem that a homogeneous product cannot be formed or molding cannot be performed. As can be seen from Comparative Examples 11 to 13, when the amount of sepiolite is small, there is a problem that molding is not possible, and the necessary bulk specific gravity and thermal conductivity cannot be ensured. Polling has been reduced.

【0057】表4は、ウォラストナイトの繊維長及び使
用量の影響を示したものである。
Table 4 shows the influence of the fiber length and the amount of wollastonite used.

【0058】[0058]

【表4】 表4の実施例12,13,2,14〜16に示す様に、
適正な長さ及び量のウオラストナイトを使用した場合に
は十分な強度向上及び焼成収縮抑制効果があったが、適
正長さより長い比較例14の場合は強度向上効果は不十
分であった。また、適正長さより短い、或いは添加量が
少ない比較例15〜16の場合はセピオライトの焼成収
縮を十分抑制することができないため耐スポーリング性
が悪化する問題を解消できず、また焼成後の反りも発生
した。ウオラストナイトを多量に使用した比較例17の
場合は、マトリックスに対しフラックスとして作用する
ため過焼結となり耐スポーリング性は劣化した。補強繊
維としてSiC繊維を使用した比較例18の場合は中間
強度が劣化するため耐スポーリング性は悪かった。表5
は、有機繊維の長さ及び使用量の影響を示したものであ
る。
[Table 4] As shown in Examples 12, 13, 2, 14 to 16 in Table 4,
When wollastonite of an appropriate length and amount was used, there was a sufficient strength improvement and firing shrinkage suppression effect, but in the case of Comparative Example 14 longer than the appropriate length, the strength improvement effect was insufficient. Further, in Comparative Examples 15 to 16 in which the length is shorter than the appropriate length or the amount of addition is small, the problem that the spalling resistance is deteriorated cannot be solved because the firing shrinkage of sepiolite cannot be sufficiently suppressed, and the warpage after firing. Also occurred. In the case of Comparative Example 17 in which a large amount of wollastonite was used, it acted as a flux to the matrix, resulting in oversintering and poor spalling resistance. In the case of Comparative Example 18 using SiC fiber as the reinforcing fiber, the spalling resistance was poor because the intermediate strength was deteriorated. Table 5
Shows the effect of the length of the organic fiber and the amount used.

【0059】[0059]

【表5】 表5の実施例17,2,18〜22に示す様に、適正な
補強繊維を用いた場合には焼成強度の低下を抑制しつつ
十分な乾燥強度を得ることができたが、繊維の長さが短
い、或いは使用量が少ない比較例19,21の場合は成
形直後の強度が低くハンドリング時に折れが発生した。
繊維長が長い、或いは使用量が多い比較例20,22の
場合は強度が低い或いは焼成後の強度低下率が大のた
め、耐スポーリング性が悪化した。
[Table 5] As shown in Examples 17, 2, and 18 to 22 of Table 5, when the appropriate reinforcing fiber was used, a sufficient dry strength could be obtained while suppressing a decrease in the firing strength. In the case of Comparative Examples 19 and 21 having a short length or a small amount of use, the strength immediately after molding was low, and breakage occurred during handling.
In the case of Comparative Examples 20 and 22 where the fiber length was long or the amount used was large, the spalling resistance deteriorated because the strength was low or the strength reduction rate after firing was large.

【0060】表6は、本発明品の不燃性の試験を実施し
た結果の一例を示したものである。
Table 6 shows an example of the results of the nonflammability test of the product of the present invention.

【表6】 表6の実施例に示す様に、有害ガスの問題はなかった。[Table 6] As shown in the examples in Table 6, there was no problem of harmful gas.

【0061】その他、本発明の実施例2と5を流し込み
材及びパッチング材として施工したが問題なく使用でき
た。
In addition, Examples 2 and 5 of the present invention were applied as a casting material and a patching material, but could be used without any problem.

【0062】本実施例に示した様に、本特許構成要件の
組み合わせにおいてのみ初めて低熱伝導率、低かさ比重
でありながら、高強度で焼成収縮、反りが小さく、しか
も耐スポール性に優れるという結果を示した。また、著
しい有害ガスの発生もなかった。
As shown in the present embodiment, for the first time only in the combination of the constitutional requirements of the present invention, it is possible to obtain high strength, small firing shrinkage, small warpage, and excellent spall resistance while having low thermal conductivity and low bulk specific gravity. showed that. In addition, no significant harmful gas was generated.

