JPH10307196A - Fuel assembly - Google Patents

Fuel assembly

Info

Publication number
JPH10307196A
JPH10307196A JP10000045A JP4598A JPH10307196A JP H10307196 A JPH10307196 A JP H10307196A JP 10000045 A JP10000045 A JP 10000045A JP 4598 A JP4598 A JP 4598A JP H10307196 A JPH10307196 A JP H10307196A
Authority
JP
Japan
Prior art keywords
region
fuel
fuel assembly
rod group
fuel rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10000045A
Other languages
Japanese (ja)
Other versions
JP2942529B2 (en
Inventor
Akiyoshi Nakajima
章喜 中島
Taisuke Bessho
泰典 別所
Tadao Aoyama
肇男 青山
Junichi Koyama
淳一 小山
Hiromasa Hirakawa
博▲将▼ 平川
Junichi Yamashita
淳一 山下
Tatsuo Hayashi
達男 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10000045A priority Critical patent/JP2942529B2/en
Publication of JPH10307196A publication Critical patent/JPH10307196A/en
Application granted granted Critical
Publication of JP2942529B2 publication Critical patent/JP2942529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel assembly corresponding to D-grid core capable of flattening the power in the cross section vertical to the axis of a fuel assembly and simultaneously effectively improving core shutdown margin in cooled time. SOLUTION: By arranging a thick diameter water rod 3 in the center and a plurality of fuel rods 2 in a square grid, set are a region (a) 4 of fuel rod group facing to wide gap water region, a region (b) 5 of fuel rod group other than the region (a) 4 in the wide gap water region side, a region (d) 7 of fuel rod group facing to narrow gap water region and a region (c) 6 of fuel rod group other than the region (d) 7 in the narrow gap water region side. When the relative quantity of fissile material contained in each 4 fuel rod group to that in the whole regions and average enrichment are compared, the relative quantity of the fuel rod group and the average enrichment in the region (a) 4 are minimized and those in the region (b) 5 are maximized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、沸騰水型原子炉
(BWR)における燃料集合体に係り、特に高燃焼度化
に好適なD格子炉心対応の燃料集合体に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel assembly in a boiling water reactor (BWR), and more particularly to a fuel assembly compatible with a D lattice core suitable for high burn-up.

【0002】[0002]

【従来の技術】図2は、現在運転中の従来のBWRの燃
料集合体群の部分水平断面図である。すなわち、燃料棒
2を正方格子状に配列して構成した燃料バンドルを単位
格子セル22の中央に据え、前記燃料バンドルを囲むよ
うにチヤネルボックス23をおくことで、冷却材の軽水
が沸騰せずに流れる流路となるギャップ水領域を形成す
る。前記ギャップ水領域には、制御棒24が挿入される
側25と制御棒24の出し入れがない側26の2種類が
ある。
2. Description of the Related Art FIG. 2 is a partial horizontal sectional view of a fuel assembly group of a conventional BWR currently in operation. That is, the fuel bundle formed by arranging the fuel rods 2 in a square lattice is set in the center of the unit cell 22, and the channel box 23 is placed so as to surround the fuel bundle, so that the light water of the coolant does not boil. To form a gap water region that becomes a flow path for flowing through. The gap water region has two types, a side 25 into which the control rod 24 is inserted and a side 26 where the control rod 24 is not taken in and out.

【0003】軽水炉の発電コストの低減をはかるには、
燃料サイクルコストを低減することが有効である。その
一方法として燃料集合体の平均取出燃焼度を高くするこ
とが考えられている。一般に、取出燃焼度を高くするに
つれて、燃料集合体の平均濃縮度は増加する。燃料濃縮
度が高くなると、冷温時(約20℃)の反応度は高くな
り、運転時(約280℃)の反応度と、冷温時の反応度
の差が増大する(運転時冷温時反応度差が増大)。反応
度が高い場合、中性子の発生量と消滅量をバランスする
ように制御するのが制御棒である。
In order to reduce the power generation cost of a light water reactor,
It is effective to reduce the fuel cycle cost. As one of the methods, it is considered to increase the average removal burnup of the fuel assembly. In general, the average enrichment of the fuel assembly increases as the removal burn-up increases. As the fuel enrichment increases, the reactivity at the cold temperature (about 20 ° C.) increases, and the difference between the reactivity at the time of operation (about 280 ° C.) and the reactivity at the time of cold temperature increases (the reactivity at the time of cold temperature at the time of operation). Difference increases). When the reactivity is high, the control rod controls the neutron generation and extinction in a balanced manner.

