JPH10308520A - Manufacture of semiconductor thin film and solar battery using the semiconductor thin film - Google Patents

Manufacture of semiconductor thin film and solar battery using the semiconductor thin film

Info

Publication number
JPH10308520A
JPH10308520A JP9115510A JP11551097A JPH10308520A JP H10308520 A JPH10308520 A JP H10308520A JP 9115510 A JP9115510 A JP 9115510A JP 11551097 A JP11551097 A JP 11551097A JP H10308520 A JPH10308520 A JP H10308520A
Authority
JP
Japan
Prior art keywords
thin film
layer
base material
semiconductor thin
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9115510A
Other languages
Japanese (ja)
Inventor
Takashi Nishioka
孝 西岡
Takumi Yamada
巧 山田
Goji Kawakami
剛司 川上
Takeshi Yamada
武 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9115510A priority Critical patent/JPH10308520A/en
Publication of JPH10308520A publication Critical patent/JPH10308520A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide the effective photoelectric conversion efficiency and to make the manufacturing cost inexpensive by separating the structure, wherein at least a plurality of columnar structures formed in a semiconductor crystal base material, a part of the semiconductor base material containing a porous layer and a supporting substrate are laminated as the constituent elements. SOLUTION: Light 3, which is applied at the time of anodization reaction, is irradiated from the rear surface of an n-type (100) Si crystal base substance 1 or base material, and the anodization reaction is performed. The anodization conditions are largely changed instantly, and a layer 4 having the large porous degree is formed by the relatively short-time reaction. B-doped glass 5 is applied. A p-type diffused layer 6 is formed in an n-type Si layer 11 through an ordinary diffusing process. After the B-doped glass 5 is removed, a (p) electrode 7 is attached. Furthermore, a grass plate a is bonded. The layer having columnar holes 2 is mechanically removed from the n-type (100) Si crystal base substance 1 of the base material as a unitary body together with the glass plate 8. The layer 4 having the large porous degree can be separated with a breaking plane 40 as the boundary since the layer 4 is mechanically weak.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は支持基板上に積層さ
れた半導体薄膜の製造方法、およびその半導体薄膜を用
いた太陽電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor thin film laminated on a supporting substrate, and a solar cell using the semiconductor thin film.

【0002】[0002]

【従来の技術】半導体を用いて太陽光から電気へ有効な
エネルギ変換を行うことは、地球環境を考慮したクリー
ンエネルギ創出の観点から、今後重視されるべき技術課
題である。種々の半導体材料のなかでも、安全・安価で
エネルギ変換効率の高いシリコン(Si)半導体は、今
後、いっそうの増加が見込まれるエネルギ需要の担い手
の一つとして重要であり、すでに太陽電池として一部実
用化されている。そこで、従来の太陽電池ならびにその
製造方法の典型的な例として、以下に、Siを例に挙げ
て説明する。将来予想される太陽光発電の飛躍的な普及
に伴って、電池材料の需要も膨大なものになることが懸
念され、資源的な要請からSi材料の使用を最小限に押
さえ、かつ、一定の光電変換効率を保持した太陽電池構
造が要求されている。このような省資源型Si太陽電池
を製造する方法としては、(1)単結晶もしくは多結晶
のバルク結晶から所望の厚さのSi薄膜を切り出す(す
なわちスライスする)、あるいは、(2)上記と同様な
結晶から所望の厚さのSi薄膜を支持基板と接着した状
態で一体的に剥離する、あるいは、(3)所定の基体上
にSi薄膜層を堆積する、もしくはこれらの方法を組み
合わせた工程を経て、引き続き太陽電池作製に必要な種
々の既知の処理を行う方法がある。
2. Description of the Related Art Effective energy conversion from sunlight to electricity using a semiconductor is a technical issue that should be emphasized in the future from the viewpoint of creating clean energy in consideration of the global environment. Among various semiconductor materials, silicon (Si) semiconductors, which are safe, inexpensive and have high energy conversion efficiency, are important as one of the key players in energy demand, which is expected to increase further in the future. Has been put to practical use. Therefore, Si will be described below as a typical example of a conventional solar cell and a method of manufacturing the same. With the dramatic spread of photovoltaic power generation expected in the future, there is a concern that the demand for battery materials will be enormous. There is a demand for a solar cell structure that maintains photoelectric conversion efficiency. As a method of manufacturing such a resource-saving Si solar cell, (1) a Si thin film having a desired thickness is cut out (ie, sliced) from a single crystal or polycrystalline bulk crystal, or (2) A step of integrally peeling a Si thin film having a desired thickness from a similar crystal in a state of being bonded to a supporting substrate, or (3) depositing a Si thin film layer on a predetermined substrate, or a combination of these methods After that, there is a method of successively performing various known processes required for manufacturing a solar cell.