【0063】以上のように、本発明品は混練時の添加水
分を調整することにより、通常の流し込み施工の場合と
同様、型枠に流し込んで成形することができ、豆板等の
充填不足が無い良好な施工体を得ることができた。ま
た、同様に水分を変更することにより軟度を調整し、隙
間部へのパッチング作業を行うこともできた。更に、養
生時間の短縮化のために硬化後、蒸気養生、オートクレ
ーブ養生を行うことも可能である。但し、オートクレー
ブ養生の場合には繊維の耐熱温度以上で実施した場合に
は強度が低下するので、耐熱温度以下で実施する必要が
ある。
As described above, the product of the present invention can be formed by pouring into a mold as in the case of ordinary pouring by adjusting the amount of water added at the time of kneading, and there is no insufficient filling of beans and the like. A good construction body could be obtained. Similarly, the softness was adjusted by changing the water content, and the patching work to the gap could be performed. Furthermore, after curing, steam curing and autoclave curing can be performed to shorten the curing time. However, in the case of curing in an autoclave, the strength is reduced when the temperature is higher than the heat resistant temperature of the fiber.

【0064】[0064]

【発明の効果】本発明は、高断熱化及び軽量化を図った
時の強度低下、焼成収縮及び反りの弊害が最小になるよ
うにセピオライト及びウォラストナイトと軽量骨材を配
合しており、また、高強度化のためにバインダー部とし
てアルミナセメントと超微粉非晶質シリカの併用を行い
ボンドを強固に形成させ、更に成形直後から乾燥後に至
るまで強度の補填として有機繊維を使用しているので、
断熱性、容積安定性、耐スポール性、強度、軽量性の面
で優れた特性を示し、更に有害ガスの発生に対しても安
全上優れている。
According to the present invention, sepiolite and wollastonite and a lightweight aggregate are blended so as to minimize the reduction in strength when heat insulation and weight are reduced, and to minimize the adverse effects of firing shrinkage and warping. In addition, alumina cement and ultrafine amorphous silica are used together as a binder part for high strength to form a bond firmly, and organic fibers are used as a supplement of strength from immediately after molding to after drying. So
It shows excellent properties in terms of heat insulation, volume stability, spall resistance, strength and light weight, and is also excellent in safety against generation of harmful gases.

【0065】本発明品は、工業炉用、建築用のみならず
トンネル用として従来の内装材では満足することができ
なかった性能の全てを備えた材料であり、例えば、従来
内装材をトンネルに被覆した場合、断熱性が不十分なこ
とに起因した背面構造部材の熱的損傷の誘発、火災時の
被熱により内装材に発生した亀裂、反り及び剥落に起因
して背面構造物の断熱保護が不完全になる問題、消火時
の被水の影響として内装材に熱的スポールが発生し脱落
するという問題を全て解決できる満足し得る材料であ
り、且つ軽量でありながら常用強度が高いためトンネル
用等建材としても特に有用であり、また安全上問題なく
使用することができる。
The product of the present invention is a material having all the performances that cannot be satisfied with the conventional interior materials for industrial furnaces and buildings as well as for tunnels. When covered, thermal damage to rear structural members caused by insufficient heat insulation, thermal insulation protection of rear structures due to cracks, warpage, and spalling of interior materials due to heat during fire Is a satisfactory material that can solve all the problems of imperfections, thermal spalling and falling off of the interior material as the effect of being exposed to water during fire extinguishing. It is particularly useful as a building material for use and can be used without any safety problems.

【0066】更に、本発明品は簡易な加圧脱水成形法で
成形できるため、従来の押し出し成形機で示される様な
高コストの成形設備を必要とせず、また該成形時に生じ
る反りに起因した歩留まり低下による製造コスト増を招
かない等経済的にも優れていることから、本発明は工業
的に非常に有益である。
Further, since the product of the present invention can be molded by a simple pressure dehydration molding method, it does not require high-cost molding equipment as shown by a conventional extrusion molding machine, and is caused by warpage generated during the molding. The present invention is industrially very useful because it is economically superior, for example, it does not cause an increase in manufacturing cost due to a decrease in yield.