【0004】図2に示すように、運転時でも、冷温時で
も、制御棒24は、燃料集合体の片側に存在する。制御
棒の中性子吸収材B4Cは、特に熱中性子を吸収するこ
とで反応度を低下させる。燃料集合体の相対的な濃縮度
分布が同じでも、濃縮度が増加すれば、制御棒による中
性子吸収量が減少するため、冷温時の制御棒価値は減少
する。ここで、制御棒価値とは、制御棒の反応度の大き
さであり、簡単には、制御棒の位置の中性子束の2乗に
比例する値である。
As shown in FIG. 2, the control rod 24 is present on one side of the fuel assembly both during operation and at cold temperature. The neutron absorber B 4 C of the control rod reduces the reactivity by absorbing thermal neutrons in particular. Even if the relative enrichment distribution of the fuel assemblies is the same, as the enrichment increases, the neutron absorption by the control rods decreases, and the control rod value at cold temperature decreases. Here, the control rod value is the magnitude of the reactivity of the control rod, and is simply a value proportional to the square of the neutron flux at the position of the control rod.

【0005】したがつて、高燃焼度用炉心の場合、冷温
時の炉停止余裕は小さくなる傾向にある。このことは、
原子炉停止時に臨界に達し易くなり、好ましくない。冷
温時の炉停止余裕を向上させるには、(1)制御棒価値
を高めて、制御棒挿入時の冷温時反応度と制御棒未挿入
時の冷温時反応度との差を大きくする方法、および
(2)運転時と冷温時の反応度差を小さくする方法が考
えられる。
[0005] Therefore, in the case of a high burn-up core, the margin for stopping the furnace at a cold temperature tends to be small. This means
When the reactor is shut down, the criticality tends to reach, which is not preferable. In order to improve the furnace shutdown margin at the time of cold temperature, (1) a method of increasing the control rod value to increase the difference between the cold reactivity at the time of control rod insertion and the cold reactivity at the time of no control rod insertion, And (2) a method of reducing the difference in reactivity between operation and cold temperature is conceivable.

【0006】上記(1)の例として、例えば、特開昭6
1−275696号公報記載の技術が知られている。図
3は、従来技術1の燃料集合体群の水平断面図である。
図3に示す燃料集合体は、十字型制御棒31に対面して
いる燃料棒32の濃縮度を、燃料集合体平均濃縮度より
も高くすることで、制御棒価値を高める方法であった。
As an example of the above (1), see, for example,
The technique described in Japanese Patent Application Laid-Open No. 1-275696 is known. FIG. 3 is a horizontal cross-sectional view of a fuel assembly group according to prior art 1.
The fuel assembly shown in FIG. 3 is a method of increasing the control rod value by making the enrichment of the fuel rod 32 facing the cruciform control rod 31 higher than the average fuel enrichment of the fuel assembly.

【0007】また、例えば、特開昭63−98590号
公報記載の技術が知られている。図4は、従来技術2の
燃料集合体群の水平断面図である。図4に示す燃料集合
体は、燃料集合体41の中央部に十字型水路42を配置
して前記燃料集合体を4つのサブ燃料集合体43,44
に分けた時に制御棒45に最も近いサブ燃料集合体44
の平均濃縮度を他のサブ燃料集合体43の平均濃縮度よ
りも高くすることで、冷態時制御棒価値を高くする方法
であった。
Further, for example, a technique described in Japanese Patent Application Laid-Open No. 63-98590 is known. FIG. 4 is a horizontal cross-sectional view of a fuel assembly group according to prior art 2. In the fuel assembly shown in FIG. 4, a cross-shaped water channel 42 is arranged at the center of the fuel assembly 41 and the fuel assembly is divided into four sub-fuel assemblies 43 and 44.
Sub-fuel assembly 44 closest to the control rod 45 when divided into
In this method, the value of the control rod in the cold state is increased by making the average enrichment of the sub-fuel assembly 43 higher than the average enrichment of the other sub-fuel assemblies 43.

