JPH1030669A - Energy absorbing member - Google Patents

Energy absorbing member

Info

Publication number
JPH1030669A
JPH1030669A JP18596996A JP18596996A JPH1030669A JP H1030669 A JPH1030669 A JP H1030669A JP 18596996 A JP18596996 A JP 18596996A JP 18596996 A JP18596996 A JP 18596996A JP H1030669 A JPH1030669 A JP H1030669A
Authority
JP
Japan
Prior art keywords
pipe
trigger
frp pipe
energy absorbing
absorbing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18596996A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Ban
和義 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP18596996A priority Critical patent/JPH1030669A/en
Publication of JPH1030669A publication Critical patent/JPH1030669A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effect approximate coincidence of an energy curve with an ideal curve, to increase an energy absorption load, and to perform higher energy absorption compared with a conventional type. SOLUTION: An energy absorbing member 1 comprises an approximate cylindrical FRP pipe 10; and a trigger 20 inserted in the FRO pipe 10. The trigger 20 is provided with an insertion part 21 insertable in the opening part on one side of the FRP pipe 10 and an expansion part 22 formed integrally with the insertion part 21 and having a concentrically expanded diameter. The expansion part 22 is provided with first and second inclination parts 23 and 24. Provided an inclination angle between the first inclination part 23 and the central axis O of the FRP pipe 10 is γ1 , and an inclination angle between the second inclination part 24 and the central axis of the FRP pipe 10 is γ2 , an inclination angle is changed in a stepped manner such that a relation of γ1 <γ2 is established.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば車両用ス
テアリング装置のステアリングコラム、ステアリングシ
ャフト等、あるいはプロペラシャフト、バンパーステ
ー、インパネコラム及びシフトレバー軸等に使用される
エネルギー吸収部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy absorbing member used for, for example, a steering column, a steering shaft, or the like of a vehicle steering system, or a propeller shaft, a bumper stay, an instrument panel column, a shift lever shaft, or the like.

【0002】[0002]

【従来の技術】例えば衝撃荷重が作用する剛性の高い二
つの部材間に使用されるエネルギー吸収部材において、
衝撃荷重を吸収する一手段として、例えば特開平4−1
13041号公報や特開平4−15332号公報に記載
されているようなエネルギー吸収部材が知られている。
2. Description of the Related Art For example, in an energy absorbing member used between two members having high rigidity on which an impact load acts,
As one means for absorbing an impact load, see, for example,
Energy absorbing members such as those described in JP-A-13041 and JP-A-4-15332 are known.

【0003】図11に例示するように従来のエネルギー
吸収部材60は、熱硬化性樹脂を含浸・硬化させたガラ
ス繊維等よりなる略円筒状のFRPパイプ61を有し、
このパイプ61の先端62の周縁部63にスリット状ノ
ッチ64を設け、図12に示すように上記周縁部63の
内側に挿入可能な第一パイプ部65と、傾斜部66と、
上記第一パイプ部65より大径の第二パイプ部67より
なるトリガーとしての傾斜管状パイプ68の第一パイプ
部65をFRPパイプ61に挿入することによって構成
されている。
As illustrated in FIG. 11, a conventional energy absorbing member 60 has a substantially cylindrical FRP pipe 61 made of glass fiber impregnated and cured with a thermosetting resin.
A slit-shaped notch 64 is provided at a peripheral edge 63 of a tip 62 of the pipe 61, and a first pipe portion 65 that can be inserted inside the peripheral edge 63 as shown in FIG.
The first pipe section 65 is configured by inserting the first pipe section 65 of the inclined tubular pipe 68 as a trigger including the second pipe section 67 having a larger diameter than the first pipe section 65 into the FRP pipe 61.

【0004】[0004]

【発明が解決しようとする課題】上記従来のエネルギー
吸収部材60の初期破壊とエネルギー吸収性能は、上記
FRPパイプ61の中心軸と一つの上記傾斜部66との
なす角である傾斜角θに左右されることとなる。この場
合、FRPパイプ61の先端62の周縁部63にスリッ
ト状ノッチ64を設けて初期破壊荷重を低下させること
ができる。しかし上記傾斜角θが大きすぎると、トリガ
ーとしての傾斜管状パイプ68に軸方向の衝撃荷重が加
わったときにFRPパイプ61が座屈・破壊を生じてし
まうために、傾斜角θを比較的小さく設定せざるを得
ず、そのためエネルギー吸収荷重も低くなり、エネルギ
ー吸収部材としての総エネルギー吸収量が低いという欠
点があった。
The initial destruction and energy absorption performance of the conventional energy absorbing member 60 depends on the inclination angle θ which is the angle between the central axis of the FRP pipe 61 and one of the inclined portions 66. Will be done. In this case, a slit-shaped notch 64 is provided on the peripheral edge 63 of the tip 62 of the FRP pipe 61 to reduce the initial breaking load. However, if the inclination angle θ is too large, the FRP pipe 61 buckles and breaks when an axial impact load is applied to the inclined tubular pipe 68 as a trigger, so that the inclination angle θ is relatively small. There is a drawback that the energy absorption load must be set low, and the total energy absorption amount as the energy absorption member is low.

【0005】従って本発明の目的は、FRPパイプの先
端の周縁部に形成されるスリット状ノッチなどの有無に
かかわらずエネルギー吸収量が大きくかつエネルギー吸
収曲線を理想曲線に近付けることが可能で、かつエネル
ギー吸収荷重を増加させることが可能なエネルギー吸収
部材を提供することにある。
Accordingly, an object of the present invention is to provide a large energy absorption amount regardless of the presence or absence of a slit-like notch formed at the peripheral edge of the tip of the FRP pipe, and to make the energy absorption curve closer to an ideal curve; An object of the present invention is to provide an energy absorbing member capable of increasing an energy absorbing load.

【0006】[0006]

【課題を解決するための手段】上記課題を解決し目的を
達成するために、本発明のエネルギー吸収部材は、略円
筒状に成形されたFRPからなるパイプと、上記FRP
パイプの一端側開口部に挿入可能な略円柱状の挿入部を
有するとともに、上記挿入部と一体でかつこの挿入部に
連続して径が拡がる側面を有しかつ上記側面と上記FR
Pパイプの中心軸とのなす角が上記挿入部から遠ざかる
につれて段階的または連続的に大きくなる拡幅部を有す
るトリガーとを具備し、上記FRPパイプの上記開口部
に上記トリガーの挿入部を挿入することによって構成さ
れている。
In order to solve the above problems and achieve the object, an energy absorbing member according to the present invention comprises a pipe made of FRP formed into a substantially cylindrical shape,
The pipe has a substantially cylindrical insertion portion that can be inserted into one end side opening of the pipe, and has a side surface that increases in diameter integrally with the insertion portion and continuously to the insertion portion.
A trigger having a widened portion whose angle with the central axis of the P pipe increases stepwise or continuously as the distance from the insertion portion increases, and the insertion portion of the trigger is inserted into the opening of the FRP pipe. It is constituted by that.

【0007】本発明のエネルギー吸収部材は、FRPパ
イプの主に初期破壊に関与する傾斜角とは別に、主にエ
ネルギー吸収に関与する傾斜角を設定することにより、
所望の初期破壊性能が得られかつエネルギー吸収に関与
する傾斜角を大きくできるため、従来に比べエネルギー
吸収量を大きくすることが可能となる。
[0007] The energy absorbing member of the present invention sets the inclination angle mainly related to energy absorption separately from the inclination angle mainly related to the initial fracture of the FRP pipe.
Since a desired initial destruction performance can be obtained and a tilt angle related to energy absorption can be increased, it is possible to increase the amount of energy absorption as compared with the related art.

【0008】[0008]

【発明の実施の形態】以下に本発明の実施形態につい
て、図1から図10を参照して説明する。図1に示すエ
ネルギー吸収部材1は、多数本のガラス繊維等に熱硬化
性樹脂を含浸・硬化させて略円筒状に成形したFRP(F
iber Reinforced Plastics:繊維強化プラスチック) 製
のFRPパイプ10と、このFRPパイプ10に挿入さ
れたトリガー20などを備えている。このエネルギー吸
収部材1は、図示しない一対の部材(荷重を伝える部
材)間に設けられるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The energy absorbing member 1 shown in FIG. 1 is formed by impregnating and curing a large number of glass fibers or the like with a thermosetting resin and molding the glass fiber into a substantially cylindrical shape.
An FRP pipe 10 made of iber Reinforced Plastics (fiber reinforced plastic) and a trigger 20 inserted into the FRP pipe 10 are provided. The energy absorbing member 1 is provided between a pair of members (members for transmitting a load) not shown.

【0009】このFRPパイプ10は、要求される機械
的強度等の仕様に応じて、周知のフィラメントワインデ
ィング法あるいは引抜き法などの適宜の製造方法によっ
て成形される。
The FRP pipe 10 is formed by an appropriate manufacturing method such as a well-known filament winding method or a drawing method in accordance with specifications such as required mechanical strength.

【0010】上記トリガー20は、FRPパイプ10の
一端側開口部に挿入可能な略円柱状の挿入部21と、上
記挿入部21と一体でかつ挿入部21と同心円状に径が
拡がる側面22aを有する拡幅部22を備えている。
The trigger 20 includes a substantially cylindrical insertion portion 21 that can be inserted into an opening on one end side of the FRP pipe 10, and a side surface 22 a that is integral with the insertion portion 21 and has a diameter that expands concentrically with the insertion portion 21. The widened portion 22 is provided.

【0011】図示例の拡幅部22は、上記挿入部21に
連続して形成された第一の傾斜部23及び第二の傾斜部
24を有し、第一の傾斜部23の側面と上記FRPパイ
プ10の中心軸Oとのなす角である第一の傾斜角θ1 及
び、上記第二の傾斜部24の側面と上記FRPパイプ1
0の中心軸Oとのなす角である第二の傾斜角θ2 は、θ
1 <θ2 となるように、挿入部21から遠ざかるにつれ
て傾斜角が順次大きくなるように段階的に形成されてい
る。上記第一の傾斜部23がFRPパイプ10に圧入さ
れると、上記傾斜角θ1 を有する傾斜部23はあたかも
「くさび」のようにFRPパイプ10の開口端部に初期
破壊を生じさる。このため、後述するエネルギー吸収荷
重との差を極力抑えるため、θ1 は90度以下の比較的
小さな角度であることが望ましい。たとえば、傾斜角θ
1 が90度を越えると、初期破壊の段階においてFRP
パイプ10に座屈等による破壊が生じ、その後のエネル
ギー吸収荷重との差が大きくなるため衝撃吸収効果が非
常にひくくなる。そのため、θ1 は90度よりも小さい
角度とする。これに対し上記傾斜角θ2 はエネルギー吸
収荷重を極力大きくするために比較的大きな角度(たと
えば90度前後)であることが望ましい。
The widened portion 22 in the illustrated example has a first inclined portion 23 and a second inclined portion 24 formed continuously with the insertion portion 21, and the side surface of the first inclined portion 23 and the FRP The first inclination angle θ1 which is an angle between the central axis O of the pipe 10 and the side surface of the second inclined portion 24 and the FRP pipe 1
A second inclination angle θ2, which is an angle between the center axis O and the center axis O, is θ
The angle is formed stepwise so that the inclination angle gradually increases as the distance from the insertion portion 21 increases so that 1 <θ2. When the first inclined section 23 is press-fitted into the FRP pipe 10, the inclined section 23 having the above-mentioned inclination angle θ1 causes an initial breakage at the opening end of the FRP pipe 10 as if it were a “wedge”. Therefore, in order to minimize the difference with the energy absorption load described later, it is desirable that θ1 is a relatively small angle of 90 degrees or less. For example, the inclination angle θ
If 1 exceeds 90 degrees, FRP will occur at the stage of initial destruction.
The pipe 10 is broken due to buckling or the like, and the difference from the subsequent energy absorbing load becomes large, so that the shock absorbing effect is greatly reduced. Therefore, θ1 is set to an angle smaller than 90 degrees. On the other hand, the inclination angle θ2 is desirably a relatively large angle (for example, about 90 degrees) in order to maximize the energy absorption load.

【0012】上記FRPパイプ10は、内径及び外径と
もこのパイプ10の軸線方向にそれぞれ略一定となるよ
うに直管状に形成されている。しかし、上記FRPパイ
プ10自身が有する強度及び傾斜角θ1 と傾斜角θ2 の
組み合わせ等を合わせて考慮した場合、図6に示すエネ
ルギー吸収曲線30のように初期破壊荷重31のピーク
が若干あらわれるグラフになる。ここで図6は本実施形
態のエネルギー吸収材のエネルギー吸収曲線を模式的に
あらわしたものである。
The FRP pipe 10 is formed in a straight tubular shape so that the inner diameter and the outer diameter are substantially constant in the axial direction of the pipe 10, respectively. However, when the strength of the FRP pipe 10 itself and the combination of the inclination angle θ1 and the inclination angle θ2 are also taken into consideration, the graph of the energy absorption curve 30 shown in FIG. Become. Here, FIG. 6 schematically shows an energy absorption curve of the energy absorbing material of the present embodiment.

【0013】また、前記初期破壊荷重31のピークを更
に小さくする。すらわち、初期破壊荷重31とエネルギ
ー吸収荷重32とを等しくするためには図2または図3
に示すようにFRPパイプ10の開口端部すなわちトリ
ガー20を挿入する側の先端11の周縁部12の形状を
変更してもよい。
Further, the peak of the initial breaking load 31 is further reduced. In other words, in order to make the initial breaking load 31 and the energy absorbing load 32 equal, FIG.
The shape of the open end of the FRP pipe 10, that is, the shape of the peripheral portion 12 of the tip 11 on the side where the trigger 20 is inserted may be changed as shown in FIG.

【0014】図2は上記FRPパイプ10のトリガー挿
入側の先端11の周縁部12に、パイプ軸方向のスリッ
ト状ノッチ13を設けた例(請求項2)であり、図3は
上記FRPパイプ10のトリガー挿入側の先端11の周
縁部12に、内径が一定でかつ外径が上記先端11にう
つるにしたがって徐々に小さくなるように肉厚が変化す
る先細部14を設けた例(請求項3)である。
FIG. 2 shows an example in which a slit-shaped notch 13 is provided in a peripheral portion 12 of the tip 11 of the FRP pipe 10 on the trigger insertion side in the axial direction of the pipe (Claim 2). An example in which a tapered portion 14 whose thickness changes so that the inner diameter is constant and the outer diameter gradually decreases as the tip 11 is moved, is provided on the peripheral edge portion 12 of the tip 11 on the trigger insertion side. ).

【0015】また、上記トリガー20は金属製の中実材
であるのが望ましいが、上記FRPパイプ10の図6に
示す初期破壊荷重31およびエネルギー吸収荷重32に
対し充分剛性を保つことが可能であれば、図4に示すト
リガー20のように中空の挿入部21と傾斜部23,2
4を有する段差状パイプ25を用いても良い。
The trigger 20 is desirably a solid metal material. However, the trigger 20 can maintain sufficient rigidity against the initial breaking load 31 and the energy absorbing load 32 of the FRP pipe 10 shown in FIG. If there is, a hollow insertion portion 21 and inclined portions 23 and 2 as in a trigger 20 shown in FIG.
4 may be used.

【0016】以下に上記図1に示すエネルギー吸収部材
1の衝撃吸収時の作用について述べる。図5(A)に示
すようにトリガー20側もしくはFRPパイプ10側の
少なくとも一方から衝撃荷重40が作用した場合、上記
衝撃荷重40はトリガー20がさらにFRPパイプ10
内に進入する方向へ作用する。符号26はトリガー20
の重心を示している。トリガー20は上記衝撃荷重40
に対し充分、剛性を有しているため、第一の傾斜部23
がFRPパイプ10の先端11をFRPパイプ10の周
方向へ拡げようとする拡幅力41を生じさせる。
The operation of the energy absorbing member 1 shown in FIG. 1 when absorbing an impact will be described below. As shown in FIG. 5A, when an impact load 40 is applied from at least one of the trigger 20 side and the FRP pipe 10 side, the trigger load 20 is further applied to the FRP pipe 10
Acts in the direction of entering. 26 is a trigger 20
Shows the center of gravity. The trigger 20 is provided with the impact load 40
The first inclined portion 23
Causes a widening force 41 to expand the tip 11 of the FRP pipe 10 in the circumferential direction of the FRP pipe 10.

【0017】そして、上記拡幅力41がFRPパイプ1
0の周方向の強度を越えた時点で、まず最初に先端11
周辺に亀裂が生じる。この明細書では、上記亀裂が生じ
た際にトリガー20の重心26に作用している荷重を図
6に示す初期破壊荷重31と呼ぶ。トリガー20がさら
にパイプ10の方向に押し込まれ、第二の傾斜部24が
パイプ10の先端11に突き当たるようになると、図5
(B)に示すように第二の傾斜部24が先端11の周縁
部12をさらに押し拡げる方向へ作用し、FRPパイプ
10は先端11から放射状に分断される。この分断され
る際にトリガー20の重心26に作用している荷重を図
6に示すエネルギー吸収荷重32という。
The widening force 41 is applied to the FRP pipe 1
When the strength in the circumferential direction exceeds 0, the tip 11
Cracks occur in the periphery. In this specification, the load acting on the center of gravity 26 of the trigger 20 when the crack occurs is referred to as an initial breaking load 31 shown in FIG. When the trigger 20 is further pushed in the direction of the pipe 10 and the second inclined portion 24 comes into contact with the tip 11 of the pipe 10, FIG.
As shown in (B), the second inclined portion 24 acts in a direction to further expand the peripheral portion 12 of the tip 11, and the FRP pipe 10 is radially divided from the tip 11. The load acting on the center of gravity 26 of the trigger 20 at the time of the division is referred to as an energy absorbing load 32 shown in FIG.

【0018】上記実施形態のエネルギー吸収部材1によ
れば、傾斜角θ1 を比較的小さい角度とし、かつ必要に
応じてスリット状ノッチ13を設けたことにより、図6
に示す初期破壊荷重31を比較的低くおさえることがで
き、しかも傾斜角θ2 を比較的大きな角度とすることに
より、図6に示すエネルギー吸収荷重32を比較的大き
くすることが可能となった。
According to the energy absorbing member 1 of the above embodiment, the inclination angle θ1 is set to a relatively small angle, and the slit-shaped notch 13 is provided if necessary.
6 can be made relatively low, and the energy absorption load 32 shown in FIG. 6 can be made relatively large by setting the inclination angle .theta.2 to a relatively large angle.