【0003】[0003]

【発明が解決しようとする課題】上記(1)の方法は、
切り出すSi薄膜の膜厚の均一性に問題があった。ま
た、切り出した薄膜を何らかの基体上に接着する工程に
おいて、特に、膜厚が100μm以下となると、ハンド
リングの上で困難性を伴い製造歩留まりが低下する問題
があった。上記(2)の方法の一つとして、プロトンイ
オンを単結晶もしくは多結晶のバルク結晶に注入し、生
じた欠陥を利用してSi薄膜を剥離する方法があった
が、太陽電池の特性に問題を残さない程度に充分に欠陥
を回復させることは困難であった。また、上記(3)の
方法では、あらかじめ基体上に堆積した非晶質もしくは
粒径の小さい多結晶Si薄膜に対し、熱処理等をはじめ
とする種々の方法で結晶粒径の大きいSi薄膜となし、
これにより比較的高効率の太陽電池を得る方法が試みら
れた。この場合は、所望の薄膜の形成は可能であるが、
Si膜の堆積に要するコスト、および付随する種々の熱
処理等に要するコストが相対的に高く、実用上の問題と
なっていた。さらに、これら(1)から(3)の方法を
適宜組み合わせた方法では、太陽電池の製造コストを充
分に押さえることは困難であった。
The method of the above (1) is as follows.
There is a problem in the uniformity of the thickness of the Si thin film to be cut. In addition, in the step of bonding the cut thin film to any substrate, particularly when the film thickness is 100 μm or less, there is a problem that handling is difficult and the production yield is reduced. As one of the above methods (2), there has been a method of injecting proton ions into a single crystal or a polycrystal bulk crystal, and peeling off a Si thin film by utilizing the generated defects. It was difficult to recover the defect sufficiently to leave no defects. Further, in the above method (3), a polycrystalline Si thin film having an amorphous or small grain size previously deposited on a substrate is not converted into a Si thin film having a large grain size by various methods such as heat treatment. ,
Thereby, a method of obtaining a relatively efficient solar cell was attempted. In this case, although a desired thin film can be formed,
The cost required for depositing the Si film and the cost required for various accompanying heat treatments are relatively high, which has been a practical problem. Furthermore, it is difficult to sufficiently suppress the manufacturing cost of the solar cell by a method in which these methods (1) to (3) are appropriately combined.

【0004】本発明の目的は、上記(1)の方法におけ
る膜厚の均一性、上記(2)の方法における欠陥回復の
課題、上記(3)の方法におけるコスト低減の課題を解
決し、従来の数100μm程度の厚いSi単結晶太陽電
池と同じ程度の効果的な光電変換効率を有し、かつ製造
コストが安価な半導体薄膜の製造方法およびその半導体
薄膜を用いた太陽電池を提供することにある。
It is an object of the present invention to solve the problem of uniformity of film thickness in the above method (1), the problem of defect recovery in the above method (2), and the problem of cost reduction in the above method (3). To provide a method of manufacturing a semiconductor thin film having the same effective photoelectric conversion efficiency as a thick single crystal silicon solar cell of about several hundred μm and a low manufacturing cost, and to provide a solar cell using the semiconductor thin film. is there.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、本発明は特許請求の範囲に記載のような構
成とするものである。すなわち、本発明は請求項1に記
載のように、半導体結晶母材中に、該半導体結晶の第1
の主面から他の第2の主面に向かって複数の柱状構造を
形成する第1の工程と、上記半導体結晶母材中に、陽極
化成により多孔質層を形成する第2の工程と、上記多孔
質層と上記柱状構造を含む半導体結晶母材の一部と支持
基板とを少なくとも構成要素として積層した構造体を、
上記半導体結晶母材から剥離することにより、上記柱状
構造が薄膜中を貫通してなる半導体薄膜を上記支持基板
上に形成する第3の工程とを、少なくとも含む半導体薄
膜の製造方法とするものである。また、本発明は請求項
2に記載のように、請求項1記載の半導体薄膜の製造方
法において、第3の工程の後に残存する半導体結晶母材
を用いて、第1の工程、第2の工程および第3の工程を
繰り返し行い、複数の半導体薄膜を得る工程を有する半
導体薄膜の製造方法とするものである。また、本発明は
請求項3に記載のように、請求項1または請求項2に記
載の半導体薄膜の製造方法により作製した半導体薄膜
を、少なくとも太陽電池の光電変換層として用いて半導
体薄膜太陽電池とするものである。
Means for Solving the Problems In order to achieve the object of the present invention, the present invention is configured as described in the claims. That is, according to the present invention, as described in claim 1, the first semiconductor crystal is contained in the semiconductor crystal base material.
A first step of forming a plurality of columnar structures from the main surface to another second main surface, and a second step of forming a porous layer in the semiconductor crystal base material by anodization; A structure in which a part of a semiconductor crystal base material including the porous layer and the columnar structure and a support substrate are laminated as at least constituent elements,
Forming a semiconductor thin film having the columnar structure penetrating through the thin film on the support substrate by peeling the semiconductor thin film from the base material of the semiconductor crystal. is there. According to a second aspect of the present invention, in the method for manufacturing a semiconductor thin film according to the first aspect, the first step and the second step are performed by using a semiconductor crystal base material remaining after the third step. A method of manufacturing a semiconductor thin film including a step of repeating a step and a third step to obtain a plurality of semiconductor thin films. According to a third aspect of the present invention, there is provided a semiconductor thin film solar cell using a semiconductor thin film manufactured by the method of manufacturing a semiconductor thin film according to the first or second aspect as at least a photoelectric conversion layer of the solar cell. It is assumed that.

【0006】本発明は、請求項1に記載のように、第1
の工程であるSi内の柱状構造の形成について、代表的
な例としてn形Siの場合には、電流等の条件が制御さ
れた陽極化成を用いて径が一定の穴を形成する方法を採
用し、p形Siの場合は、フォト工程等により形成され
た面内の特定の領域を多孔質化する方法により行われ
る。そして、柱状構造が所望の深さに達した段階で、陽
極化成条件を適宜変更する、および/または、Si結晶
の伝導形等の性質が膜厚方向に制御されていることか
ら、結果的に陽極化成条件が変化することを切っ掛けと
し、柱状構造としたSi結晶部分が、後の工程において
薄膜として剥離するのに有利な層構造を形成せしめ(第
2の工程)、続いて、このような工程を経て得られた柱
状構造を有するSi結晶と、該Si結晶とは別に準備さ
れた支持基板とを接着(接合)して得られた積層構造物
を、上記Si結晶から剥離させる第3の工程とにより、
柱状構造が薄膜中を貫通してなるSi薄膜を支持基板上
に形成する半導体薄膜の製造方法を提供するものであ
る。このような半導体薄膜の製造方法とすることによ
り、膜厚が均一で、欠陥のない、安価な半導体薄膜が得
られる効果がある。また、請求項2に記載のように、請
求項1記載の半導体薄膜の製造方法において、第3の工
程の後に残存する半導体結晶母材を用いて、第1の工
程、第2の工程および第3の工程を繰り返し行い、複数
の半導体薄膜を得る工程を含む半導体薄膜の製造方法と
することにより、膜厚が均一で、欠陥のない半導体薄膜
をいっそう安価に製造できる効果がある。また、請求項
3に記載のように、請求項1または請求項2に記載の半
導体薄膜の製造方法により作製した半導体薄膜を、少な
くとも太陽電池の光電変換活性層として用いて半導体薄
膜太陽電池とすることにより、従来の数100μm程度
の厚いSi単結晶太陽電池と同じ程度の効果的な光電変
換効率を有し、かつ大面積で安価な半導体薄膜太陽電池
を実現できる効果がある。
[0006] The present invention is directed to a first aspect.
As a typical example, in the case of n-type Si, a method of forming a hole having a constant diameter using anodization in which conditions such as current are controlled is used for the formation of a columnar structure in Si in the step of However, in the case of p-type Si, it is performed by a method of making a specific region in a plane formed by a photo process or the like porous. Then, when the columnar structure reaches a desired depth, the anodization conditions are appropriately changed and / or the properties such as the conduction type of the Si crystal are controlled in the film thickness direction. The change in the anodization conditions was the starting point, and the Si crystal portion having the columnar structure formed a layer structure advantageous for peeling off as a thin film in a later step (second step). A third structure in which a laminated structure obtained by bonding (joining) a Si crystal having a columnar structure obtained through the steps and a supporting substrate prepared separately from the Si crystal to peel off the Si crystal. Depending on the process,
An object of the present invention is to provide a method of manufacturing a semiconductor thin film in which a Si thin film having a columnar structure penetrating the thin film is formed on a support substrate. By employing such a method for manufacturing a semiconductor thin film, there is an effect that an inexpensive semiconductor thin film having a uniform thickness, no defects, and no defects can be obtained. According to a second aspect of the present invention, in the method of manufacturing a semiconductor thin film according to the first aspect, the first step, the second step, and the second step are performed by using a semiconductor crystal base material remaining after the third step. By repeating the step 3 to obtain a semiconductor thin film including a step of obtaining a plurality of semiconductor thin films, there is an effect that a semiconductor thin film having a uniform thickness and no defect can be manufactured at a lower cost. Further, as described in claim 3, the semiconductor thin film manufactured by the method for manufacturing a semiconductor thin film according to claim 1 or 2 is used as a semiconductor thin film solar cell at least as a photoelectric conversion active layer of the solar cell. As a result, there is an effect that a semiconductor thin-film solar cell having the same effective photoelectric conversion efficiency as a conventional thick single-crystal silicon solar cell having a thickness of about several hundred μm and having a large area and being inexpensive can be realized.

【0007】本発明の半導体薄膜の製造方法および半導
体薄膜太陽電池は、Si薄膜に限定されるものではな
く、Si母材結晶上に形成された非晶質Si層、もしく
はII−VI族、III−V族を始めとする化合物半導体層にお
いても、該半導体層中に柱状構造を形成し、下部Si母
材結晶内に剥離用の多孔質層を形成し、上記柱状構造を
有した層と、上記母材結晶とは別に、準備された支持基
板とを接着させて積層した構造物を剥離することによ
り、非晶質Si層もしくはII−VI族、III−V族を始めと
する化合物半導体膜を実現することが可能である。ま
た、本発明によって形成された半導体薄膜は、太陽電池
素子として有用であるばかりではなく、一般に薄膜内に
作り込まれた半導体素子として機能する場合においても
適用可能である。従来のn形Si内に穴を形成する方法
については、例えば、ジャーナル オブザ エレクトロケ
ミカル ソサイティ 137巻(1990年)第653頁〜第659頁
〔V.Lehmann and H.Foell,Journal of the Electrochem
ical Society,vol.137,653-659(1990)〕に記述があ
る。適当な抵抗率のn形Si結晶に対し、陽極化成時の
バイアス電圧、光照射波長、光導電電流、陽極化成時間
等を最適に設定することにより、一定の径を有した穴を
400μmの深さに至るまで形成することが可能である
との開示がある。しかしながら、上記文献の技術のみで
は穴は形成されるものの、厚さ400μm以下の薄膜よ
りなる太陽電池素子として構成することは不可能であっ
た。本発明の半導体薄膜における柱状構造の形成は、上
記穴形成技術を応用し、かつ穴が所望の深さに至った段
階で、穴の形成反応とは著しく条件が異なった陽極化成
反応を惹起させることにより、これまでの膜厚方向への
化成反応の進行(すなわち穴形成)ではなく、主として
膜面方向への多孔質化を行う化成反応の進行をもたらす
ことにより、この部分を層構造として多孔質度の大きい
層にすることができる。複数の穴を含むSi層の下部に
形成された多孔質度の大きい層は、上部の穴を含むSi
層、および、より下部のSi結晶部分よりも機械的に脆
弱であり、後の工程において穴を有するSi結晶部分が
薄膜として剥離するのに有利な構造となっている。p型
Si内に柱状構造を形成する場合には、以下のような陽
極化成反応の特徴を利用する。すなわち、Si結晶に光
を照射しない場合、結晶内の正孔密度の差から、n形S
iに比べてp形Siが陽極化成反応が盛んに起こる。そ
こで、Si結晶内にn形およびp形の領域を適宜配置し
た後、柱状に形成したp形領域のみを陽極化成により多
孔質化し、さらに上記n形Siの場合と同様に陽極化成
条件を変化させて、多孔質度の大きい層を形成した構造
とするものである。
The method for producing a semiconductor thin film and the semiconductor thin film solar cell according to the present invention are not limited to a Si thin film, but include an amorphous Si layer formed on a Si base material crystal, or a group II-VI or III. -In a compound semiconductor layer including -V group, a columnar structure is formed in the semiconductor layer, a porous layer for separation is formed in a lower Si base material crystal, and a layer having the columnar structure, Separately from the base material crystal, by peeling off the laminated structure by bonding to a prepared supporting substrate, an amorphous Si layer or a compound semiconductor film including II-VI group, III-V group, etc. Can be realized. Further, the semiconductor thin film formed by the present invention is not only useful as a solar cell element, but also applicable to a case where the semiconductor thin film generally functions as a semiconductor element formed in the thin film. For a method of forming a hole in a conventional n-type Si, see, for example, Journal of the Electrochemical Society, Vol. 137 (1990), pp. 653--659 [V.
ical Society, vol. 137, 653-659 (1990)]. By appropriately setting the bias voltage, the light irradiation wavelength, the photoconductive current, the anodization time, and the like during the anodization for an n-type Si crystal having an appropriate resistivity, a hole having a constant diameter can be formed at a depth of 400 μm. There is a disclosure that it can be formed up to this point. However, although the hole is formed only by the technique of the above-mentioned literature, it was impossible to constitute a solar cell element composed of a thin film having a thickness of 400 μm or less. The formation of the columnar structure in the semiconductor thin film of the present invention applies the above-described hole forming technique, and at the stage when the hole reaches a desired depth, causes an anodization reaction under significantly different conditions from the hole forming reaction. As a result, instead of the conventional formation reaction in the film thickness direction (ie, formation of holes), the formation reaction is performed mainly in the direction of the film surface, thereby forming a porous structure. It can be a high quality layer. The layer having high porosity formed under the Si layer including the plurality of holes is formed by the Si layer including the upper holes.
It is mechanically weaker than the layer and the lower Si crystal part, and has a structure advantageous in that the Si crystal part having holes in a later step is peeled off as a thin film. When a columnar structure is formed in p-type Si, the following features of the anodization reaction are used. That is, when the Si crystal is not irradiated with light, the n-type S
Anodization reaction of p-type Si occurs more actively than i. Therefore, after appropriately arranging the n-type and p-type regions in the Si crystal, only the p-type region formed in a columnar shape is made porous by anodizing, and the anodizing conditions are changed as in the case of the n-type Si. Thus, a structure in which a layer having high porosity is formed is obtained.

【0008】[0008]