【0008】[0008]

【発明が解決しようとする課題】現在運転中のBWRに
は、図2に示したギャップ水領域25及び26の面積が
等しいC格子炉心と、制御棒24が挿入されるギャップ
水領域25の面積の方が広いD格子炉心がある。上記従
来技術1(図3)を前記D格子炉心に適用する場合、運
転時の局所出力ピーキング係数は制御棒24が挿入され
るギャップ水領域側で大きくなりやすい。ここで、出力
ピーキング係数とは、出力最高値と平均値の比であり、
この値が小さい炉では、出力が平坦化されている。
The currently operating BWR has a C lattice core having the same area of the gap water regions 25 and 26 shown in FIG. 2 and an area of the gap water region 25 into which the control rod 24 is inserted. Has a larger D lattice core. When the above-mentioned prior art 1 (FIG. 3) is applied to the D-lattice core, the local power peaking coefficient during operation tends to increase on the gap water region side where the control rod 24 is inserted. Here, the output peaking coefficient is a ratio between the maximum output value and the average value,
In a furnace where this value is small, the output is flattened.

【0009】また、従来技術2(図4)では制御棒45
に最も近いサブ燃料集合体44の平均濃縮度を他のサブ
燃料集合体43の平均濃縮度よりも高くするために、サ
ブ燃料集合体の最外周に位置した燃料棒の燃料濃縮度を
高くしていた。すなわち、高濃縮度の燃料棒が十字型水
路42に隣接するため、特に平均濃縮度が現行に比べて
高くなるべき性質の高燃焼度用燃料集合体では、運転時
の局所出力ピーキング係数は十字型水路42に隣接した
燃料棒で大きくなりやすい。すなわち、従来技術1およ
び従来技術2は運転時の局所出力ピーキング係数の上昇
について考慮されておらず、それに伴う熱的余裕低減の
点で問題があった。
In the prior art 2 (FIG. 4), the control rod 45
In order to make the average enrichment of the sub fuel assembly 44 closest to the sub fuel assembly 43 higher than the average enrichment of the other sub fuel assemblies 43, the fuel enrichment of the fuel rods located at the outermost periphery of the sub fuel assembly is increased. I was That is, since the highly enriched fuel rods are adjacent to the cruciform waterway 42, the local output peaking coefficient during operation is particularly high in a high burnup fuel assembly whose average enrichment should be higher than the current one. The fuel rods adjacent to the mold channel 42 tend to be large. That is, the prior arts 1 and 2 do not consider an increase in the local output peaking coefficient during operation, and have a problem in that the thermal margin is reduced accordingly.

【0010】本発明の目的は、上記従来技術の問題点を
解決し、燃料集合体の軸方向に垂直な横断面における出
力の平坦化を図りつつ、冷温時の炉停止余裕を効果的に
向上できるD格子炉心対応の燃料集合体を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to effectively improve the margin for stopping the furnace at a cold temperature while flattening the output in a cross section perpendicular to the axial direction of the fuel assembly. An object of the present invention is to provide a fuel assembly compatible with a D lattice core.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
の本発明に係る燃料集合体の構成は、核燃料物質を封入
した複数本の燃料棒と太径水ロツドとを正方格子状に配
置し、前記太径水ロツドを中央部に配置してなる燃料集
合体であって、前記燃料集合体の軸方向に垂直な横断面
における、制御棒が挿入される広いギャップ水領域に面
した燃料棒群の領域a、広いギャップ水領域側の前記領
域a以外の燃料棒群の領域b、狭いギャップ水領域に面
した燃料棒群の領域d、狭いギャップ水領域側の前記領
域d以外の燃料棒群の領域cを設定し、前記4つの各領
域に含まれる核分裂性物質の全領域に含まれる核分裂性
物質に対する相対量と、前記4つの各領域における燃料
棒の平均濃縮度とを比較した場合、前記領域aの燃料棒
群の前記相対量と前記平均濃縮度を最小とすると共に、
前記領域bの燃料棒群の前記相対量と前記平均濃縮度を
最大としたものである。
In order to solve the above-mentioned problems, a fuel assembly according to the present invention has a structure in which a plurality of fuel rods containing nuclear fuel material and a large-diameter water rod are arranged in a square lattice. A fuel assembly in which the large-diameter water rod is disposed at a central portion, wherein the fuel rod faces a wide gap water region into which a control rod is inserted in a cross section perpendicular to the axial direction of the fuel assembly. A group region a, a region b of the fuel rod group other than the region a on the wide gap water region side, a region d of the fuel rod group facing the narrow gap water region, and a fuel rod other than the region d on the narrow gap water region side A case where a group c is set and the relative amount of the fissile material contained in the whole region of the fissile material contained in each of the four regions is compared with the average enrichment of the fuel rods in each of the four regions. , The relative amount of the fuel rod group in the area a, While minimizing the serial average enrichment,
The relative amount and the average enrichment of the fuel rod group in the region b are maximized.