【0067】本発明品は混練軟度を添加時の水分のみで
容易に調整できるため、加圧脱水成形のみならず、流し
込み成形、パッチング作業もできるので、トンネル等に
おける異形状部、複雑形状部などへの流し込み、あるい
は電気配線部などへ充填材としてパッチングを行うこと
で、これらの部位の断熱保護が簡単に確実にできる。
Since the kneading softness of the product of the present invention can be easily adjusted only by the water content at the time of addition, not only pressure dehydration molding but also casting molding and patching work can be performed. Insulation protection or the heat insulation protection of these parts can be easily and reliably performed by pouring into the electrical wiring section or the like as a filler.

【図面の簡単な説明】[Brief description of the drawings]

【図1】トンネル構造物のコンクリート表面の温度に及
ぼす内装材の熱伝導率と厚みの影響を示すグラフ。
FIG. 1 is a graph showing the influence of the thermal conductivity and thickness of an interior material on the temperature of a concrete surface of a tunnel structure.

【図2】熱伝導率測定装置の概略図である。FIG. 2 is a schematic diagram of a thermal conductivity measuring device.

【図3】スポーリングテスト加熱時状況を示す概略図で
ある。
FIG. 3 is a schematic view showing a situation during a spalling test heating.

【図4】スポーリングテスト冷却時状況を示す概略図で
ある。
FIG. 4 is a schematic view showing a situation at the time of a spalling test cooling.

【符号の説明】[Explanation of symbols]

1.電気炉 2.発熱体 3.試料 4.電気炉制御熱電対 5.試料の加熱面測温用溝 6.センサー(試験片の放熱面温度測定、熱流密度測
定) 7.蓋 8.噴水装置
1. Electric furnace 2. Heating element 3. Sample 4. 4. Electric furnace control thermocouple 5. Heating surface temperature measurement groove of sample 6. Sensor (measurement of temperature of heat radiating surface of test piece, measurement of heat flow density) Lid 8. Fountain equipment

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI E21D 11/04 E21D 11/04 Z 11/10 11/10 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI E21D 11/04 E21D 11/04 Z 11/10 11/10 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セピオライト、ウォラストナイト及び補
強繊維を含む耐火物中に、アルミナセメントをCaOと
して11〜15重量部、超微粉非晶質シリカを5〜10
重量部、成分中のNa2O及びK2Oの合量が9重量%以
下である軽量骨材を4〜12重量部含有する断熱性耐火
物。
In a refractory containing sepiolite, wollastonite and reinforcing fibers, 11 to 15 parts by weight of alumina cement as CaO and 5 to 10 parts of ultrafine amorphous silica are used.
Parts, Na 2 O and K 2 O thermal insulation refractories containing 4 to 12 parts by weight of the total amount is lightweight aggregate is less than 9% by weight of in the component.
【請求項2】 平均繊維長が100μm〜3mmである
セピオライトを10〜30重量部、平均繊維長が50〜
500μmであるウォラストナイトを2〜30重量部、
及び平均繊維長が0.5〜10mmである補強繊維を
0.5〜2重量部含有する請求項1記載の断熱性耐火
物。
2. Sepiolite having an average fiber length of 100 μm to 3 mm is 10 to 30 parts by weight, and the average fiber length is 50 to
2 to 30 parts by weight of wollastonite of 500 μm,
The heat-insulating refractory according to claim 1, further comprising 0.5 to 2 parts by weight of a reinforcing fiber having an average fiber length of 0.5 to 10 mm.
【請求項3】 補強繊維がビニロン繊維である請求項1
又は2記載の断熱性耐火物。
3. The method according to claim 1, wherein the reinforcing fibers are vinylon fibers.
Or a heat-insulating refractory according to 2.
JP9114101A 1997-05-01 1997-05-01 Insulating refractories Expired - Fee Related JP2958285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9114101A JP2958285B2 (en) 1997-05-01 1997-05-01 Insulating refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9114101A JP2958285B2 (en) 1997-05-01 1997-05-01 Insulating refractories

Publications (2)

Publication Number Publication Date
JPH10310477A true JPH10310477A (en) 1998-11-24
JP2958285B2 JP2958285B2 (en) 1999-10-06

Family

ID=14629152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9114101A Expired - Fee Related JP2958285B2 (en) 1997-05-01 1997-05-01 Insulating refractories

Country Status (1)

Country Link
JP (1) JP2958285B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002028799A1 (en) * 2000-10-05 2002-04-11 Promat International N.V. Fire-proof material
JP2006306713A (en) * 2005-03-31 2006-11-09 Nichias Corp Indeterminate heat insulating material composition
JP2007197264A (en) * 2006-01-27 2007-08-09 Nichias Corp Inorganic fiber molding
JP2008081360A (en) * 2006-09-27 2008-04-10 Nichias Corp Monolithic refractory molding material and monolithic refractory molded product
JP2008247720A (en) * 2007-03-30 2008-10-16 Nichias Corp Monolithic refractory forming material and monolithic refractory formed body
KR101007915B1 (en) 2010-04-15 2011-01-14 엔아이테크 주식회사 Disc for disc roll for high temperature furnace and disc roll for high temperature furnace manufuactured by the same disc
CN101973750A (en) * 2010-10-21 2011-02-16 童金荣 Inorganic heat-insulating material and preparation method thereof
KR20160114512A (en) 2015-03-24 2016-10-05 스미토모 오사카 세멘토 가부시키가이샤 Inorganic anchor material and method for anchoring anchor bar using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3801013B2 (en) * 2001-10-26 2006-07-26 新日本製鐵株式会社 Fireproof panel for tunnel, fireproof covering structure in tunnel, and construction method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002028799A1 (en) * 2000-10-05 2002-04-11 Promat International N.V. Fire-proof material
US7101614B2 (en) 2000-10-05 2006-09-05 Promat International N.V. Fire-proof material
JP2006306713A (en) * 2005-03-31 2006-11-09 Nichias Corp Indeterminate heat insulating material composition
JP4658845B2 (en) * 2005-03-31 2011-03-23 ニチアス株式会社 Amorphous insulation composition
JP2007197264A (en) * 2006-01-27 2007-08-09 Nichias Corp Inorganic fiber molding
JP4716883B2 (en) * 2006-01-27 2011-07-06 ニチアス株式会社 Inorganic fiber molded body
JP2008081360A (en) * 2006-09-27 2008-04-10 Nichias Corp Monolithic refractory molding material and monolithic refractory molded product
JP2008247720A (en) * 2007-03-30 2008-10-16 Nichias Corp Monolithic refractory forming material and monolithic refractory formed body
KR101007915B1 (en) 2010-04-15 2011-01-14 엔아이테크 주식회사 Disc for disc roll for high temperature furnace and disc roll for high temperature furnace manufuactured by the same disc
CN101973750A (en) * 2010-10-21 2011-02-16 童金荣 Inorganic heat-insulating material and preparation method thereof
KR20160114512A (en) 2015-03-24 2016-10-05 스미토모 오사카 세멘토 가부시키가이샤 Inorganic anchor material and method for anchoring anchor bar using the same

Also Published As

Publication number Publication date
JP2958285B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US4273879A (en) Intumescent fire retardant composites
KR101021467B1 (en) A manufacturing method ofcomposition for adiabatic material with high fire resistance
US20140047999A1 (en) Acid and high temperature resistant cement composites
JP2958285B2 (en) Insulating refractories
KR101383875B1 (en) A MANUFACTURING METHOD OF COMPOSITION FOR ADIABATIC MATERIAL WITH inorganic porous material
KR20060118073A (en) Refractory and adiabatic cement mortar composition
GB1604072A (en) Intumescent fire retardant composites
JP4828586B2 (en) Refractory construction method
WO1996030316A1 (en) Light weight sprayable tundish lining composition
JP3206905B2 (en) Insulating refractory containing anhydrous inorganic fiber
JP5465396B2 (en) Low thermal conductivity powder composition for heat insulation castable
JPH07300913A (en) Light weight heat insulating fire proofing panel
US20190322581A1 (en) Insulating, refractory molded body, especially plate, and process for its manufacture and its usage
JP7449701B2 (en) Geopolymer-like cured body
US4514531A (en) Monolithic refractories comprising a hydrocolloid
CN114981509A (en) Refractory heat insulating panel and refractory heat insulating structure
US20190381344A1 (en) Fire Protection Boards And Structures Protected By Such Boards
CN109414758B (en) Plate, in particular cover plate for molten metal, method for the production thereof and use thereof
JP2004155643A (en) Inorganic foaming composition
KR102001000B1 (en) Fire resistance method for concrete structure and the fire resistance material
CN215373517U (en) High-strength wear-resistant silicon carbide-combined refractory brick
KR101998773B1 (en) Manufacturing method of the internal airfoil slab coated with the refractory mortar
JP4022661B2 (en) Fiber reinforced composite heat-resistant molded body
JP2007083715A (en) Nonflammable balloon panel and its production method
EP4071125A1 (en) Composition of heat-insulating lightweight composite material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees