JPH10309773A - Photocatalytic sheet - Google Patents

Photocatalytic sheet

Info

Publication number
JPH10309773A
JPH10309773A JP9135886A JP13588697A JPH10309773A JP H10309773 A JPH10309773 A JP H10309773A JP 9135886 A JP9135886 A JP 9135886A JP 13588697 A JP13588697 A JP 13588697A JP H10309773 A JPH10309773 A JP H10309773A
Authority
JP
Japan
Prior art keywords
intermediate layer
sheet
photocatalyst
layer
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9135886A
Other languages
Japanese (ja)
Inventor
Tadanori Domoto
忠憲 道本
Takayuki Hiyori
隆之 日和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP9135886A priority Critical patent/JPH10309773A/en
Publication of JPH10309773A publication Critical patent/JPH10309773A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently execute antimicrobial, fungus removal, antifouling, deodorizing, purifying treatment by decomposing action of active photocatalytic fine particles by providing a photocatalytic fine particle carrying layer on a polymer sheet via an inorganic intermediate layer having specific oxygen permeability. SOLUTION: In the photocatalytic sheet, a thickness of an inorganic intermediate layer 2 is formed in an ultra-thin film of 10Å to several μm. And, shortest distance between photocatalytic fine particles of a photocatalytic fine particle carrying layer 3 and a polymer sheet 1 becomes extremely near distance of an order of 10Å so that the sheet 1 might be decomposed to be gasified by the activated particles. However, even if the gas is generated in the sheet 1, gas permeability of the layer 2 is set to low gas permeability of 20 cc/m<2> .24 hr or less in terms of oxygen permeability, and hence the possibility that pores of the layer 3 are filled with the decomposed gas can be excluded. And, the outdoor air can be sufficiently approached to the particles to efficiently execute antimicrobial and fungus removal by the particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は抗菌、除菌、防汚、
防臭、浄化等に使用される光触媒シ−トに関するもので
ある。
TECHNICAL FIELD The present invention relates to antibacterial, antibacterial, antifouling,
The present invention relates to a photocatalyst sheet used for deodorization and purification.

【0002】[0002]

【従来の技術】酸化物半導体である酸化チタン等の光触
媒微粒子にバンドギャップ以上のエネルギ−を有する光
を照射すると、励起により電子及び正孔が発生され、表
面に近接した有機物や微生物が酸化により分解され、無
機酸化物においては、最終酸化物にまで酸化されるに至
る。そこで、この光触媒微粒子を支持基材の表面にシリ
カ等の無機質バインダ−で担持させた光触媒シ−トを所
定の場所に配設し、空気中に浮遊する細菌や臭気性ガス
を分解して抗菌、除菌、防汚、防臭、浄化等を行うこと
が提案されている。而るに、この光触媒シ−トの支持基
材に高分子シ−トを使用し得れば、高分子シ−トの可撓
性のために取扱が容易となり、コストの低廉化を図り
得、有利である。
2. Description of the Related Art When photocatalytic fine particles such as titanium oxide, which is an oxide semiconductor, are irradiated with light having an energy higher than the band gap, electrons and holes are generated by excitation, and organic substances and microorganisms close to the surface are oxidized. It is decomposed and, in the case of inorganic oxides, is oxidized to the final oxide. Accordingly, a photocatalyst sheet in which the photocatalyst fine particles are supported on the surface of a supporting base material by an inorganic binder such as silica is disposed at a predetermined place, and bacteria and odorous gas floating in the air are decomposed to decompose antibacterial substances. It has been proposed to perform sterilization, antifouling, deodorization, purification, and the like. However, if a polymer sheet can be used as a supporting base material of the photocatalyst sheet, handling becomes easy due to the flexibility of the polymer sheet, and cost can be reduced. Is advantageous.

【0003】[0003]

【発明が解決しようとする課題】この光触媒シ−トにお
いては、光触媒微粒子を支持シ−ト上に固定しているバ
インダ−(シリカを主成分とする無機質バインダ−)層
が多孔質化されて光触媒微粒子と空気との充分な接触が
図られている。しかしながら、本発明者等の検討結果に
よれば、光触媒シ−トの支持基材に高分子シ−トを使用
すると、無機質基材(ガラス、セラミックス、タイル、
金属、セメント等)を使用する場合に較べ、分解性能の
低下が避けられない。
In this photocatalyst sheet, a binder (an inorganic binder mainly composed of silica) layer which fixes photocatalyst fine particles on a support sheet is made porous. Sufficient contact between the photocatalyst fine particles and air is achieved. However, according to the study results of the present inventors, when a polymer sheet is used as a support base material for a photocatalyst sheet, an inorganic base material (glass, ceramic, tile,
Degradation performance is inevitably reduced as compared with the case of using metal, cement, etc.).

【0004】その原因は一概には論じ難いが、光触媒微
粒子に近接している高分子シ−ト部分が活性化された光
触媒微粒子のために分解されてガスを発生し、このガス
が上記多孔質の孔内にトラップされ、このトラップガス
によって外部の空気と光触媒微粒子との接触が妨げられ
ることが一原因であると推定される。
[0004] Although the cause is generally difficult to discuss, the polymer sheet portion close to the photocatalyst fine particles is decomposed by the activated photocatalyst fine particles to generate gas, and this gas is generated by the above-mentioned porous material. It is presumed that one of the causes is that the trapped gas hinders contact between the external air and the photocatalyst fine particles.

【0005】本発明の目的は、支持基材に高分子シ−ト
を用いるにもかかわらず、活性光触媒微粒子の分解作用
による抗菌、除菌、防汚、防臭、浄化等を効率よく行わ
せ得る光触媒シ−トを提供することにある。
[0005] An object of the present invention is to make it possible to efficiently perform antibacterial, disinfecting, antifouling, deodorizing, purifying, etc. by the decomposing action of active photocatalyst fine particles, even though a polymer sheet is used as a supporting substrate. An object of the present invention is to provide a photocatalyst sheet.

【0006】[0006]

【課題を解決するための手段】本発明に係る光触媒シ−
トは、酸素透過率が20cc/m2・24hr以下の無機質中間層
を介して高分子シ−ト上に光触媒微粒子担持層を設けた
ことを特徴とする構成であり、無機質中間層の厚みは数
10Åm〜数μmにすることができる。この無機質中間
層には、珪素化合物層または金属イオンで不活性化され
た酸化チタンと珪素化合物との混合物から成る層を使用
でき、その形成には、150℃以下の温度のもとでの蒸
着法またはゾル−ゲル法を使用できる。
The photocatalytic sheath according to the present invention is provided.
The structure is characterized in that a photocatalyst fine particle supporting layer is provided on a polymer sheet via an inorganic intermediate layer having an oxygen permeability of 20 cc / m 2 · 24 hr or less, and the thickness of the inorganic intermediate layer is It can be several tens m to several μm. As the inorganic intermediate layer, a silicon compound layer or a layer made of a mixture of titanium oxide and a silicon compound inactivated by metal ions can be used, and the layer is formed by vapor deposition at a temperature of 150 ° C. or less. A method or a sol-gel method can be used.

【0007】[0007]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は本発明に係る光触
媒シ−トを示している。図1において、1は高分子シ−
トであり、後述する無機質中間層の形成時や光触媒微粒
子担持層の形成時の加熱に耐え得る耐熱性を有するもの
であれば、適宜のものを使用でき、透明性のアクリル樹
脂、ポリエステル、ポリカ−ボネ−ト、塩化ビニル樹
脂、フッ素樹脂等が好適である。2は高分子シ−ト1の
片面に固着した酸素透過率(単位圧力差1パスカルのも
とでの、24時間での単位面積1m2当たりの透過酸素
量cc)が20cc/m2・24hr以下の無機質中間層である。
3は無機質中間層2上に固着した光触媒微粒子担持層で
あり、光触媒微粒子を無機質バインダ−、例えば、シリ
カで無機質中間層に固定してあり、光触媒微粒子を可及
的に露出させるために、通常多孔質にされる。この光触
媒微粒子担持層3は、光触媒微粒子とシリカゾルとのア
ルコ−ル分散液を塗布し、この塗布層を加熱乾燥させる
ことにより形成できる。光触媒微粒子には、極めて優れ
た光触媒活性を呈するアナタ−ゼ型酸化チタンの微粒子
を使用することが好ましく、その粒径は、一般に0.0
07〜0.5μmである。光触媒微粒子の活性を高める
ために、低温焼成の場合は、アルカリ金属イオンを担持
して電子を分離する方法を採ることもできる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a photocatalyst sheet according to the present invention. In FIG. 1, 1 is a polymer screen.
Any material can be used as long as it has heat resistance enough to withstand heating during the formation of the inorganic intermediate layer described later and the formation of the photocatalyst fine particle supporting layer, and a transparent acrylic resin, polyester, or polycarbonate can be used. -Bones, vinyl chloride resins, fluororesins and the like are preferred. 2 the polymer sheet - oxygen permeability which is fixed on one side of the sheet 1 (under the unit pressure difference 1 Pascal, permeate oxygen amount cc unit area 1 m 2 per 24 hours) is 20 cc / m 2 · 24 hr or These are the following inorganic intermediate layers.
Reference numeral 3 denotes a photocatalyst fine particle supporting layer fixed on the inorganic intermediate layer 2. The photocatalyst fine particles are fixed to the inorganic intermediate layer with an inorganic binder, for example, silica, and are usually used to expose the photocatalyst fine particles as much as possible. It is made porous. The photocatalyst fine particle supporting layer 3 can be formed by applying an alcohol dispersion of photocatalyst fine particles and silica sol, and heating and drying the applied layer. As the photocatalyst fine particles, it is preferable to use fine particles of an anatase type titanium oxide exhibiting extremely excellent photocatalytic activity.
07 to 0.5 μm. In order to enhance the activity of the photocatalyst fine particles, in the case of low-temperature baking, a method in which electrons are separated by supporting an alkali metal ion may be employed.

【0008】上記無機質中間層2には、シリカが好適に
使用され、その形成には、真空蒸着やスパッタリング
等のPVC法によりSiO2膜を形成する方法(例え
ば、フレ−ク状の一酸化珪素を抵抗加熱や電子線照射等
によって加熱、昇華させて高分子シ−トに蒸着させ
る)、CVD法により液体の有機シリコン化合物やシ
ランを原料としてSiO2膜を形成する方法、セラミ
ックス微粒子あるいはその前駆体粒子が分散している高
安定性の粒子コロイドのゾルにシリコ−ン樹脂やフッ素
樹脂等の難分解性の有機ポリマ−を混合したものを高分
子シ−ト上に塗布し、この塗布層を分散媒の除去により
ゲル化し、加熱して高分子シ−トに融着する方法(ゾル
−ゲル法)、光触媒微粒子とシリカゾルに、更に光触
媒微粒子の光活性化を防止するためのアルミ、鉄、亜鉛
等の金属イオンを加えたアルコ−ル分散液を高分子シ−
ト上に塗布し、この塗布層を加熱乾燥させる方法等を使
用できる。これらは、150℃以下の加熱温度でシリカ
またはシリカを主成分とする無機質中間層を高分子シ−
トに膜成することを可能にする方法であり、の方法に
おいて、シリコ−ン樹脂やフッ素樹脂等の難分解性有機
ポリマ−を混合する理由は、シリカゾルのみの場合の膜
成温度である300℃を150℃以下に低下させるため
であり、シリコ−ン樹脂やフッ素樹脂に代えポリシラザ
ンを使用することもできる。
The inorganic intermediate layer 2 is preferably made of silica, and is formed by a method of forming an SiO 2 film by a PVC method such as vacuum evaporation or sputtering (for example, flake-like silicon monoxide). Is heated and sublimated by resistance heating or electron beam irradiation to deposit the polymer sheet on a polymer sheet), a method of forming an SiO 2 film using a liquid organic silicon compound or silane as a raw material by a CVD method, ceramic fine particles or a precursor thereof. A mixture of a highly stable colloidal sol in which body particles are dispersed and a hardly decomposable organic polymer such as a silicone resin or a fluororesin is applied onto a polymer sheet. To form a gel by removing the dispersing medium, heating and fusing the polymer sheet to a polymer sheet (sol-gel method), in order to prevent photoactivation of the photocatalyst microparticles and silica sol, and further to photoactivation of the photocatalyst microparticles. Alcohol dispersion to which metal ions such as aluminum, iron and zinc are added
A method in which the composition is coated on a substrate and the coating layer is heated and dried can be used. In these methods, silica or an inorganic intermediate layer containing silica as a main component is polymer-sealed at a heating temperature of 150 ° C. or less.
The reason for mixing a hardly decomposable organic polymer such as a silicone resin or a fluororesin in the above method is that the film forming temperature is 300 when only silica sol is used. In order to lower the temperature to 150 ° C. or lower, polysilazane may be used instead of the silicone resin or the fluororesin.

【0009】本発明に係る光触媒シ−トにおいて、無機
質中間層2の厚みは10Åm〜数μmの超薄膜に形成さ
れる。而して、光触媒微粒子担持層3の光触媒微粒子と
高分子シ−ト1の最短距離が10Åmオダ−の超近距離
になり、高分子シ−ト1が活性化光触媒微粒子により分
解ガス化される可能性があるが、例え、高分子シ−ト1
にガスが発生しても、無機質中間層2のガス透過率を酸
素透過率で20cc/m2・24hr以下といった低ガス透過性に
してあるから、光触媒微粒子担持層3の多孔質内がその
分解ガスで充填されるようなことを排除でき、外部の空
気を光触媒微粒子に充分に近接・接触させ得て、活性化
光触媒微粒子による抗菌、除菌、防汚、防臭、浄化を効
率よく行わせ得る。
In the photocatalyst sheet according to the present invention, the thickness of the inorganic intermediate layer 2 is formed as an ultrathin film of 10 μm to several μm. Thus, the shortest distance between the photocatalyst fine particles of the photocatalyst fine particle supporting layer 3 and the polymer sheet 1 becomes an extremely short distance of the order of 10 m, and the polymer sheet 1 is decomposed into gas by the activated photocatalyst fine particles. Although there is a possibility, for example, polymer sheet 1
Even if a gas is generated, the gas permeability of the inorganic intermediate layer 2 is set to a low gas permeability such as an oxygen permeability of 20 cc / m 2 · 24 hours or less. It is possible to eliminate the possibility of being filled with gas, to allow the outside air to sufficiently come into contact with and contact the photocatalyst fine particles, and to efficiently perform antibacterial, sterilization, antifouling, deodorant, and purification by the activated photocatalytic fine particles. .

【0010】この効果は次の実施例と比較例との分解性
能試験結果の対比からも確認できる。
This effect can also be confirmed from the comparison of the decomposition performance test results of the following examples and comparative examples.

【実施例】【Example】

〔実施例1〕厚さ50μmのポリエステルフィルムに、
シリコ−ン樹脂を混合したシリカゾルを乾燥後の厚みで
0.5μmになるようにコ−ティングし、140℃で5
分間加熱してシリカを主成分とした中間層を形成した。
この中間層の酸素透過率は20cc/m2・24hrであった。こ
の無機質中間層上に、アナタ−ゼ型酸化チタン微粒子と
シリカゾルとを重量比で80:20で含有する固形分濃
度5%のアルコ−ル分散液を乾燥後厚みが0.5μmに
なるようにコ−ティングし、140℃×5分で加熱し光
触媒微粒子担持層を形成して光触媒シ−トを得た。 〔比較例1〕ポリエステルフィルムに無機質中間層を設
けることなく、直接光触媒微粒子担持層を形成した以
外、実施例1に同じとした。 〔比較例2〕実施例1の中間層に対し、シリコ−ン樹脂
とシリカゾルとの配合割合を変えて中間層の酸素透過率
を30cc/m2・24hrとした以外、実施例1に同じとした。
[Example 1] To a polyester film having a thickness of 50 µm,
A silica sol mixed with a silicone resin is coated so as to have a thickness of 0.5 μm after drying,
After heating for an minute, an intermediate layer containing silica as a main component was formed.
The oxygen permeability of this intermediate layer was 20 cc / m 2 · 24 hr. On this inorganic intermediate layer, an alcohol dispersion having a solid content of 5% containing anatase-type titanium oxide fine particles and silica sol at a weight ratio of 80:20 was dried so that the thickness became 0.5 μm. It was coated and heated at 140 ° C. for 5 minutes to form a photocatalyst fine particle supporting layer to obtain a photocatalyst sheet. Comparative Example 1 The same operation as in Example 1 was performed except that the photocatalyst fine particle supporting layer was directly formed without providing the inorganic intermediate layer on the polyester film. Comparative Example 2 Same as Example 1 except that the oxygen permeability of the intermediate layer was changed to 30 cc / m 2 · 24 hr by changing the mixing ratio of the silicone resin and silica sol to the intermediate layer of Example 1. did.

【0011】これらの実施例品及び比較例品について、
市販の15Wのブラックライトをセットした内容積4リ
ットルの密閉容器内に試料(寸法は5cm×5cm)を光触
媒微粒子担持層をブラックライトに向けて配置し、悪臭
物質としてアセトアルデヒド100ppmを注入したの
ち、ブラックライトを点灯して1mW/cm2の紫外線を
照射し、60分後、容器内のアセトアルデヒドの濃度を
ガスクロマトグラフで測定したところ、実施例では6p
pmに、比較例1では20ppmに、比較例2では12
ppmに減少していた。
[0011] For these examples and comparative examples,
A sample (dimensions: 5 cm × 5 cm) was placed in a closed container having a capacity of 4 liters containing a commercially available 15 W black light with the photocatalyst fine particle supporting layer facing the black light, and 100 ppm of acetaldehyde was injected as a malodorous substance. The black light was turned on to irradiate ultraviolet rays of 1 mW / cm 2 , and after 60 minutes, the concentration of acetaldehyde in the container was measured by gas chromatography.
pm, 20 ppm in Comparative Example 1, and 12 ppm in Comparative Example 2.
ppm.

【0012】比較例1の分解性能が実施例1に較べて低
い理由は、ポリエステルの高分子シ−トがシリカを主成
分とする中間層に較べ、活性光触媒微粒子によって分解
され易く、その分解ガスが光触媒微粒子とアルデヒドガ
スとの接触を阻害するためであると推定される。また、
比較例2の分解性能が実施例1よりも低い理由は、比較
例2の中間層のガス透過性が実施例1に較べて高く、何
らかの原因で高分子シ−トに発生したガスのかなりの量
が中間層を透過して光触媒微粒子担持層に至るためと推
定される。
The reason why the decomposition performance of Comparative Example 1 is lower than that of Example 1 is that the polyester polymer sheet is more easily decomposed by the active photocatalyst fine particles than the intermediate layer mainly composed of silica, Is presumed to be the reason for inhibiting the contact between the photocatalyst fine particles and the aldehyde gas. Also,
The reason why the decomposition performance of Comparative Example 2 is lower than that of Example 1 is that the gas permeability of the intermediate layer of Comparative Example 2 is higher than that of Example 1, and the considerable amount of gas generated in the polymer sheet for some reason. It is presumed that the amount passes through the intermediate layer to reach the photocatalyst fine particle supporting layer.

【0013】上記無機質中間層の厚みが超薄厚になる
と、光触媒微粒子担持層の活性化光触媒微粒子の高分子
シ−トへの電子授受がこの超薄膜を通して生じる可能性
のあること(従って、活性化光触媒粒子の作用で高分子
シ−トに分解ガスが発生する可能性のあること)は次の
実施例2と比較例3との分解性能試験結果の対比からも
推定できる。 〔実施例2〕中間層をシリコンモノオキサイド(SiO
x)の蒸着による厚み700Åmのシリカ膜で形成した
以外、実施例1に同じとした。この中間層の酸素透過率
は3cc/m2・24hrであった。 〔比較例3〕中間層をシリコンモノオキサイド(SiO
x)の蒸着による厚み70Åmのシリカ膜で形成した以
外、実施例1に同じとした。この中間層の酸素透過率は
30cc/m2・24hrであった。この実施例及び比較例3につ
いて、上記と同様、アルデヒド100ppmを悪臭物質
とする60分の分解性能試験を行ったところ、実施例2
ではアルデヒドが4ppmにまで低下していたが、比較
例3では15ppmであった。
When the thickness of the inorganic intermediate layer becomes extremely thin, the electron transfer of the activated photocatalyst fine particles of the photocatalyst fine particle supporting layer to the polymer sheet may occur through the ultra thin film (accordingly, the activity of the photocatalyst fine particle supporting layer may be reduced). The possibility that a decomposed gas is generated in the polymer sheet by the action of the photocatalyst particles) can also be estimated from the comparison of the decomposition performance test results of Example 2 and Comparative Example 3. Example 2 The intermediate layer was made of silicon monooxide (SiO 2).
Example 1 was the same as Example 1 except that a silica film having a thickness of 700 μm was formed by the vapor deposition of x). The oxygen permeability of this intermediate layer was 3 cc / m 2 · 24 hr. [Comparative Example 3] The intermediate layer was formed of silicon monooxide (SiO 2).
Example 1 was the same as Example 1 except that a silica film having a thickness of 70 μm was formed by the vapor deposition of x). The oxygen permeability of this intermediate layer was 30 cc / m 2 · 24 hr. For this Example and Comparative Example 3, a decomposition performance test was conducted for 60 minutes using 100 ppm of aldehyde as a malodorous substance.
Although the aldehyde had decreased to 4 ppm in Comparative Example 3, it was 15 ppm in Comparative Example 3.

【0014】[0014]

【発明の効果】本発明に係る光触媒シ−トにおいては、
無機質中間層のガス透過率を酸素透過率で20cc/m2・24
hrといった低ガス透過性としてあるため、高分子シ−ト
にガスが発生しても光触媒微粒子担持層への移行をよく
防止して光触媒微粒子と外部空気との接触を充分に行わ
せて活性化光触媒微粒子の分解作用を効率よく営まし得
る。従って、高分子シ−トにガスが発生しても、例え
ば、無機質中間層にシリコンモノオキサイドの蒸着膜の
ように超薄膜を使用し、その超薄膜を介して活性化光触
媒微粒子と高分子シ−トの電子授受が行われるようなこ
とがあっても、そのガス発生に影響されることなく、光
触媒微粒子の活性化による効率のよい抗菌、除菌、防
汚、防臭、浄化等を保証できる。
According to the photocatalyst sheet of the present invention,
20cc gas permeability of the inorganic intermediate layer in oxygen permeability / m 2 · 24
Since it has low gas permeability such as hr, even if gas is generated in the polymer sheet, migration to the photocatalyst fine particle supporting layer is well prevented and sufficient activation of the photocatalyst fine particles and external air is achieved. The photocatalytic fine particles can be efficiently decomposed. Therefore, even if a gas is generated in the polymer sheet, for example, an ultra-thin film such as a silicon monooxide vapor-deposited film is used for the inorganic intermediate layer, and the activated photocatalyst fine particles and the polymer sheet are interposed through the ultra-thin film. -Even if electron transfer is performed, efficient antibacterial, sterilization, antifouling, deodorant, purification, etc. can be guaranteed by activating the photocatalytic fine particles without being affected by gas generation. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光触媒シ−トを示す図面である。FIG. 1 is a drawing showing a photocatalyst sheet according to the present invention.

【符号の説明】 1 高分子シ−ト 2 無機質中間層 3 光触媒微粒子担持層[Description of Signs] 1 Polymer sheet 2 Inorganic intermediate layer 3 Photocatalyst fine particle supporting layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】酸素透過率が20cc/m2・24hr以下の無機質
中間層を介して高分子シ−ト上に光触媒微粒子担持層を
設けたことを特徴とする光触媒シ−ト。
1. A photocatalyst sheet comprising a photocatalyst fine particle supporting layer provided on a polymer sheet via an inorganic intermediate layer having an oxygen permeability of 20 cc / m 2 · 24 hours or less.
【請求項2】無機質中間層の厚みが数10Åm〜数μm
である請求項1記載の光触媒シ−ト。
2. The inorganic intermediate layer has a thickness of several tens of .mu.m to several .mu.m.
The photocatalyst sheet according to claim 1, wherein
【請求項3】無機質中間層が珪素化合物または金属イオ
ンで不活性化された酸化チタンと珪素化合物との混合物
から成る請求項1または2記載の光触媒シ−ト。
3. The photocatalyst sheet according to claim 1, wherein the inorganic intermediate layer is made of a mixture of a silicon compound or a titanium compound inactivated with a metal ion and a silicon compound.
【請求項4】無機質中間層が、シリコ−ン樹脂またはフ
ッ素樹脂を混合したシリカゾルの150℃以下での塗布
・加熱により形成されている請求項1または2記載の光
触媒シ−ト。
4. The photocatalyst sheet according to claim 1, wherein the inorganic intermediate layer is formed by applying and heating a silica sol mixed with a silicone resin or a fluorine resin at 150 ° C. or less.
【請求項5】無機質中間層が蒸着法により形成されて成
る請求項1乃至3何れか記載の光触媒シ−ト。
5. The photocatalyst sheet according to claim 1, wherein the inorganic intermediate layer is formed by a vapor deposition method.
JP9135886A 1997-05-09 1997-05-09 Photocatalytic sheet Pending JPH10309773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9135886A JPH10309773A (en) 1997-05-09 1997-05-09 Photocatalytic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9135886A JPH10309773A (en) 1997-05-09 1997-05-09 Photocatalytic sheet

Publications (1)

Publication Number Publication Date
JPH10309773A true JPH10309773A (en) 1998-11-24

Family

ID=15162095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9135886A Pending JPH10309773A (en) 1997-05-09 1997-05-09 Photocatalytic sheet

Country Status (1)

Country Link
JP (1) JPH10309773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101190955B1 (en) 2008-06-20 2012-10-12 주식회사 엘지화학 Contamination-proof film and method for preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101190955B1 (en) 2008-06-20 2012-10-12 주식회사 엘지화학 Contamination-proof film and method for preparing the same

Similar Documents

Publication Publication Date Title
JP3592727B2 (en) Photocatalyst
EP0870530B1 (en) Photocatalyst and process for the preparation thereof
US20040204314A1 (en) Photocatalytic composition
KR101930709B1 (en) Photo catalyst functional filter
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
JPS6397234A (en) Fixation photocatalyst
JP3818811B2 (en) Photocatalytic filter for air purification
US5246737A (en) Method for immobilizing semiconductors and noble metals on solid surfaces
CN106573444B (en) Photocatalyst functional film and preparation method thereof
CN109954488B (en) Photocatalyst-carrying substrate, method for producing same, and photocatalytic device
JP4635185B2 (en) Photocatalytic coating method for polyester fiber
JP2001070802A (en) Photocatalyst film and its production
EP2352584B1 (en) Photocatalytic device with mixed photocatalyst/silica structure
JP2000218161A (en) Photo-catalyst body
JPH10309773A (en) Photocatalytic sheet
JP2002085967A (en) Photocatalyst membrane and method of producing the same
KR101990338B1 (en) Visible-light responsive photocatalytic coating composition and preparation methods thereof
US20170348672A1 (en) Photocatalyst particle, method for decomposing organic compound contained in alkaline aqueous solution with the same, and method for converting toxic ions contained in alkaline aqueous solution into non-toxic ions
KR100482649B1 (en) Direct adhesion method of photocatalyst on substrate
KR102266706B1 (en) Photocatalytic composite composition containing titanium dioxide
Kawahara et al. A Large-Area Patterned TiO 2/SnO 2 Bilayer Type Photocatalyst Prepared by Gravure Printing
JP2003135972A (en) Porous thin film containing photocatalyst and coating agent
KR102152874B1 (en) Soundproofing pannel comprising visible light active photocatalyst
KR100308818B1 (en) Hydrophilic coating glass coated with porous thin layer of TiO2
JP2000301055A (en) Photocatalyst coating film and method for formation thereof