【0012】図5は、一般のD格子炉心に装荷される燃
料集合体の水平断面図である。図5に示すように狭いギ
ャップ水領域52に面する側54の燃料棒の燃料濃縮度
が高くなる濃縮度分布を採用している。すなわち、広い
ギャップ水領域51に隣接した、燃料集合体最外周燃料
棒の濃縮度を低くすることで、局所出力ピーキング係数
を抑制している。これを基準ケースとする。
FIG. 5 is a horizontal sectional view of a fuel assembly loaded in a general D-lattice core. As shown in FIG. 5, the enrichment distribution in which the fuel enrichment of the fuel rod on the side 54 facing the narrow gap water region 52 is high is adopted. That is, the local output peaking coefficient is suppressed by lowering the enrichment of the outermost fuel rods of the fuel assembly adjacent to the wide gap water region 51. This is the reference case.

【0013】いま、燃料集合体の燃料領域を、広いギ
ャップ水領域に面した燃料棒群[領域a]、広いギャ
ップ水領域側の以外の燃料棒群[領域b]、狭いギ
ャップ水領域に面した燃料棒群[領域d]、狭いギャ
ップ水領域側の以外の燃料棒群[領域c]の4つに分
割する。基準ケースでは、領域aの濃縮度が各領域中で
最小となる。前記従来技術1では、領域aにおける濃縮
度を高めることで、冷温時制御棒価値を向上させてい
た。
Now, the fuel region of the fuel assembly is set so as to face the fuel rod group [region a] facing the wide gap water region, the fuel rod group [region b] other than the wide gap water region side, and the narrow gap water region. The fuel rod group [region d] and the fuel rod group [region c] other than the narrow gap water region side are divided into four. In the reference case, the enrichment of the region a is minimum in each region. In the above-mentioned prior art 1, the control rod value at the time of cold temperature is improved by increasing the degree of concentration in the region a.

【0014】図6は、本発明の原理説明図で、冷温時制
御棒価値の変化を示す線図である。図6は、領域aに含
まれるU−235の相対量を各領域中で最小となるよう
に基準ケースと同一とし、領域bに含まれているU−2
35の相対量を増加させた時の冷温時制御棒価値の変化
を示している。ここでは、燃料集合体1の中央部に位置
する太径水ロツド3に隣接していない燃料棒の燃料濃縮
度を基準ケースよりも高めることで、領域bに含まれる
U−235の相対量を増加させている。
FIG. 6 is an explanatory diagram of the principle of the present invention, and is a diagram showing a change in control rod value at the time of cold / hot. FIG. 6 shows the case where the relative amount of U-235 included in the region a is the same as that of the reference case so that the relative amount is the minimum in each region, and the U-2 included in the region b is the same.
It shows a change in the control rod value at the time of cold when the relative amount of the control bar 35 is increased. Here, the relative enrichment of U-235 contained in region b is increased by increasing the fuel enrichment of the fuel rods not adjacent to large diameter water rod 3 located at the center of fuel assembly 1 than in the reference case. Is increasing.

【0015】ここで、領域に含まれるU−235の相対
量は、領域に含まれるU−235の個数/燃料集合体が
もつU−235の個数で表わされるものとする。図6に
示すように、基準ケースに対し、領域bに含まれるU−
235の相対量を30%程度増加させ、領域cに含まれ
るU−235の相対量よりも大きくすることで、冷温時
制御棒価値は0.7%Δk/k程度高められる。現在の
沸騰水型原子炉の設計基準では、炉停止余裕が1%△k
以上である。したがって、本発明による改善効果は大き
いことがわかる。
Here, it is assumed that the relative amount of U-235 included in the region is represented by the number of U-235 included in the region / the number of U-235 included in the fuel assembly. As shown in FIG. 6, with respect to the reference case, U-
By increasing the relative amount of 235 by about 30% and making it larger than the relative amount of U-235 included in region c, the control rod value at the time of cold temperature is increased by about 0.7% Δk / k. According to the current design criteria for boiling water reactors, the reactor shutdown margin is 1% △ k
That is all. Therefore, it can be seen that the improvement effect of the present invention is great.