【発明の実施の形態】以下に、陽極化成工程により形成
した穴状の柱状構造を有する半導体薄膜の製造方法およ
びその半導体薄膜を用いた太陽電池素子の作製につい
て、さらに詳細に説明する。 〈実施の形態1〉図1(a)〜(e)は、本実施の形態
において例示する半導体薄膜およびその半導体薄膜を用
いた太陽電池素子を製造する工程を示す模式図である。
図1(a)で、1は母材n形(100)Si結晶基体を
示し、該Si結晶基体1の裏面より、陽極化成反応時に
照射する光3を照射しつつ、表面から陽極化成反応を行
わしめる。一定の径の穴を形成するためには、上記光3
の照射は800nm以上の波長の光をカットするフィル
ターを用いて行うのが好適である。陽極化成条件を適宜
設定することにより30μm深さ、直径1μmの柱状穴
2を形成することができた。また、柱状穴2のSi結晶
面内の配置については、あらかじめ上記Si結晶基体1
の表面に、光リソグラフィー等の方法により微小な凹面
(ピット)を生じさせておけば、それを切っ掛けとして
陽極化成条件に依存した一定の径の穴の形成が可能であ
る。引き続き、図1(b)に示すように、バイアス等の
陽極化成条件を瞬時に大きく変化させ、比較的短時間の
反応で多孔質度の大きい層4を形成した。次いで、接合
部を形成するために、図1(c)に示すように、B(ボ
ロン)ドープガラス5を塗布した。図1(d)に示すよ
うに、通常の拡散過程を経てn形Si層11内に、p形
拡散層6を形成し、Bドープガラス5を除去した後、p
電極7を付着し、さらに太陽電池の支持基板となるガラ
ス板8を接着した。ガラス板8とp電極7との接着に
は、適当な耐熱性接着剤を用いることが好ましい。ガラ
ス板8を接着後、柱状穴2を有する層は、上記ガラス板
8と一体的に母材n形(100)Si結晶基体1から機
械的に剥離することができた。また、多孔質度の大きい
層4も、上述したように機械的に脆弱なため、破断面4
0を境にして剥離することができた。なお、剥離の際に
は、剥離を助長するために酸等の溶液に浸漬する化学的
処理、もしくは加熱処理を付加することによって、より
好適に破断を行うことができた。剥離後、柱状穴層側に
残存した多孔質層41はエッチングにより除去した。ま
た、剥離後残存した母材n形(100)Si結晶基体1
は、破断面40近傍の多孔質層42を除去後、再利用し
た。剥離した構造体は、図1(e)に示すように、太陽
光の反射防止膜9、n電極10を順次形成して太陽電池
を構成した。なお、柱状穴2の周辺部のSiは、穴形成
に伴う歪が蓄積され酸化され易い状態になっており、穴
形成の直後からn電極形成に至るまでの過程で酸化膜1
2が形成される。太陽電池の特性の観点からは、酸化膜
12、反射防止膜9は光生成キャリアの表面再結合を防
止する上で有効である。なお、p電極7を透明電極とし
た場合、図1(e)において、上部より入射した光の一
部は、柱状穴2、p電極7、支持基板となるガラス板8
を通過することが可能で、いわゆるシースルー機能(光
が部分的に透過する機能)を有した太陽電池の構成も可
能である。柱状穴2の配置および深さ・径は、陽極化成
条件を制御することにより調整可能であり、例えば、シ
ースルーの程度等も変化させることが可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for producing a semiconductor thin film having a hole-shaped columnar structure formed by an anodizing step and the production of a solar cell element using the semiconductor thin film will be described below in more detail. <Embodiment 1> FIGS. 1A to 1E are schematic views showing steps of manufacturing a semiconductor thin film exemplified in this embodiment and a solar cell element using the semiconductor thin film.
In FIG. 1A, reference numeral 1 denotes an n-type (100) Si crystal base material of a base material. Do it. In order to form a hole having a certain diameter, the light 3
Irradiation is preferably performed using a filter that cuts light having a wavelength of 800 nm or more. By appropriately setting the anodizing conditions, a columnar hole 2 having a depth of 30 μm and a diameter of 1 μm could be formed. Regarding the arrangement of the columnar holes 2 in the Si crystal plane, the Si crystal substrate 1
If a small concave surface (pit) is formed on the surface of the substrate by a method such as photolithography, it is possible to form a hole having a constant diameter depending on anodizing conditions by using the concave surface as a starting point. Subsequently, as shown in FIG. 1 (b), anodizing conditions such as bias were instantaneously changed greatly, and a layer 4 having high porosity was formed by a relatively short reaction. Next, B (boron) -doped glass 5 was applied as shown in FIG. As shown in FIG. 1D, a p-type diffusion layer 6 is formed in the n-type Si layer 11 through a normal diffusion process, and after the B-doped glass 5 is removed, the p-type diffusion layer 6 is removed.
The electrode 7 was attached, and a glass plate 8 serving as a supporting substrate of the solar cell was further attached. For bonding the glass plate 8 and the p-electrode 7, it is preferable to use an appropriate heat-resistant adhesive. After bonding the glass plate 8, the layer having the columnar holes 2 could be mechanically separated from the base n-type (100) Si crystal base 1 integrally with the glass plate 8. Further, the layer 4 having high porosity is also mechanically fragile as described above, so that the fracture surface 4
Peeling was possible at 0. In addition, at the time of peeling, the breakage could be more suitably performed by adding a chemical treatment or a heat treatment of dipping in a solution such as an acid to promote the peeling. After peeling, the porous layer 41 remaining on the columnar hole layer side was removed by etching. Further, the base material n-type (100) Si crystal substrate 1 remaining after peeling
Was reused after removing the porous layer 42 near the fracture surface 40. As shown in FIG. 1 (e), the solar cell was formed by sequentially forming an antireflection film 9 for solar light and an n-electrode 10 on the separated structure. Note that Si around the columnar hole 2 is in a state where the strain accompanying the hole formation is accumulated and easily oxidized, and the oxide film 1 is formed in the process from immediately after the hole formation to the formation of the n-electrode.
2 are formed. From the viewpoint of the characteristics of the solar cell, the oxide film 12 and the antireflection film 9 are effective in preventing surface recombination of photogenerated carriers. In the case where the p-electrode 7 is a transparent electrode, in FIG. 1E, a part of the light incident from the top is the columnar hole 2, the p-electrode 7, and the glass plate 8 serving as a support substrate.
And a solar cell having a so-called see-through function (a function of partially transmitting light) is also possible. The arrangement, depth and diameter of the columnar holes 2 can be adjusted by controlling the anodizing conditions, and for example, the degree of see-through can be changed.

【0009】〈実施の形態2〉図2(a)〜(e)は、
本実施の形態において例示する半導体薄膜およびその半
導体薄膜を用いた太陽電池素子を製造する工程を示す模
式図である。図2(a)において、21は母材p形(1
00)Si結晶基体である。マスク22をスクリーン印
刷後、水素イオン注入を行い、マスク22を除去した
後、400℃でアニールすると、上記Si結晶基体21
の一部に、注入エネルギに応じてn形化領域23が形成
される。次いで、陽極化成を行うと、図2(b)に示す
ように、イオン注入されずp形のままで多孔質化した柱
状の構造20およびその下部に多孔質化したp形領域2
4が形成される。次に、接合を形成するために、図2
(c)に示すように、P(燐)ドープガラス25を塗布
し、n形拡散のための熱処理を行った。熱処理に伴い、
注入された水素が上記Si結晶基体21の外側に拡散し
散逸すると共に、Pドープガラス層25よりPが拡散
し、図2(d)に示すように、n形層26が形成され、
n形化領域23は、元のp形となる。Pドープガラス2
5を除去した後、n電極27を付着し、さらに、太陽電
池の支持基板となるガラス板28を接着させた〔図2
(d)〕。次いで、実施の形態1と同様にして、柱状構
造を含むSi薄層を剥離した。残った母材p形(10
0)Si結晶基体21は再利用した。図2(e)に示す
ように、剥離されたSi薄層の表面は、反射防止効果を
高めるためにアルカリ溶液でエッチングし、逆ピラミッ
ド状の表面30を形成した。反射防止膜31、p電極3
2を順次積層し、熱処理を行って太陽電池を作製した。
多孔質化したp形領域24の周辺部のSiは、太陽電池
の作製過程中で酸化され柱状の酸化領域29となった。
なお、多孔質化したp形領域24の酸化は、太陽電池の
作製過程中の適当な段階で、意図的・積極的に行っても
良い。
<Embodiment 2> FIGS. 2 (a) to 2 (e)
It is a schematic diagram which shows the process of manufacturing the semiconductor thin film illustrated in this Embodiment and the solar cell element using the semiconductor thin film. In FIG. 2A, reference numeral 21 denotes a base material p-type (1
00) Si crystal substrate. After screen printing of the mask 22, hydrogen ion implantation is performed, and after removing the mask 22, annealing at 400 ° C.
An n-type region 23 is formed in a part of the region according to the implantation energy. Then, when anodization is performed, as shown in FIG. 2B, the columnar structure 20 which is made porous without being ion-implanted and remains p-type and the p-type region 2 which is made porous thereunder are formed.
4 are formed. Next, in order to form a bond, FIG.
As shown in (c), P (phosphorus) -doped glass 25 was applied, and heat treatment for n-type diffusion was performed. With heat treatment,
The implanted hydrogen diffuses out of the Si crystal substrate 21 and dissipates, and P diffuses from the P-doped glass layer 25 to form an n-type layer 26 as shown in FIG.
The n-type region 23 becomes the original p-type. P-doped glass 2
After removing 5, an n-electrode 27 was attached, and a glass plate 28 serving as a supporting substrate of the solar cell was further adhered [FIG.
(D)]. Next, in the same manner as in Embodiment 1, the Si thin layer including the columnar structure was peeled off. The remaining base material p-type (10
0) The Si crystal substrate 21 was reused. As shown in FIG. 2E, the surface of the exfoliated Si thin layer was etched with an alkaline solution to enhance the antireflection effect, thereby forming an inverted pyramid-shaped surface 30. Antireflection film 31, p electrode 3
2 were sequentially laminated and heat-treated to produce a solar cell.
Si in the peripheral portion of the porous p-type region 24 was oxidized in the process of manufacturing the solar cell to become a columnar oxidized region 29.
The oxidation of the porous p-type region 24 may be intentionally and positively performed at an appropriate stage during the manufacturing process of the solar cell.

【0010】[0010]

【発明の効果】以上説明したように、本発明の半導体薄
膜の製造方法およびその半導体薄膜を用いた薄膜太陽電
池では、上記従来の(1)の方法では実現が困難であっ
た10μm程度の膜厚の薄膜Si結晶を容易に作製する
ことができる。また、上記従来の(2)の方法では、太
陽電池特性に問題を残さない程度に注入欠陥を回復させ
ることが困難であったが、本発明では陽極化成反応に関
与しないSi結晶部分は基本的に元の欠陥の少ない結晶
構造が維持されるため問題は生じない。これは、本発明
の方法が、上記従来の(3)の方法では達成困難であっ
た単結晶もしくは数cm程度以上の大粒径の多結晶Si
薄膜を、母材の結晶性を維持したまま実現できることを
意味する。さらに、イオン注入装置等の高価な装置を用
いる必要もなく、簡易な陽極化成装置で大面積の薄膜処
理を短時間に行うことができる。また、単結晶(もしく
は単結晶とみなし得る程度の大粒径の多結晶)の薄膜で
は、粒径が小さい上記従来の(3)の方法で問題となっ
ていた結晶粒界におけるキャリアの再結合・漏れ電流に
起因する効率の低下がないため、従来の厚い(数100
μm程度)Si単結晶太陽電池と同程度の効果的な光電
変換効率が得られる。また、剥離工程後、残留した母材
Si結晶の再利用が可能であるため、Siの資源節約の
面でも有利な方法である。標準的な6インチSi単結晶
ウエハ1枚から、10μm厚のSi単結晶太陽電池を約
50枚以上作製できる効果がある。
As described above, the method of manufacturing a semiconductor thin film of the present invention and the thin-film solar cell using the semiconductor thin film of the present invention have a film thickness of about 10 μm, which is difficult to realize by the above-mentioned conventional method (1). A thick thin-film Si crystal can be easily produced. Further, in the above-mentioned conventional method (2), it is difficult to recover an injection defect to such an extent that there is no problem in the solar cell characteristics. However, in the present invention, a Si crystal part which does not participate in the anodization reaction is basically used. No problem arises because the original crystal structure with few defects is maintained. This is because the method of the present invention is a single crystal or a polycrystalline Si having a large grain size of about several cm or more, which was difficult to achieve by the above-mentioned conventional method (3).
This means that a thin film can be realized while maintaining the crystallinity of the base material. Further, it is not necessary to use an expensive apparatus such as an ion implantation apparatus, and a large-area thin film can be processed in a short time with a simple anodizing apparatus. In the case of a thin film of a single crystal (or a polycrystal having a large particle size that can be regarded as a single crystal), the recombination of carriers at the crystal grain boundaries, which has been a problem in the above-mentioned conventional method (3), having a small particle size. The conventional thick (several hundreds) because there is no reduction in efficiency due to leakage current
(approximately μm) The same effective photoelectric conversion efficiency as that of a Si single crystal solar cell can be obtained. Further, since the remaining base material Si crystal can be reused after the peeling step, it is an advantageous method in terms of saving Si resources. There is an effect that about 50 or more 10-μm-thick Si single-crystal solar cells can be manufactured from one standard 6-inch Si single-crystal wafer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1で例示した半導体薄膜の
作製方法とその半導体薄膜を用いた太陽電池の製造過程
を示す工程図。
FIG. 1 is a process chart showing a method for manufacturing a semiconductor thin film exemplified in Embodiment 1 of the present invention and a process for manufacturing a solar cell using the semiconductor thin film.

【図2】本発明の実施の形態2で例示した半導体薄膜の
作製方法とその半導体薄膜を用いた太陽電池の製造過程
を示す工程図。
FIG. 2 is a process chart showing a method for manufacturing a semiconductor thin film exemplified in Embodiment 2 of the present invention and a process for manufacturing a solar cell using the semiconductor thin film.

【符号の説明】[Explanation of symbols]

1…母材n形(100)Si結晶基体 2…柱状穴 3…陽極化成反応時に照射する光 4…多孔質度の大きい層 5…Bドープガラス 6…p形拡散層 7…p電極 8…支持基板となるガラス板 9…反射防止膜 10…n電極 11…n形Si層 12…酸化膜 20…多孔質化した柱状の構造 21…母材p形(100)Si結晶基体 22…マスク 23…n形化領域 24…多孔質化したp形領域 25…Pドープガラス 26…n形層 27…n電極 28…ガラス板 29…柱状の酸化領域 30…逆ピラミッド状の表面 31…反射防止膜 32…p電極 40…破断面 41…柱状穴層側に残存した多孔質層 42…破断面近傍の多孔質層 DESCRIPTION OF SYMBOLS 1 ... n-type (100) Si crystal base material 2 ... columnar hole 3 ... light irradiated at the time of anodization reaction 4 ... layer with large porosity 5 ... B-doped glass 6 ... p-type diffusion layer 7 ... p-electrode 8 ... Glass plate 9 serving as a support substrate 9 ... Anti-reflection film 10 ... N-electrode 11 ... N-type Si layer 12 ... Oxide film 20 ... Porosified columnar structure 21 ... Base material p-type (100) Si crystal base 22 ... Mask 23 ... n-type region 24 ... porous p-type region 25 ... P-doped glass 26 ... n-type layer 27 ... n-electrode 28 ... glass plate 29 ... columnar oxidized region 30 ... inverted pyramid surface 31 ... antireflection film 32 p-electrode 40 fracture surface 41 porous layer remaining on columnar hole layer 42 porous layer near fracture surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 武 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takeshi Yamada 3-19-2 Nishi Shinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体結晶母材中に、該半導体結晶の第1
の主面から他の第2の主面に向かって複数の柱状構造を
形成する第1の工程と、 上記半導体結晶母材中に、陽極化成により多孔質層を形
成する第2の工程と、 上記多孔質層と上記柱状構造を含む半導体結晶母材の一
部と支持基板とを少なくとも構成要素として積層した構
造体を、上記半導体結晶母材から剥離することにより、
上記柱状構造が薄膜中を貫通してなる半導体薄膜を上記
支持基板上に形成する第3の工程とを、少なくとも含む
ことを特徴とする半導体薄膜の製造方法。
1. A semiconductor crystal base material comprising:
A first step of forming a plurality of columnar structures from the main surface to another second main surface, a second step of forming a porous layer in the semiconductor crystal base material by anodization, By peeling a structure in which the porous layer and a part of the semiconductor crystal base material including the columnar structure and a support substrate are laminated at least as constituent elements from the semiconductor crystal base material,
A third step of forming a semiconductor thin film having the columnar structure penetrating the thin film on the support substrate.
【請求項2】請求項1記載の半導体薄膜の製造方法にお
いて、第3の工程の後に残存する半導体結晶母材を用い
て、第1の工程、第2の工程および第3の工程を、繰り
返し行い、複数の半導体薄膜を得る工程を有することを
特徴とする半導体薄膜の製造方法。
2. The method of manufacturing a semiconductor thin film according to claim 1, wherein the first, second, and third steps are repeated using a semiconductor crystal base material remaining after the third step. Performing a step of obtaining a plurality of semiconductor thin films.
【請求項3】請求項1または請求項2に記載の半導体薄
膜の製造方法により作製した半導体薄膜を、少なくとも
太陽電池の光電変換層として用いることを特徴とする太
陽電池。
3. A solar cell, wherein the semiconductor thin film manufactured by the method for manufacturing a semiconductor thin film according to claim 1 or 2 is used at least as a photoelectric conversion layer of the solar cell.
JP9115510A 1997-05-06 1997-05-06 Manufacture of semiconductor thin film and solar battery using the semiconductor thin film Pending JPH10308520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9115510A JPH10308520A (en) 1997-05-06 1997-05-06 Manufacture of semiconductor thin film and solar battery using the semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9115510A JPH10308520A (en) 1997-05-06 1997-05-06 Manufacture of semiconductor thin film and solar battery using the semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH10308520A true JPH10308520A (en) 1998-11-17

Family

ID=14664315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9115510A Pending JPH10308520A (en) 1997-05-06 1997-05-06 Manufacture of semiconductor thin film and solar battery using the semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH10308520A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515920A (en) * 2000-12-08 2004-05-27 コミツサリア タ レネルジー アトミーク Thin film manufacturing method including introduction of gaseous species
WO2009104561A1 (en) * 2008-02-21 2009-08-27 シャープ株式会社 Solar cell and method for manufacturing solar cell
WO2010030107A3 (en) * 2008-09-09 2010-06-24 Lg Electronics Inc. Thin-film type solar cell module having a reflective media layer and fabrication method thereof
KR100999180B1 (en) 2008-07-11 2010-12-10 주식회사 밀레니엄투자 Solar cell and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515920A (en) * 2000-12-08 2004-05-27 コミツサリア タ レネルジー アトミーク Thin film manufacturing method including introduction of gaseous species
WO2009104561A1 (en) * 2008-02-21 2009-08-27 シャープ株式会社 Solar cell and method for manufacturing solar cell
JP5203397B2 (en) * 2008-02-21 2013-06-05 シャープ株式会社 Manufacturing method of solar cell
US9054254B2 (en) 2008-02-21 2015-06-09 Sharp Kabushiki Kaisha Solar cell and method of manufacturing solar cell
KR100999180B1 (en) 2008-07-11 2010-12-10 주식회사 밀레니엄투자 Solar cell and method of manufacturing the same
WO2010030107A3 (en) * 2008-09-09 2010-06-24 Lg Electronics Inc. Thin-film type solar cell module having a reflective media layer and fabrication method thereof
KR101161378B1 (en) 2008-09-09 2012-07-02 엘지전자 주식회사 Thin-film type solar cell having white reflective media layer and fabricating method thereof

Similar Documents

Publication Publication Date Title
US6664169B1 (en) Process for producing semiconductor member, process for producing solar cell, and anodizing apparatus
KR100440853B1 (en) Manufacturing method of thin film semiconductor, solar cell and light emitting diode
JP4838409B2 (en) Method for forming a thin layer on a support substrate
US6566235B2 (en) Process for producing semiconductor member, and process for producing solar cell
JPH1093122A (en) Method of manufacturing thin-film solar cell
JP5348927B2 (en) Photoelectric conversion device and manufacturing method thereof
US6426274B1 (en) Method for making thin film semiconductor
KR101313346B1 (en) Fabrication method of single crystal silicon solar battery and single crystal silicon solar battery
EP1981092B1 (en) Method for manufacturing single-crystal silicon solar cell
US6211038B1 (en) Semiconductor device, and method for manufacturing the same
JP4452789B2 (en) Method for producing silicon crystal thin plate and method for producing substrate for photoelectric conversion element
JP2000150940A (en) Semiconductor fine grain aggregate and manufacture thereof
US8518724B2 (en) Method to form a device by constructing a support element on a thin semiconductor lamina
JP2001094136A (en) Method for manufacturing semiconductor element module and solar cell module
JPH10135500A (en) Manufacture of thin film semiconductor, solar cell and light emission element
US8101451B1 (en) Method to form a device including an annealed lamina and having amorphous silicon on opposing faces
EP1153423A1 (en) Method for fabricating thin film semiconductor devices
JP3269668B2 (en) Solar cell
JP2943126B2 (en) Solar cell and method of manufacturing the same
JPH114008A (en) Manufacture of thin film solar battery
US8536448B2 (en) Zener diode within a diode structure providing shunt protection
JPH1140832A (en) Thin-film solar cell and manufacture therefor
JP2000036609A (en) Manufacture of solar cell, manufacture of thin-film semiconductor, method for separating thin-film semiconductor, and method for forming semiconductor
JPH10308520A (en) Manufacture of semiconductor thin film and solar battery using the semiconductor thin film
US8148189B2 (en) Formed ceramic receiver element adhered to a semiconductor lamina