【0019】以下に、上記実施形態のエネルギー吸収部
材1の作用を確かめるため行った衝撃荷重負荷実験の結
果について図7から図9を参照して述べる。図7は本実
験で用いられたトリガーの形態を示す図であり、図7
(A)は従来のトリガー、図7(B)は本発明に係るト
リガーを示している。なお、図7(A)は傾斜角θが概
ね45度の従来品、図7(B)は第一の傾斜部23の傾
斜角θ1 を概ね45度とし、第二の傾斜部24の傾斜角
θ2 を概ね90度としている。FRPパイプはいずれも
ガラス含有率67重量%のものを使用した。
The results of an impact load test conducted to confirm the operation of the energy absorbing member 1 of the above embodiment will be described below with reference to FIGS. FIG. 7 is a diagram showing the form of the trigger used in this experiment.
7A shows a conventional trigger, and FIG. 7B shows a trigger according to the present invention. 7 (A) shows a conventional product having an inclination angle θ of about 45 degrees, and FIG. 7 (B) shows an inclination angle θ1 of the first inclination section 23 of about 45 degrees and an inclination angle of the second inclination section 24. θ2 is approximately 90 degrees. Each of the FRP pipes used had a glass content of 67% by weight.

【0020】図8は本実験に用いられたエネルギー吸収
部材を示す図であり、図8(A)は従来のトリガーをノ
ッチ無しのFRPパイプにセットした比較例1を示し、
図8(B)は従来のトリガーをノッチ有りのFRPパイ
プにセットした比較例2を示し、図8(C)は本発明に
係るトリガーをノッチ有りのFRPパイプにセットした
ものである。図9は本実験の結果を示す図である。
FIG. 8 is a view showing an energy absorbing member used in this experiment. FIG. 8A shows a comparative example 1 in which a conventional trigger is set to an FRP pipe without a notch,
FIG. 8B shows a comparative example 2 in which a conventional trigger is set in a notched FRP pipe, and FIG. 8C shows a trigger according to the present invention set in a notched FRP pipe. FIG. 9 is a diagram showing the results of this experiment.

【0021】図9に示すように本実験の結果、まず、エ
ネルギー吸収荷重に対するトリガー形状の影響である
が、本発明では主としてエネルギー吸収に関与する傾斜
角θ2を比較例2の傾斜角θの約2倍としたことによ
り、エネルギー吸収荷重が約1.5倍となっている。ま
た、比較例1のようにFRPパイプの先端周縁部にスリ
ット状ノッチを設けないと初期破壊荷重が非常に大き
く、理想的なエネルギー吸収曲線が得られないことを示
しているが、これは初期破壊に関与する傾斜角θを約4
5度と比較的大きな角度としているためであり、従って
この場合にはFRPパイプにノッチが必要である。これ
に対し本発明品においては、上記初期破壊に関与する第
一の傾斜角θ1 を45度以下に小さくしても第二の傾斜
角θ2 の存在により総合的なエネルギー吸収量を大きく
することが可能なため、スリット状ノッチの有無にかか
わらず理想的なエネルギー吸収曲線とすることができ
る。
As shown in FIG. 9, as a result of this experiment, the effect of the trigger shape on the energy absorption load is first determined. In the present invention, the inclination angle θ2 mainly relating to energy absorption is reduced by about the inclination angle θ of Comparative Example 2. By making it twice, the energy absorption load becomes about 1.5 times. Also, as shown in Comparative Example 1, unless a slit-shaped notch is provided at the periphery of the tip of the FRP pipe, the initial breaking load is very large, and an ideal energy absorption curve cannot be obtained. Approximately 4
This is because the angle is set to a relatively large angle of 5 degrees. In this case, a notch is required in the FRP pipe. On the other hand, in the product of the present invention, even if the first inclination angle θ1 involved in the initial fracture is reduced to 45 degrees or less, the total energy absorption can be increased by the presence of the second inclination angle θ2. Since it is possible, an ideal energy absorption curve can be obtained regardless of the presence or absence of the slit notch.

【0022】上記実験例を含む実施形態に示されたエネ
ルギー吸収部材は、下記のトリガーの変形例を含んでい
る。図10に示すトリガー50は第一の実施形態と同様
にFRPパイプ10の一端側開口部に挿入可能な略円柱
状の挿入部51を有し、上記挿入部51と一体でかつ挿
入部51に連続して同心円状に径が拡幅された拡幅部5
3を有している。しかしこの拡幅部53は、湾曲した形
状の傾斜部52となっている。この傾斜部52は円の約
4分の1の円弧の回転体であり、上記傾斜部52の接線
とFRPパイプの中心軸Oのなす角である傾斜角θ3 が
挿入部51から遠ざかるにつれて次第に増加するように
連続的に変化させている。このような拡幅部53を有す
るトリガー50の変形例においても、FRPパイプ10
の主に初期破壊に関与する傾斜角を比較的小さくし、主
にエネルギー吸収に関与する傾斜角を比較的大きくする
ことが可能となるため、初期破壊荷重の立上がりが緩や
かになるとともに、トータルとしてのエネルギー吸収量
を大きくすることができる。
The energy absorbing member shown in the embodiment including the above-mentioned experimental example includes the following modified examples of the trigger. The trigger 50 shown in FIG. 10 has a substantially columnar insertion portion 51 that can be inserted into the one end side opening of the FRP pipe 10 similarly to the first embodiment, and is integrated with the insertion portion 51 and provided in the insertion portion 51. Widening portion 5 whose diameter is continuously increased concentrically
Three. However, the widened portion 53 is a curved inclined portion 52. The inclined portion 52 is a rotating body having an arc of about a quarter of a circle. The inclined angle θ3, which is the angle between the tangent of the inclined portion 52 and the central axis O of the FRP pipe, gradually increases as the distance from the insertion portion 51 increases. To change continuously. In the modified example of the trigger 50 having such a widened portion 53, the FRP pipe 10
Because the inclination angle mainly involved in the initial fracture can be made relatively small and the inclination angle mainly involved in the energy absorption can be made relatively large, the rise of the initial fracture load becomes gentle and the total Energy can be increased.

【0023】上述したように、エネルギー吸収部材の初
期荷重及びエネルギー吸収荷重を支配するトリガーの傾
斜角に関し、主に初期破壊に関与する傾斜角と主にエネ
ルギー吸収に関与する傾斜角を別々に設定できるため、
主に初期破壊に関与する第一の傾斜角を比較的小さい角
度として、初期破壊荷重を比較的低く抑えることが可能
となり、主にエネルギー吸収に関与する第二の傾斜角を
比較的大きな角度としてエネルギー吸収荷重を大きくす
ることが可能となる。
As described above, with respect to the initial load of the energy absorbing member and the inclination angle of the trigger which controls the energy absorbing load, the inclination angle mainly relating to the initial fracture and the inclination angle mainly relating to the energy absorption are separately set. Because you can
The first inclination angle mainly involved in the initial fracture is set to a relatively small angle, and the initial fracture load can be kept relatively low.The second inclination angle mainly involved in the energy absorption is set to a relatively large angle. It is possible to increase the energy absorption load.

【0024】[0024]

【発明の効果】本発明のエネルギー吸収部材は、主にF
RPパイプの初期破壊に影響を及ぼす傾斜角と、主にエ
ネルギー吸収に影響を及ぼす傾斜角とを別々に設定で
き、主に初期破壊に関与する傾斜角を比較的小さくする
ことにより、FRPパイプの先端周縁部にスリット状の
ノッチを形成する・しないにかかわらず初期破壊荷重を
抑えることが可能となり、FRPパイプの座屈も防止で
き、また、主にエネルギー吸収に関与する傾斜角を比較
的大きくできるため、従来に比べ高いエネルギー吸収荷
重を実現可能となる。従って、エネルギー吸収曲線を理
想曲線に近付けることが可能となる。
The energy absorbing member of the present invention is mainly composed of F
The inclination angle that affects the initial fracture of the RP pipe and the inclination angle that mainly affects the energy absorption can be set separately. Regardless of whether or not a slit-shaped notch is formed at the tip periphery, the initial fracture load can be suppressed, buckling of the FRP pipe can be prevented, and the inclination angle mainly involved in energy absorption is relatively large. Therefore, it is possible to realize a higher energy absorption load than before. Therefore, the energy absorption curve can be made closer to the ideal curve.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すエネルギー吸収部材
の軸線方向に沿う断面図。
FIG. 1 is a sectional view taken along an axial direction of an energy absorbing member according to an embodiment of the present invention.

【図2】FRPパイプの端部付近を示す側面図。FIG. 2 is a side view showing the vicinity of an end of the FRP pipe.

【図3】FRPパイプの端部の変形例を示す側面図。FIG. 3 is a side view showing a modification of the end of the FRP pipe.

【図4】本発明の実施形態に係るトリガーの変形例を示
す断面図。
FIG. 4 is a sectional view showing a modified example of the trigger according to the embodiment of the present invention.

【図5】図1に示された実施形態のトリガーに加わる荷
重の方向などを示す断面図。
FIG. 5 is a sectional view showing a direction of a load applied to the trigger of the embodiment shown in FIG. 1 and the like;

【図6】エネルギー吸収部材のエネルギー吸収曲線を模
式的に示す図。
FIG. 6 is a diagram schematically showing an energy absorption curve of an energy absorbing member.

【図7】衝撃荷重負荷実験に用いられたトリガーの側面
図。
FIG. 7 is a side view of a trigger used in an impact load test.

【図8】衝撃荷重負荷実験に用いられたエネルギー吸収
部材の一部の側面図。
FIG. 8 is a side view of a part of the energy absorbing member used in the impact load test.

【図9】本発明品と比較例について衝撃荷重負荷実験で
得られたエネルギー吸収曲線を示す図。
FIG. 9 is a diagram showing an energy absorption curve obtained by an impact load test on the product of the present invention and a comparative example.

【図10】トリガーの変形例を示す側面図。FIG. 10 is a side view showing a modification of the trigger.

【図11】従来のエネルギー吸収部材を示す側面図。FIG. 11 is a side view showing a conventional energy absorbing member.

【図12】図11中のXII−XII線に沿う断面図。FIG. 12 is a sectional view taken along the line XII-XII in FIG. 11;

【符号の説明】[Explanation of symbols]

1…エネルギー吸収部材 10…FRPパイプ 20…トリガー 21…挿入部 22…拡幅部 23…第一の傾斜部 24…第二の傾斜部 θ1 …第一の傾斜角 θ2 …第二の傾斜角 DESCRIPTION OF SYMBOLS 1 ... Energy absorption member 10 ... FRP pipe 20 ... Trigger 21 ... Insertion part 22 ... Widening part 23 ... First inclination part 24 ... Second inclination part θ1 ... First inclination angle θ2 ... Second inclination angle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一対の部材間に設けられてどちらか一方側
から衝撃荷重が加わったときに他方側の部材へ伝わる衝
撃荷重を緩和するエネルギー吸収部材において、 略円筒状に成形されたFRPからなるパイプと、 上記FRPパイプの一端側開口部に挿入可能な略円柱状
の挿入部を有するとともに、上記挿入部と一体でかつこ
の挿入部に連続して径が拡がる側面を有しかつ上記側面
と上記FRPパイプの中心軸とのなす角が上記挿入部か
ら遠ざかるにつれて段階的または連続的に大きくなる拡
幅部を有するトリガーとを具備し、 上記FRPパイプの上記開口部に上記トリガーの挿入部
を挿入したことを特徴とするエネルギー吸収部材。
1. An energy absorbing member provided between a pair of members for reducing an impact load transmitted to a member on the other side when an impact load is applied from one side, comprising: an FRP formed in a substantially cylindrical shape; A pipe having a substantially columnar insertion portion that can be inserted into one end side opening of the FRP pipe, and a side surface having a diameter that is integral with the insertion portion and that continuously increases in diameter to the insertion portion. And a trigger having a widened portion in which the angle between the central axis of the FRP pipe and the insertion portion increases stepwise or continuously as the distance from the insertion portion increases, and the insertion portion of the trigger is inserted into the opening of the FRP pipe. An energy absorbing member having been inserted.
【請求項2】上記FRPパイプの上記トリガー挿入側の
開口部周縁部に、上記FRPパイプの軸方向に沿うスリ
ット状ノッチを設けたことを特徴とする請求項1記載の
エネルギー吸収部材。
2. The energy absorbing member according to claim 1, wherein a slit-shaped notch is provided along a periphery of the opening of the FRP pipe on the trigger insertion side along the axial direction of the FRP pipe.
【請求項3】上記FRPパイプの上記トリガー挿入側の
開口部周縁部に、内径がほぼ一定でかつ外径がパイプ先
端に向かって次第に小さくなる先細部を設けたことを特
徴とする請求項1記載のエネルギー吸収部材。
3. The FRP pipe according to claim 1, wherein a tapered portion whose inner diameter is substantially constant and whose outer diameter gradually decreases toward the tip of the pipe is provided at a peripheral edge of the opening on the trigger insertion side of the FRP pipe. The energy absorbing member as described in the above.
JP18596996A 1996-07-16 1996-07-16 Energy absorbing member Pending JPH1030669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18596996A JPH1030669A (en) 1996-07-16 1996-07-16 Energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18596996A JPH1030669A (en) 1996-07-16 1996-07-16 Energy absorbing member

Publications (1)

Publication Number Publication Date
JPH1030669A true JPH1030669A (en) 1998-02-03

Family

ID=16180052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18596996A Pending JPH1030669A (en) 1996-07-16 1996-07-16 Energy absorbing member

Country Status (1)

Country Link
JP (1) JPH1030669A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041313A2 (en) 1999-04-02 2000-10-04 Kabushiki Kaisha Atsumitec A shifting apparatus for a vehicle transmission
EP0908643A3 (en) * 1997-10-08 2000-12-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Energy absorbing member
EP1177390A1 (en) * 1999-05-07 2002-02-06 Safety by Design Company Crash attenuation system
JP2003002192A (en) * 2001-06-20 2003-01-08 Hitachi Ltd Vehicle
JP2005153567A (en) * 2003-11-20 2005-06-16 Toyota Motor Corp Shock absorbing member
JP2007015626A (en) * 2005-07-08 2007-01-25 Toyota Industries Corp Support structure for vehicle bumper
DE102006056440A1 (en) * 2006-11-28 2008-06-05 Eads Deutschland Gmbh Crash energy absorber element, attachment element with such a crash-energy absorber element, as well as aircraft
JP2009150097A (en) * 2007-12-20 2009-07-09 Shibata Ind Co Ltd Shock absorber and flow-down object catching device using it
JP2010264813A (en) * 2009-05-13 2010-11-25 Nsk Ltd Method for manufacturing rack and pinion type electric power steering apparatus
JP2016052878A (en) * 2013-12-26 2016-04-14 日本精工株式会社 Impact absorbing steering shaft and impact absorbing steering device
JP2017179989A (en) * 2016-03-31 2017-10-05 新日鐵住金株式会社 Energy absorption device and earthquake-resisting wall
JP2017214748A (en) * 2016-05-31 2017-12-07 新日鐵住金株式会社 Damper structure and method for manufacturing damper
JP2020524244A (en) * 2017-06-15 2020-08-13 コリア エアロスペース リサーチ インスティテュート Seismic shock energy absorber using composite material tube and building damping device using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908643A3 (en) * 1997-10-08 2000-12-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Energy absorbing member
US6526842B1 (en) 1999-04-02 2003-03-04 Kabushiki Kaisha Atsumitec Shifting apparatus for a vehicle transmission
EP1041313A2 (en) 1999-04-02 2000-10-04 Kabushiki Kaisha Atsumitec A shifting apparatus for a vehicle transmission
EP1177390A1 (en) * 1999-05-07 2002-02-06 Safety by Design Company Crash attenuation system
EP1177390A4 (en) * 1999-05-07 2005-11-09 Safety By Design Company Crash attenuation system
JP4736247B2 (en) * 2001-06-20 2011-07-27 株式会社日立製作所 vehicle
JP2003002192A (en) * 2001-06-20 2003-01-08 Hitachi Ltd Vehicle
JP2005153567A (en) * 2003-11-20 2005-06-16 Toyota Motor Corp Shock absorbing member
JP2007015626A (en) * 2005-07-08 2007-01-25 Toyota Industries Corp Support structure for vehicle bumper
DE102006056440A1 (en) * 2006-11-28 2008-06-05 Eads Deutschland Gmbh Crash energy absorber element, attachment element with such a crash-energy absorber element, as well as aircraft
JP2009150097A (en) * 2007-12-20 2009-07-09 Shibata Ind Co Ltd Shock absorber and flow-down object catching device using it
JP2010264813A (en) * 2009-05-13 2010-11-25 Nsk Ltd Method for manufacturing rack and pinion type electric power steering apparatus
JP2016052878A (en) * 2013-12-26 2016-04-14 日本精工株式会社 Impact absorbing steering shaft and impact absorbing steering device
JP2017179989A (en) * 2016-03-31 2017-10-05 新日鐵住金株式会社 Energy absorption device and earthquake-resisting wall
JP2017214748A (en) * 2016-05-31 2017-12-07 新日鐵住金株式会社 Damper structure and method for manufacturing damper
JP2020524244A (en) * 2017-06-15 2020-08-13 コリア エアロスペース リサーチ インスティテュート Seismic shock energy absorber using composite material tube and building damping device using the same

Similar Documents

Publication Publication Date Title
JPH1030669A (en) Energy absorbing member
JP2597251B2 (en) Drive shaft
US5836825A (en) Propeller shaft for vehicle
US7118317B2 (en) Fastener
US20020195291A1 (en) Yoke, power transmission shaft, and method for manufacturing yoke
CN101216062A (en) Connecting arrangement with a plastic carrier part and a plastic thread element
JP3246041B2 (en) Energy absorbing material
JPH03189411A (en) Lock nut with variable-shape threaded hole
US5553964A (en) Mechanical tubular element such as transmission shaft of a motor vehicle
US6434835B1 (en) Cutting knife for cutting through adhesive beads on glass panes of vehicles
US11940007B2 (en) Tubular body used for power transmission shaft and power transmission shaft
JPH0968214A (en) Propeller shaft
JP3473145B2 (en) Energy absorbing material
JP3456596B2 (en) Energy absorbing member
KR102279051B1 (en) carbon composite shaft
CN112638689B (en) Tube for a drive shaft and drive shaft
JPH0242132B2 (en)
JPH0958288A (en) Gear shifter
US20020010029A1 (en) Elastic shaft coupling and method of manufacturing coupling element
US4798101A (en) Core material for steering wheels made of long fiber-reinforced resin
JP6581739B1 (en) Mandrel
JP2001153126A (en) Stepped structure frp-made propeller shaft
JP3391298B2 (en) Propeller shaft
JP7264665B2 (en) power transmission shaft
JPH06123322A (en) Energy absorbing member

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990406