【0016】また、図7は、本発明の原理説明図で、運
転時冷温時反応度差の変化を示す線図である。図7に示
すように、領域bに含まれるU−235の相対量を増加
させ、領域cに含まれるU−235の相対量よりも大き
くすると、運転時冷温時反応度差は減少する。
FIG. 7 is a diagram for explaining the principle of the present invention, and is a diagram showing a change in the reactivity difference at the time of cooling and at the time of operation. As shown in FIG. 7, when the relative amount of U-235 included in the region b is increased and is larger than the relative amount of U-235 included in the region c, the difference in the reactivity during operation at the cold temperature decreases.

【0017】さらに、図8は、本発明の原理説明図で、
局所出力ピーキング係数の変化を示す線図である。図8
に示すように、領域bにおいてU−235の量を増加さ
せることは局所出力ピーキング係数を増大させることに
対して大きな影響を及ぼさない。基準ケースに対し、領
域bに含まれるU−235の相対量を30%程度増加し
ても、局所出力ピーキング係数の増加は約3%程度にと
どまる。これは前に述べたように、広いギャップ水領域
に隣接した領域aでU−235の相対量を最小にしたか
らである。
FIG. 8 is a view for explaining the principle of the present invention.
FIG. 4 is a diagram illustrating a change in a local output peaking coefficient. FIG.
As shown in FIG. 7, increasing the amount of U-235 in region b has no significant effect on increasing the local output peaking coefficient. Even if the relative amount of U-235 included in the region b is increased by about 30% with respect to the reference case, the increase of the local output peaking coefficient is only about 3%. This is because, as described above, the relative amount of U-235 was minimized in the region a adjacent to the wide gap water region.

【0018】以上説明したように、領域bに含まれるU
−235の相対量を増加させることで、局所出力ピーキ
ング係数の増加を抑制しつつ、冷温時制御棒価値ならび
に運転時冷温時反応度差を改善でき、冷温時の炉停止余
裕を向上できる。すなわち、燃料集合体の中央部に太径
水ロッドを設けることにより出力の平坦化を図りつつ、
さらに領域bの濃縮度を増大させることにより、冷温時
の炉停止余裕を効果的に向上できる。
As described above, U included in region b
By increasing the relative amount of -235, it is possible to improve the value of the control rod at the time of cold and the reactivity difference at the time of cold and at the time of operation while suppressing the increase of the local output peaking coefficient, and to improve the margin for stopping the furnace at the time of cold. That is, by providing a large-diameter water rod in the center of the fuel assembly, while trying to flatten the output,
Further, by increasing the degree of enrichment in the region b, the furnace stop margin at the time of cold temperature can be effectively improved.

【0019】領域bに含まれるU−235の相対量を増
加させる具体的な方法は、(1)濃縮度分布をつける、
(2)燃料インベントリーを領域間で変える、がある。
方法(2)では、(a)燃料ペレット径を太くする、
(b)領域に含まれる燃料棒本数を多くする、(c)燃
料ペレット密度を大きくする、の他に、燃料集合体内熱
中性子束分布が燃料集合体中央部で非均質になるのを防
ぐために挿入される太径水ロツドを領域cの方へ移動さ
せることで、領域bに含まれる燃料棒本数を多くするこ
とでも実現できる。
Specific methods for increasing the relative amount of U-235 contained in the region b include: (1) providing an enrichment distribution;
(2) Fuel inventory is changed between regions.
In the method (2), (a) the diameter of the fuel pellet is increased,
In addition to (b) increasing the number of fuel rods included in the region, (c) increasing the fuel pellet density, and preventing the thermal neutron flux distribution in the fuel assembly from becoming non-homogeneous in the center of the fuel assembly. By moving the inserted large-diameter water rod toward the region c, it can be realized by increasing the number of fuel rods included in the region b.

【0020】なお、太径水ロッドを減速材の少ない狭い
ギャップ水領域側に移動させることは、燃料集合体内熱
中性子束分布の平坦化を更に向上させることができ、そ
の結果、反応度向上を図ることができる。すなわち、狭
いギャップ水領域における熱中性子束と広いギャップ水
領域における熱中性子束の比を比較すると、基準ケース
では、0.626である。
Moving the large-diameter water rod toward the narrow gap water region where there is little moderator can further improve the flattening of the thermal neutron flux distribution in the fuel assembly, and as a result, improve the reactivity. Can be planned. That is, the ratio of the thermal neutron flux in the narrow gap water region to the thermal neutron flux in the wide gap water region is 0.626 in the reference case.

【0021】一方、領域bに含まれるU−235の相対
量を増加させるのに前記方法(1)で極端におこなう
と、領域bにおける局所出力ピーキング係数が上昇する
可能性がある。そこで、出力の平坦化を図りつつ、冷温
時の炉停止余裕をより効果的に向上するためには、前記
方法(1)の「燃料棒の濃縮度分布を付ける」ことと前
記方法(2)の「核分裂性物質量(相対量)を領域間で
変える」ことを組み合わせることが望ましい。
On the other hand, when the relative amount of U-235 contained in the region b is excessively increased by the method (1), the local output peaking coefficient in the region b may increase. Therefore, in order to more effectively improve the furnace shutdown margin at the time of cold temperature while flattening the output, the above-mentioned method (1) "adding the fuel rod enrichment distribution" and the method (2) It is desirable to combine the "change of fissile material amount (relative amount) between regions".

【0022】[0022]

【発明の実施の形態】以下本発明の実施の形態を図1を
参照して説明する。図1は、本発明の一実施の形態を示
す燃料集合体の水平断面図である。図1に示す燃料集合
体において、1は燃料集合体であり、燃料棒2を、正方
格子状に配列し、燃料集合体1の中央部に、太径水ロツ
ド3を配設している。本実施の形態例においては、燃料
棒2の濃縮度(w/o)は、A、B、C…の順に低くな
るようにし、各燃料棒の濃縮度は、表1に示すとおりで
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a horizontal sectional view of a fuel assembly showing one embodiment of the present invention. In the fuel assembly shown in FIG. 1, reference numeral 1 denotes a fuel assembly, in which fuel rods 2 are arranged in a square lattice, and a large-diameter water rod 3 is provided in the center of the fuel assembly 1. In the present embodiment, the enrichment (w / o) of the fuel rods 2 is set to decrease in the order of A, B, C..., And the enrichment of each fuel rod is as shown in Table 1.

【0023】[0023]

【表1】 本実施の形態では、濃縮度分布によって、各領域4(領
域a)、5(領域b)、6(領域c)、7(領域d)に
含まれるU−235の量を調整している。本実施例で
は、太径水ロツド3に隣接していない燃料の濃縮度も高
めることで、領域bにおけるU−235の相対量を最大
としている。本実施の形態では、領域bにおける前記相
対量は30.0%であり、図5に示した基準ケースより
もU−235の量を約20%増加させている。一方、領
域aにおけるU−235の相対量は約18%であり、基
準ケースと同量である。
[Table 1] In the present embodiment, the amount of U-235 contained in each of the regions 4 (region a), 5 (region b), 6 (region c), and 7 (region d) is adjusted by the concentration distribution. In the present embodiment, the relative amount of U-235 in the region b is maximized by increasing the enrichment of the fuel not adjacent to the large diameter water rod 3. In the present embodiment, the relative amount in the region b is 30.0%, and the amount of U-235 is increased by about 20% as compared with the reference case shown in FIG. On the other hand, the relative amount of U-235 in region a is about 18%, which is the same as the reference case.

【0024】一方、現在運転中のD格子炉心に装荷され
る燃料集合体で採用している燃料濃縮度分布と同様に、
狭いギャップ水領域に面する領域dでは、その平均燃料
濃縮度(wt%)を3.75とし、領域cの平均濃縮度
3.67よりも高めておくことで、局所出力ピーキング
係数を抑制できるように構成している。
On the other hand, similar to the fuel enrichment distribution employed in the fuel assemblies loaded in the currently operating D-lattice core,
In the region d facing the narrow gap water region, the average fuel enrichment (wt%) is set to 3.75, which is higher than the average enrichment 3.67 in the region c, whereby the local output peaking coefficient can be suppressed. It is configured as follows.

【0025】既に説明したように、領域bに含まれるU
−235の相対量を多くした燃料集合体構成により、冷
温時制御棒価値は基準ケースより約0.3%△k/k大
きくなる。また、運転時冷温時反応度差も約0.02%
Δk/k小さくなる。一方、局所出力ピーキング係数の
増加は3%程度に抑制されている。すなわち、本発明で
は局所出力ピーキング係数の増加を抑制しつつ、基準ケ
ースに比べて制御棒側のU−235の相対量を多くし、
冷温時制御棒価値を増大できる。
As described above, the U included in the area b
Due to the configuration of the fuel assembly in which the relative amount of -235 is increased, the control rod value at the time of cold is about 0.3% △ k / k larger than the reference case. In addition, the difference in reactivity between cold and hot during operation is about 0.02%
Δk / k becomes smaller. On the other hand, the increase in the local output peaking coefficient is suppressed to about 3%. That is, in the present invention, while suppressing the increase of the local output peaking coefficient, the relative amount of the U-235 on the control rod side is increased as compared with the reference case,
The control rod value at the time of cold temperature can be increased.

【0026】本発明の燃料集合体では、冷温時制御棒価
値および運転時冷温時反応度差を改善できるので、本発
明の燃料集合体を装荷した炉心の炉停止余裕を改善でき
る。また、作用で説明したように、本発明の燃料集合体
では、集合体内中性子束分布を平坦化することができ
る。したがって、本発明に係る燃料集合体に隣接した燃
料集合体を囲むチャンネルボックスヘの照射損傷の度合
を低減することができる。
In the fuel assembly of the present invention, the value of the control rod at the time of cold operation and the reactivity difference at the time of operation at the time of cold operation can be improved, so that the reactor shutdown margin of the core loaded with the fuel assembly of the present invention can be improved. Further, as described in the operation, in the fuel assembly of the present invention, the neutron flux distribution in the assembly can be flattened. Therefore, the degree of irradiation damage to the channel box surrounding the fuel assembly adjacent to the fuel assembly according to the present invention can be reduced.

【0027】なお、将来プルトニウムの供給が充分とな
り、MOX燃料が用いられるようになれば、例えば、実
施形態例における領域bのU−235の相対量のU−2
35に相当する点を、Pu−239に置換えた構成とす
ることにより、本実施例の効果を高めることができる。
If the supply of plutonium becomes sufficient and MOX fuel is used in the future, for example, the relative amount of U-235 of U-235 in region b in the embodiment will be described.
By replacing the point corresponding to 35 with Pu-239, the effect of this embodiment can be enhanced.

【0028】[0028]

【発明の効果】以上詳細に説明したように、本発明によ
れば、燃料集合体の軸方向に垂直な横断面における出力
の平坦化を図りつつ、冷温時の炉停止余裕を効果的に向
上できるD格子炉心対応の燃料集合体を提供することが
できる。
As described above in detail, according to the present invention, the output of the fuel assembly in a cross section perpendicular to the axial direction is flattened, and the reactor shutdown margin at the time of cold temperature is effectively improved. It is possible to provide a fuel assembly compatible with a D lattice core.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示す燃料集合体の水平
断面図である。
FIG. 1 is a horizontal sectional view of a fuel assembly showing one embodiment of the present invention.

【図2】従来のBWRの燃料集合体群の部分水平断面図
である。
FIG. 2 is a partial horizontal sectional view of a fuel assembly group of a conventional BWR.

【図3】従来技術1の燃料集合体群の水平断面図であ
る。
FIG. 3 is a horizontal sectional view of a fuel assembly group according to Prior Art 1.

【図4】従来技術2の燃料集合体群の水平断面図であ
る。
FIG. 4 is a horizontal cross-sectional view of a fuel assembly group according to prior art 2.

【図5】一般のD格子炉心に装荷される燃料集合体の水
平断面図である。
FIG. 5 is a horizontal sectional view of a fuel assembly loaded on a general D-lattice core.

【図6】本発明の原理説明図で、冷温時制御棒価値の変
化を示す線図である。
FIG. 6 is a diagram illustrating the principle of the present invention, and is a diagram illustrating a change in control rod value at the time of cold temperature.

【図7】本発明の原理説明図で、運転時冷温時反応度差
の変化を示す線図である。
FIG. 7 is an explanatory diagram of the principle of the present invention, and is a diagram illustrating a change in the reactivity difference at the time of cooling and at the time of operation.

【図8】本発明の原理説明図で、局所出力ピーキング係
数の変化を示す線図である。
FIG. 8 is a diagram illustrating the principle of the present invention and is a diagram illustrating a change in a local output peaking coefficient.

【符号の説明】[Explanation of symbols]

1…燃料集合体、2…燃料棒、3…太径水ロッド、4…
領域a、5…領域b、6…領域c、7…領域d。
DESCRIPTION OF SYMBOLS 1 ... Fuel assembly, 2 ... Fuel rod, 3 ... Large diameter water rod, 4 ...
Area a, area 5 b, area 6 c, area 7 d.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 淳一 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 平川 博▲将▼ 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 山下 淳一 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 林 達男 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Junichi Koyama 1168 Moriyama-cho, Hitachi City, Ibaraki Prefecture Inside the Energy Research Laboratory, Hitachi, Ltd. No. 1 Inside Hitachi, Ltd. Hitachi Plant (72) Inventor Junichi Yamashita 3-1-1 Kochicho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Plant (72) Inventor Tatsuo Hayashi Kanda Surugadai, Chiyoda-ku, Tokyo 4-6, Inside Hitachi, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 核燃料物質を封入した複数本の燃料棒と
太径水ロツドとを正方格子状に配置し、前記太径水ロツ
ドを中央部に配置してなる燃料集合体であって、 前記燃料集合体の軸方向に垂直な横断面における、制御
棒が挿入される広いギャップ水領域に面した燃料棒群の
領域a、広いギャップ水領域側の前記領域a以外の燃料
棒群の領域b、狭いギャップ水領域に面した燃料棒群の
領域d、狭いギャップ水領域側の前記領域d以外の燃料
棒群の領域cを設定し、 前記4つの各領域に含まれる核分裂性物質の全領域に含
まれる核分裂性物質に対する相対量と、前記4つの各領
域における燃料棒の平均濃縮度とを比較した場合、 前記領域aの燃料棒群の前記相対量と前記平均濃縮度を
最小とすると共に、 前記領域bの燃料棒群の前記相対量と前記平均濃縮度を
最大としたことを特徴とする燃料集合体。
1. A fuel assembly comprising: a plurality of fuel rods enclosing nuclear fuel material and a large diameter water rod arranged in a square lattice; and the large diameter water rod arranged at a center. In the cross section perpendicular to the axial direction of the fuel assembly, a region a of the fuel rod group facing the wide gap water region into which the control rod is inserted, and a region b of the fuel rod group other than the region a on the wide gap water region side A region d of the fuel rod group facing the narrow gap water region, a region c of the fuel rod group other than the region d on the narrow gap water region side, and the entire region of the fissile material included in each of the four regions. When comparing the relative amount to fissile material contained in and the average enrichment of the fuel rods in each of the four regions, while minimizing the relative amount and the average enrichment of the fuel rod group in the region a, The relative amount of the fuel rod group in the region b; Fuel assembly, characterized in that of the maximum serial average enrichment.
JP10000045A 1998-01-05 1998-01-05 Fuel assembly Expired - Fee Related JP2942529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10000045A JP2942529B2 (en) 1998-01-05 1998-01-05 Fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10000045A JP2942529B2 (en) 1998-01-05 1998-01-05 Fuel assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1245049A Division JP2772061B2 (en) 1989-09-22 1989-09-22 Fuel assembly

Publications (2)

Publication Number Publication Date
JPH10307196A true JPH10307196A (en) 1998-11-17
JP2942529B2 JP2942529B2 (en) 1999-08-30

Family

ID=11463320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10000045A Expired - Fee Related JP2942529B2 (en) 1998-01-05 1998-01-05 Fuel assembly

Country Status (1)

Country Link
JP (1) JP2942529B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004167A1 (en) * 2003-06-30 2005-01-13 Nuclear Fuel Industries, Ltd. Mox fuel assembly for pressurized water reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004167A1 (en) * 2003-06-30 2005-01-13 Nuclear Fuel Industries, Ltd. Mox fuel assembly for pressurized water reactor

Also Published As

Publication number Publication date
JP2942529B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
JPH04128688A (en) Fuel assembly and reactor core
JP2772061B2 (en) Fuel assembly
Hibi et al. Conceptual designing of reduced-moderation water reactor with heavy water coolant
US8064565B2 (en) Reactor core
US6643350B2 (en) Fuel assembly
JP2020098110A (en) Fuel loading method and reactor core
JP2510565B2 (en) Reactor fuel assembly
EP3547329B1 (en) Fuel assembly
JP2942529B2 (en) Fuel assembly
JPH0588439B2 (en)
JP2563287B2 (en) Fuel assembly for nuclear reactor
JP7437258B2 (en) fuel assembly
JP3318210B2 (en) MOX fuel assembly and core
JP2507408B2 (en) Fuel assembly
JP2002189094A (en) Fuel assembly for boiling water reactor
JP2965317B2 (en) Fuel assembly
JP3314382B2 (en) Fuel assembly
JP2958856B2 (en) Fuel assembly for boiling water reactor
JP2656279B2 (en) Fuel assembly for boiling water reactor
JP3212744B2 (en) Fuel assembly
JP3262723B2 (en) MOX fuel assembly and reactor core
JP2002048886A (en) Fuel assembly for boiling water reactor
JPS62233785A (en) Fuel aggregate for boiling water type reactor
JPS63231293A (en) Core for nuclear reactor
JP2510565C (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees