JPH10306304A - Operation of shifting furnace hearth type furnace - Google Patents

Operation of shifting furnace hearth type furnace

Info

Publication number
JPH10306304A
JPH10306304A JP11254597A JP11254597A JPH10306304A JP H10306304 A JPH10306304 A JP H10306304A JP 11254597 A JP11254597 A JP 11254597A JP 11254597 A JP11254597 A JP 11254597A JP H10306304 A JPH10306304 A JP H10306304A
Authority
JP
Japan
Prior art keywords
layer
furnace
iron ore
heat transfer
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11254597A
Other languages
Japanese (ja)
Other versions
JP3873367B2 (en
Inventor
Yoshitaka Sawa
義孝 澤
Shiro Watakabe
史朗 渡壁
Kanji Takeda
幹治 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11254597A priority Critical patent/JP3873367B2/en
Publication of JPH10306304A publication Critical patent/JPH10306304A/en
Application granted granted Critical
Publication of JP3873367B2 publication Critical patent/JP3873367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve radiation heat transfer and heat conduction and to increase the production of reduced iron per unit area of furnace hearth without increasing fuel consumption in reducing iron ore with a shifting furnace hearth type furnace. SOLUTION: At the time of operating the shifting furnace hearth type furnace for the reduction of iron ore by heating a layer composed of the powdery iron ore and powdery solid reducing agent from the upper part, a ruggedness shape is formed on the upper layer surface so that this shape simultaneously satisfies the following (1), (2) and (3) inequalities. (1) A>=A'×1.2, (2) Lmax <=120, (3) L×0.8<= distance between peaks of the ruggedness on the upper layer. Wherein, A is the upper surface area of the ruggedness shape layer (mm<2> ), A' is the upper surface area of the layer in the case the upper surface is flat (mm<2> ), Lmax is the max. thickness of the layer (mm) and L is the average thickness of the layer (mm).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、移動型炉床炉を
用いた鉄鉱石から還元鉄を製造する技術に関するもの
で、特に、燃料効率や生産性に優れる移動型炉床炉の操
業方法を提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for producing reduced iron from iron ore using a moving hearth furnace, and more particularly to a method for operating a moving hearth furnace having excellent fuel efficiency and productivity. It is a suggestion.

【0002】[0002]

【従来の技術】粗鋼の製造は、大別して高炉−転炉法と
電気炉法とで行われる。このうち、電気炉法はスクラッ
プや還元鉄を鉄原料として、それらを電気エネルギで加
熱溶解させ、場合によっては精錬して鋼を製造してい
る。このような電気炉法において、現状ではスクラップ
を主な原料としているが、近年、スクラップの需要のひ
っ迫や製品の高級化の流れから還元鉄の需要量が増加し
つつある。
2. Description of the Related Art The production of crude steel is roughly divided into a blast furnace-converter method and an electric furnace method. Among them, the electric furnace method uses scrap or reduced iron as an iron raw material, heats and melts them with electric energy, and in some cases, refines the steel to produce steel. At present, scrap is used as a main raw material in such an electric furnace method, but in recent years, the demand for reduced iron has been increasing due to the tightening demand for scrap and the trend of upgrading products.

【0003】ところで、還元鉄を製造するプロセスの一
つとして、例えば、特開昭63−108188号公報(移動型炉
床炉および熱処理方法)には、水平方向に回転する炉床
に鉄鉱石と固体還元剤からなる層を積み付け、炉内上方
より輻射伝熱によって加熱して鉄鉱石を還元し、還元鉄
を製造する技術が提案開示されている。この手段では、
鉄鉱石と固体還元剤とからなる層内で鉄鉱石は直接還元
によって逐次還元されていく。そして、この直接還元は
大きな吸熱を伴うため、鉄鉱石の還元速度は層への熱供
給量によって律速される。
[0003] As one of the processes for producing reduced iron, for example, Japanese Patent Application Laid-Open No. 63-108188 (movable hearth furnace and heat treatment method) discloses that iron ore is added to a horizontally rotating hearth. A technique has been proposed in which a layer made of a solid reducing agent is stacked and heated by radiant heat from above in the furnace to reduce iron ore and produce reduced iron. By this means,
Iron ore is successively reduced by direct reduction in a layer composed of iron ore and a solid reducing agent. Since the direct reduction involves a large endotherm, the reduction rate of the iron ore is limited by the amount of heat supplied to the bed.

【0004】したがって、層の厚さをあまり厚くすると
層の下部への熱供給が不十分になるので、通常は層の厚
さを数十mm程度と薄くしているため、炉床単位面積当り
の生産量が少なく、生産量を増加するためには炉床面積
を大きくする必要があった。また層への熱供給を改善す
る方法として、炉の温度を上昇させる手段が考えられる
が、この手段を用いればそれなりの効果はあるものの、
炉温を上げることで、炉体からの放散熱が増加し、燃料
効率を下げるすなわち燃料の消費量が増加することのほ
か、炉の寿命が短縮されるなどの問題があった。
Therefore, if the thickness of the layer is too large, heat supply to the lower part of the layer becomes insufficient. Therefore, the thickness of the layer is usually reduced to about several tens of mm. The production volume was small, and it was necessary to increase the hearth area to increase the production volume. As a method of improving the heat supply to the bed, a method of raising the temperature of the furnace can be considered. However, if this method is used, there is a certain effect.
Increasing the furnace temperature increases the heat dissipated from the furnace body, lowering the fuel efficiency, that is, increasing the fuel consumption, and shortening the life of the furnace.

【0005】[0005]

【発明が解決しようとする課題】この発明は、前記した
問題点を有利に解決しようとするものであって、燃料の
使用量を増加することなく、炉床単位面積当りの生産量
を増加できる、すなわち、燃料効率を向上し設備を小さ
くし得る移動型炉床炉の操業方法を提案することを目的
とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and can increase the production amount per hearth unit area without increasing the amount of fuel used. That is, an object of the present invention is to propose a method of operating a movable hearth furnace capable of improving fuel efficiency and reducing equipment.

【0006】[0006]

【課題を解決するための手段】この発明の要旨とすると
ころは以下の通りである。
The gist of the present invention is as follows.

【0007】水平に移動する炉床上に、粉鉄鉱石と粉状
の固体還元剤とを供給して所定厚みの層に積み付け、炉
内上方からの加熱によって鉄鉱石の還元を行う移動型炉
床炉の操業方法において、層の上部表面に凹凸形状を形
成させ、かつ、該凹凸形状が下記式(1), (2)および(3)
を同時に満足することを特徴とする移動型炉床炉の操業
方法。 〔記〕 A≧A′×1.2 ---(1) Lmax ≦ 120 ---(2) L×0.8 ≦層上部表面の凹凸のピーク間距離 ---(3) ただし A:凹凸形状の層の上部表面積 (mm2) A′:上部表面が平面の場合の層の上部表面積 (mm2) Lmax :層の最大厚さ (mm) L:層の平均厚さ (mm)
[0007] A moving furnace in which fine iron ore and a powdery solid reducing agent are supplied to a horizontally moving hearth, stacked in a layer of a predetermined thickness, and reduced by heating from above the furnace. In the method of operating a floor furnace, an uneven shape is formed on the upper surface of the layer, and the uneven shape has the following formula (1), (2) and (3)
A method for operating a movable hearth furnace characterized by simultaneously satisfying the following. [Note] A ≧ A ′ × 1.2 --- (1) L max ≤120 --- (2) L × 0.8 ≤Distance between peaks of unevenness on the upper surface of the layer --- (3) where A: Upper surface area of layer (mm 2 ) A ′: Upper surface area of layer when upper surface is flat (mm 2 ) L max : Maximum thickness of layer (mm) L: Average thickness of layer (mm)

【0008】ここで、層は、粉鉄鉱石と粉状の固体還元
剤との混合物を炉床上に一層に積み付けたものが、作業
性および還元の効率化の観点から有利であるが、粉鉄鉱
石と粉状の固体還元剤とを交互に積み重ねて多層とした
ものでもよい。
[0008] Here, a layer in which a mixture of fine iron ore and a powdery solid reducing agent is stacked on the hearth is advantageous from the viewpoint of workability and reduction efficiency. Iron ore and a powdery solid reducing agent may be alternately stacked to form a multilayer.

【0009】[0009]

【発明の実施の形態】この発明の作用効果について述べ
る。前記したように、移動型炉床炉の操業にあたって、
水平に移動する炉床に積み付けた粉鉄鉱石と粉状の固体
還元剤との層を炉内上方よりの輻射伝熱によって加熱
し、鉄鉱石の還元を行うには、層への熱供給を如何に効
率よく行うかが重要になる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation and effect of the present invention will be described. As mentioned above, in the operation of the mobile hearth furnace,
To reduce the iron ore by heating the layer of fine iron ore and the solid reductant in powder form stacked on the horizontally moving hearth by radiant heat transfer from above in the furnace, heat supply to the layer It is important how to carry out efficiently.

【0010】ここで、図1に移動型炉床炉の伝熱形態の
説明図を示す。図において、1は粉鉄鉱石と粉状の固体
還元剤とからなる層、2はバーナ、3は炉体であり、4
の矢印は輻射伝熱、5の矢印は層1内の熱伝導をあらわ
す。
FIG. 1 is an explanatory view of a heat transfer mode of a movable hearth furnace. In the figure, 1 is a layer made of fine iron ore and a powdery solid reducing agent, 2 is a burner, 3 is a furnace body, and 4
Arrows indicate radiant heat transfer, and arrows 5 indicate heat conduction in the layer 1.

【0011】このような層1への伝熱形態において、そ
の伝熱の効率向上は、層1の上部表面でバーナ1の火炎
や炉体3の上壁などからの輻射伝熱の吸収量を多くする
こと、および層1上部表面から層1底部までの伝熱量を
多くすることとを同時に達成することで可能になる。
In such a form of heat transfer to the layer 1, the heat transfer efficiency can be improved by reducing the amount of radiant heat transfer from the flame of the burner 1 or the upper wall of the furnace body 3 on the upper surface of the layer 1. It is made possible by simultaneously increasing the amount of heat transfer and the amount of heat transfer from the upper surface of the layer 1 to the bottom of the layer 1.

【0012】そこで、この発明では、層1の上部表面に
凹凸形状を形成させ、かつ、下記式(1), (2)および(3)
を満足させるようにすることで、層1表面での輻射伝熱
の吸収量の増加と層1上部表面からその底部への伝熱量
の増大とを達成するものである。 A≧A′×1.2 ---(1) Lmax ≦ 120 ---(2) L×0.8 ≦層上部表面の凹凸のピーク間距離 ---(3) ただし A:凹凸形状の層の上部表面積 (mm2) A′:上部表面が平面の場合の層の上部表面積 (mm2) Lmax :層の最大厚さ (mm) L:層の平均厚さ (mm)
Therefore, according to the present invention, an irregular shape is formed on the upper surface of the layer 1 and the following formulas (1), (2) and (3)
Is satisfied, it is possible to achieve an increase in the amount of radiation heat absorbed on the surface of the layer 1 and an increase in the amount of heat transfer from the upper surface of the layer 1 to the bottom thereof. A ≧ A ′ × 1.2 --- (1) L max ≦ 120 --- (2) L × 0.8 ≦ distance between peaks of the irregularities on the upper surface of the layer --- (3) where A: upper part of the irregular-shaped layer Surface area (mm 2 ) A ′: Upper surface area of layer when upper surface is flat (mm 2 ) L max : Maximum thickness of layer (mm) L: Average thickness of layer (mm)

【0013】以下に、これらの式(1), (2)および(3) の
持つ意味について述べる。 A≧A′×1.2 ---(1)の意味 式(1) は、具体的には層1の上部表面が平面でないこと
を示すものである。
The meaning of these equations (1), (2) and (3) will be described below. Meaning of A ≧ A ′ × 1.2 (1) Formula (1) specifically indicates that the upper surface of the layer 1 is not flat.

【0014】ここで、粉鉄鉱石と粉状の固体還元剤とか
らなる層の上部表面積Aについて定義する。図2は上部
表面積Aを定義するための説明図であり、6は粉鉄鉱石
または粉状の固体還元剤の個々の粒子を示し、7はこれ
らの粒子によって形成される層1の上部表面を示す。こ
の発明における層1の上部表面積Aとは、図2(a) のよ
うに最上層に位置する個々の粒子の外周をそれぞれ結ん
でできる微細な凹凸面の面積を云うのではなく、図2
(b) のように最上層に位置する個々の粒の最上点をそれ
ぞれ結んでできる面の面積のことを云う。
Here, the upper surface area A of the layer composed of the fine iron ore and the powdery solid reducing agent is defined. FIG. 2 is an explanatory diagram for defining the upper surface area A, 6 shows individual particles of fine iron ore or powdery solid reducing agent, and 7 shows the upper surface of the layer 1 formed by these particles. Show. The upper surface area A of the layer 1 in the present invention does not refer to the area of the fine uneven surface formed by connecting the outer peripheries of the individual particles located in the uppermost layer as shown in FIG.
The area of the surface formed by connecting the uppermost points of the individual grains located in the uppermost layer as shown in (b).

【0015】・効果1 粉鉄鉱石と粉状の固体還元剤とからなる層1が完全な黒
体であれば、その上方からの輻射伝熱を全て吸収できる
ため、層1の上部表面を凹凸形状に形成しても効果はな
い。しかし、実際は灰色体であって、上方からの輻射伝
熱のうちの1部は反射する。このとき、層1の上部表面
が平面であると反射した輻射伝熱はほぼ全量炉体上壁面
に到達し、そこで一部の熱が炉壁に吸収され、炉外に放
散されることになる。
Effect 1 If the layer 1 composed of iron ore and the powdery solid reducing agent is a perfect black body, all the radiant heat transfer from above can be absorbed. Forming into a shape has no effect. However, it is actually a gray body, and a part of the radiant heat transfer from above is reflected. At this time, if the upper surface of the layer 1 is a flat surface, almost all of the radiated heat transfer reaches the upper wall surface of the furnace body, where a part of the heat is absorbed by the furnace wall and dissipated outside the furnace. .

【0016】そこで式(1) を満足するように層1の上部
表面に凹凸形状を形成させる、具体的には波状や鋸刃状
などにすると、上方からの輻射伝熱の一部が層1の上部
表面から反射するとき、反射した輻射伝熱の一部が再度
層1の他の上部表面に到達してここで一部の熱が吸収さ
れることになる。すなわち、実質的には層1の上部表面
が平面の場合に比し、熱の吸収量が多くなる。
Therefore, when the upper surface of the layer 1 is formed to have an uneven shape so as to satisfy the expression (1), specifically, by forming a wavy shape or a saw blade shape, a part of the radiant heat transfer from above is When reflected from the upper surface of the layer 1, a part of the reflected radiant heat transfer reaches the other upper surface of the layer 1 again, where a part of the heat is absorbed. That is, the amount of heat absorption is substantially larger than when the upper surface of the layer 1 is flat.

【0017】ここで、図3は層の上部表面を波状にした
ときの輻射伝熱挙動を示す説明図である。図において、
層1の上部表面7のA点に到達した輻射伝熱4はその一
部が反射する。この反射した輻射伝熱8は、層1の上部
表面7のB点に到達しここでその一部の熱が吸収され
る。
Here, FIG. 3 is an explanatory view showing radiation heat transfer behavior when the upper surface of the layer is wavy. In the figure,
The radiant heat transfer 4 reaching the point A on the upper surface 7 of the layer 1 is partially reflected. This reflected radiant heat transfer 8 reaches the point B on the upper surface 7 of the layer 1 where a part of the heat is absorbed.

【0018】・効果2 この発明の対象とするプロセスでは、層1全体に還元に
必要な熱量を供給しなければならない。輻射伝熱によっ
て層1上部表面まで伝わった熱は熱伝導によって層1内
部へ供給される。
Effect 2 In the process to which the present invention is applied, the amount of heat required for reduction must be supplied to the entire layer 1. The heat transmitted to the upper surface of the layer 1 by radiant heat transfer is supplied into the layer 1 by heat conduction.

【0019】この層1上部表面の違いによる層1内部の
熱伝導を図4に基づいて述べる。図4は層内の熱伝導の
説明図で、図4(a) は層上部表面が平面の式(1) の条件
を満たさない場合、図4(b) は層上部表面が波状の式
(1) の条件を満たす場合であり、層1の平均厚さと上部
表面温度とが(a) および(b) で同じで、炉床からの熱損
失は共にないものとする。
The heat conduction inside the layer 1 due to the difference in the upper surface of the layer 1 will be described with reference to FIG. FIG. 4 is an explanatory view of the heat conduction in the layer. FIG. 4 (a) shows the case where the upper surface of the layer does not satisfy the condition of the equation (1) where the plane is flat, and FIG.
It is assumed that the condition of (1) is satisfied, the average thickness of the layer 1 and the upper surface temperature are the same in (a) and (b), and there is no heat loss from the hearth.

【0020】これらの図において、輻射伝熱4によって
加熱された層1の上部表面の9の部分すなわち輻射伝熱
による被加熱帯が層1内部を加熱する熱源と考えること
ができる。したがって、上部表面7が平面の場合に比
し、上部表面7の表面積の広いすなわち被加熱帯9の広
い上部表面7が波状の方が層1内部の加熱に有利とな
る。一方、層1の底部C,DおよびE点について見る
と、上部表面7が波状の場合のD点は被加熱帯9からの
距離が層1の平均厚さより小さく、上部表面7が平面の
場合のC点より当然早く温度が上昇する。また、上部表
面7が波状の場合、被加熱帯9からの距離が層1の平均
厚さより大きいE点のような所が必ず存在する。このE
点では一見、伝熱距離が長い分、上部表面7が平面の場
合のC点より昇温が遅れるように思われるが、上記した
ように上部表面7が波状の場合、熱源となる被加熱帯9
が広く、さらに矢印5のように上下方向以外の方向から
も加熱される効果があるため、伝熱距離の長さの不利を
解消してなおあり余る加熱効果が得られる。
In these figures, the portion 9 on the upper surface of the layer 1 heated by the radiant heat transfer 4, that is, the zone to be heated by the radiant heat transfer can be considered as a heat source for heating the inside of the layer 1. Therefore, the upper surface 7 having a larger surface area, that is, a wider upper surface 7 of the heated zone 9 is more advantageous for heating the inside of the layer 1 than the case where the upper surface 7 is flat. On the other hand, looking at points C, D and E at the bottom of layer 1, point D when the upper surface 7 is wavy has a distance from heated zone 9 smaller than the average thickness of layer 1 and upper surface 7 is flat. Naturally, the temperature rises earlier than point C. When the upper surface 7 has a wavy shape, there always exists a point such as a point E whose distance from the heated zone 9 is larger than the average thickness of the layer 1. This E
At first glance, it seems that the heat transfer distance is longer, so that the temperature rise is slower than point C when the upper surface 7 is flat, but when the upper surface 7 is wavy as described above, the heated zone serving as a heat source 9
In addition, since there is an effect of being heated from directions other than the vertical direction as indicated by the arrow 5, the disadvantage of the length of the heat transfer distance is eliminated, and an extra heating effect can be obtained.

【0021】 Lmax ≦ 120 ---(2)の意味 層1の上部表面7の凹凸が上記した式(1) を満たせば、
層1の平均厚さをいくらでも厚くしていいものでもな
い。例えば、図5の式(2) の条件から外れる層の上部表
面形状を示す説明図のように、層1の上部表面7の形状
が式(1) を満足するが、あまりにも層1の底部までの伝
熱距離が長すぎるF点のような部分は加熱に時間がかか
りすぎることになる。よって、式(2) は式(1) による層
1内の熱伝導を改善する効果(上記の効果2)を発揮さ
せるために必要である。
Meaning of L max ≦ 120 --- (2) If the unevenness of the upper surface 7 of the layer 1 satisfies the above expression (1),
It is not a matter of increasing the average thickness of the layer 1 to any value. For example, as shown in FIG. 5 showing the top surface shape of the layer that deviates from the condition of the expression (2), the shape of the upper surface 7 of the layer 1 satisfies the expression (1), but the bottom surface of the layer 1 is too much. A portion such as point F, where the heat transfer distance to the point is too long, takes too much time for heating. Therefore, the expression (2) is necessary for exhibiting the effect of improving the heat conduction in the layer 1 by the expression (1) (the effect 2 described above).

【0022】 L×0.8 ≦層の凹凸のピーク間距離 層1の上部表面7の凹凸が上記した式(1) および式(2)
を満たせば、上部表面7を波状、鋸刃状等の凹凸をどの
ような凹凸のピーク間距離で形成していいものでもな
い。
L × 0.8 ≦ distance between peaks of layer unevenness The unevenness of the upper surface 7 of the layer 1 is obtained by the above-described formulas (1) and (2).
Is satisfied, the upper surface 7 may not have any irregularities such as wavy or saw-tooth shapes at any peak-to-peak distance.

【0023】例えば、図6の式(3) の条件から外れる層
の上部表面形状を示す説明図のように、平均層厚に対し
て上部表面7の凹凸を非常に細かい周期で波状にした場
合は、層1内の熱伝導は実質的に上部表面7が平面の場
合と同様に上下方向のみになってしまい、式(1) による
層1内の熱伝導を改善する効果(上記の効果2)が発揮
されなくなる。したがって、その効果を発揮させるため
には式(3) を満たす必要がある。
For example, as shown in FIG. 6 showing an upper surface shape of a layer which deviates from the condition of the expression (3), the unevenness of the upper surface 7 is made to have a wavy shape with a very fine period with respect to the average layer thickness. The heat conduction in the layer 1 is substantially only in the vertical direction as in the case where the upper surface 7 is flat, and the effect of improving the heat conduction in the layer 1 according to the equation (1) (the effect 2 described above) ) Will not be exhibited. Therefore, it is necessary to satisfy Expression (3) in order to exert the effect.

【0024】ここで、層1の上部表面7の凹凸のピーク
間距離とは、例えば図7の鋸刃状ならし装置で上部表面
7に凹凸をつける場合は、上部表面7に形成される鋸刃
状の隣り合うピーク間距離を云う。またならし装置とし
てローラを用いたりあるいはスタンプなどにより図8の
2次元方向に凹凸形状を形成した層上部表面形状の一例
を示す鳥瞰図のように2次元方向に凹凸を形成する場合
には、それぞれ隣り合うピーク間の平均距離をいう。
Here, the peak-to-peak distance of the irregularities of the upper surface 7 of the layer 1 means, for example, when the irregularities are formed on the upper surface 7 by the saw blade leveling device shown in FIG. It refers to the distance between adjacent peaks in the shape of a blade. In the case where the unevenness is formed in a two-dimensional direction as shown in a bird's-eye view showing an example of the upper surface shape of the layer in which the unevenness is formed in the two-dimensional direction in FIG. It means the average distance between adjacent peaks.

【0025】なお、図7は鋸刃状ならし装置の説明図
で、鋸刃状ならし装置13により、水平方向に回転する回
転炉床12上の層1の上部表面7に鋸刃状の凹凸を形成さ
せる。
FIG. 7 is an explanatory view of a saw-blade leveling apparatus. The saw-blade leveling apparatus 13 applies a saw-blade to the upper surface 7 of the layer 1 on the rotary hearth 12 rotating in the horizontal direction. The unevenness is formed.

【0026】つぎに、式(1), (2)および(3) の具体的数
値範囲を限定する根拠となった実験例について述べる。
図9に示す電気炉を用い、表1および図10に示す条件で
粉鉄鉱石の還元実験をそれぞれ行った。
Next, a description will be given of an experimental example on which the specific numerical ranges of the expressions (1), (2) and (3) are limited.
Using the electric furnace shown in FIG. 9, reduction experiments of fine iron ore were respectively performed under the conditions shown in Table 1 and FIG. 10.

【0027】[0027]

【表1】 [Table 1]

【0028】ここで、図9は粉鉄鉱石の還元実験に用い
た電気炉の説明図で、炉体3の上壁の直近下方に配した
発熱体10により、炉床上に配置した容器11内の粉鉄鉱石
と粉状の固体還元剤とからなる層1を窒素を吹き込みな
がら加熱し粉鉄鉱石を還元する。また、図10は実験条件
1の層上部表面の凹凸形状を示す説明図で、この実験で
の凹凸形状は全て鋸刃状にし、上部表面積(A)、層1
の平均厚さ(L)および最大厚さ (Lmax ) ならびに上
部表面7の凹凸のピーク間距離などを変化させた。
FIG. 9 is an explanatory view of an electric furnace used for a reduction test of fine iron ore. Is heated while blowing nitrogen to reduce the fine iron ore. FIG. 10 is an explanatory view showing the unevenness of the upper surface of the layer under the experimental condition 1. The unevenness in this experiment was all saw-toothed.
The average thickness (L) and the maximum thickness (L max ) of the sample, the distance between peaks of the irregularities on the upper surface 7, and the like were changed.

【0029】この電気炉を用いての実験は、炉が指定温
度になった時点で、粉鉄鉱石と粉状の固体還元剤とから
なる層1の試料を容器11ごと炉内に装入し、特定時間経
過後炉外に取り出し、冷却後還元された試料の還元率を
分析により調査した。また、この実験中は投入電力量が
一定になるように制御するとともに、還元中に粉鉄鉱石
と粉状の固体還元剤とからなる層1から発生するガスが
燃焼しないように炉内窒素雰囲気を調整した。
In an experiment using this electric furnace, a sample of the layer 1 comprising fine iron ore and a powdery solid reducing agent was charged into the furnace together with the container 11 when the furnace reached a specified temperature. After a lapse of a specified time, the sample was taken out of the furnace, cooled, and reduced, and the reduction ratio of the reduced sample was analyzed and analyzed. In addition, during this experiment, the input electric energy was controlled to be constant, and the nitrogen atmosphere in the furnace was controlled so that the gas generated from the layer 1 composed of the iron ore and the powdery solid reducing agent during the reduction was not burned. Was adjusted.

【0030】かくして得られた各試料の還元率を上記表
1に併記した。表1から以下に述べることが分る。層1
の平均厚さLすなわち試料の装入量の違いによって、必
要な熱量は当然異なってくる。
The reduction ratio of each sample thus obtained is also shown in Table 1 above. Table 1 shows the following. Layer 1
The required amount of heat naturally depends on the difference in the average thickness L, ie, the amount of sample charged.

【0031】実験番号1〜12は層1の平均厚さLが20mm
の条件である。そのうち、実験番号1〜4は式(1), (2)
および(3) の条件を同時に満足する(この発明に適合す
る)もので、これらの試料の還元率は95%以上と優れて
いる。
In Experiment Nos. 1 to 12, the average thickness L of the layer 1 was 20 mm.
Is the condition. Among them, Experiment Nos. 1 to 4 correspond to Equations (1) and (2)
(3) are satisfied simultaneously (conform to the present invention), and the reduction ratio of these samples is excellent at 95% or more.

【0032】これらに対し実験番号5および6は式(1)
の条件から外れ、特に実験番号5は上部表面7が平面の
場合で、これらは投入電力量および還元時間が実験番号
1〜4と同一であっても還元率が90%未満と劣ってい
る。
On the other hand, Experiment Nos. 5 and 6 correspond to the formula (1)
In particular, Experiment No. 5 is a case where the upper surface 7 is a flat surface, and these are inferior to the reduction rate of less than 90% even if the input power amount and the reduction time are the same as Experiment Nos. 1 to 4.

【0033】そして、実験番号5および6に対して、還
元時間のみを14%延長した実験番号7および8、さらに
は投入電力量のみを14%増加した実験番号9および10の
還元率は95%以上となっている。しかしこれらは、還元
時間の延長あるいは投入電力量の増加によって実験番号
1〜4と同等の還元率が得られたもので、生産性あるい
は熱効率が劣ることを示している。
Compared with Experiment Nos. 5 and 6, the reduction rates of Experiment Nos. 7 and 8 in which only the reduction time was extended by 14%, and Experiment Nos. 9 and 10 in which only the input power was increased by 14% were 95%. That is all. However, in these, reduction rates equivalent to those of Experiment Nos. 1 to 4 were obtained by extending the reduction time or increasing the amount of input power, indicating that productivity or thermal efficiency was poor.

【0034】また、実験番号11および12は式(3) の条件
から外れるもので、実験番号1〜4と同じ投入電力量お
よび還元時間であって還元率が91%以下と劣っている。
Experiment Nos. 11 and 12 deviate from the condition of equation (3), and have the same input power amount and reduction time as Experiment Nos. 1 to 4, but the reduction rate is inferior to 91% or less.

【0035】一方、実験番号21〜30は層1の平均厚さが
80mmの条件である。そのうち、実験番号21〜24は式(1),
(2)および(3) を同時に満足するもので、これらの還元
率は全て95%以上である。
On the other hand, in Experiment Nos. 21 to 30, the average thickness of the layer 1 was
The condition is 80 mm. Among them, Experiment Nos. 21 to 24 correspond to Equation (1),
(2) and (3) are satisfied at the same time, and their reduction rates are all 95% or more.

【0036】これらに対し実験番号25および26は式(1)
の条件から外れ、特に実験番号25は上部表面7が平面の
場合で、これらは投入電力量および還元時間が実験番号
21〜24と同一であるにもかかわらず還元率が90%未満と
劣っている。
On the other hand, Experiment Nos. 25 and 26 correspond to the formula (1)
In particular, Experiment No. 25 is the case where the upper surface 7 is flat, and these are the input power and the reduction time.
Despite being the same as 21-24, the reduction rate is inferior to less than 90%.

【0037】また、式(2) の条件から外れる実験番号27
および28ならびに式(3) の条件から外れる実験番号29お
よび30は、実験番号21〜24と同じ投入電力量および還元
時間であっても、還元率は90%未満ならびに91%未満と
劣っている。
Experiment No. 27 which deviates from the condition of equation (2)
And 28 and Experiment Nos. 29 and 30, which deviate from the conditions of the formula (3), are inferior in the reduction ratio to less than 90% and less than 91% even with the same input power amount and reduction time as Experiment Nos. 21 to 24. .

【0038】なお、図11の小さい波状の凹凸と大きい波
状の凹凸とが重なり合った層の上部表面形状の断面図の
ようになっている場合であっても式(1) および(3の条件
を満たしつつ式(2) の条件から外すこともでき、この場
合でも式(2) の条件から外れれば、優れる還元率は得ら
れない。
It should be noted that even if the cross-sectional view of the upper surface shape of the layer in which the small wavy irregularities and the large wavy irregularities in FIG. While satisfying the condition, the condition of the formula (2) can be removed. Even in this case, if the condition of the formula (2) is not satisfied, an excellent reduction rate cannot be obtained.

【0039】これらの実験結果より明らかなように、A
≦A′×1.15、Lmax ≧125mm またはL×0.7 ≧層上部
表面の凹凸のピーク間距離の条件では優れる還元率が得
られないことから、式(1), (2)および(3) を限定したも
のである。
As is clear from these experimental results, A
≦ A ′ × 1.15, L max ≧ 125 mm or L × 0.7 ≧ Under the condition of the distance between the peaks of the irregularities on the upper surface of the layer, an excellent reduction rate cannot be obtained. It is limited.

【0040】[0040]

【実施例】図12に示す移動型炉床炉を用い、以下に述べ
る条件の操業を試験的に行い、それぞれ還元率を調査し
た。
EXAMPLE Using the movable hearth furnace shown in FIG. 12, the operation under the following conditions was carried out on a trial basis, and the reduction ratio was examined.

【0041】ここで、図12は回転炉床の移動型炉床炉の
説明図で、炉体3内の図面矢印方向に回転する回転炉床
12上に粉鉄鉱石と粉状の固体還元剤とからなる層1を形
成させ、バーナ2を燃焼させ輻射伝熱により層1をその
上方から加熱するものである。
FIG. 12 is an explanatory view of a movable hearth furnace having a rotary hearth, in which a rotary hearth rotating in a direction indicated by an arrow in the furnace body 3 is shown.
A layer 1 made of fine iron ore and a powdery solid reducing agent is formed on 12 and the burner 2 is burned to heat the layer 1 from above by radiant heat transfer.

【0042】粉鉄鉱石と粉状の固体還元剤とからなる層
1の上部表面7には、その供給口に設置されている前掲
図7に示した表面ならし装置により凹凸形状を形成させ
る。そして、この発明に適合する適合例としては、層1
の平均厚さを20mmとし、A/A′をNo. 1:1.41、No.
2:1.66とし、凹凸のピーク間距離をNo. 1:20mm、N
o. 2:40mmとした。なお、当然のことながら、これら
のLmax は120mm 以下の値である。また、比較例として
図13に示す上部表面を平面にするならし装置により層1
の上部表面7を平面にした層の厚さが20mmのものを用い
た。
The upper surface 7 of the layer 1 composed of fine iron ore and the powdery solid reducing agent is formed with an uneven shape by the surface leveling device shown in FIG. And as a suitable example that conforms to the present invention, the layer 1
And the average thickness of A / A 'was No. 1: 1.41,
2: 1.66, peak-to-peak distance between No. 1: 20 mm, N
o. 2: 40 mm. Naturally, these L max values are 120 mm or less. Further, as a comparative example, a layer 1 was formed using a leveling device shown in FIG.
The thickness of the layer whose upper surface 7 was flat was 20 mm.

【0043】かくして、還元操業は、ふるい目6mm以下
の粉鉄鉱石と、同じくふるい目6mm以下の石炭を粉状の
固体還元剤として用い、これらを重量比で3:1の割合
で混合し移動型炉床炉に供給して、それぞれ上記した適
合例No. 1,No. 2および比較例の上部表面形状とし、
炉温はバーナ2の燃焼を調整することで1420℃の温度に
制御した。そして、炉内での層1の滞留時間すなわち還
元時間は炉床12の回転数によって、23分間と一定にし
た。
Thus, in the reduction operation, iron ore having a sieve of 6 mm or less and coal having a sieve of 6 mm or less are used as a powdery solid reducing agent, and these are mixed and moved at a weight ratio of 3: 1. To the upper hearth of the above-mentioned conforming examples No. 1, No. 2 and comparative example, respectively.
The furnace temperature was controlled to 1420 ° C. by adjusting the combustion of the burner 2. The residence time of the layer 1 in the furnace, that is, the reduction time, was kept constant at 23 minutes depending on the rotation speed of the hearth 12.

【0044】この結果、この発明の適合例No. 1および
No. 2の還元鉄は還元率が95%以上であったのに対し、
比較例の還元率は90%未満であった。
As a result, No. 1 of the adaptation example of the present invention and
No. 2 reduced iron had a reduction rate of 95% or more,
The reduction ratio of the comparative example was less than 90%.

【0045】[0045]

【発明の効果】この発明は、移動型炉床炉での鉄鉱石の
還元操業において、炉内の粉鉄鉱石と粉状の固体還元剤
とからなる層の上部表面に特定の凹凸形状を形成させる
ものであり、この発明によれば、優れる還元率を得るこ
とができるので、燃料使用量を増加することなく、炉床
単位断面当たりの還元鉄の生産量を増加させることがで
きる。
According to the present invention, in a reduction operation of iron ore in a movable hearth furnace, a specific uneven shape is formed on the upper surface of a layer comprising iron ore and a powdery solid reducing agent in the furnace. According to the present invention, since an excellent reduction rate can be obtained, the production of reduced iron per unit section of the hearth can be increased without increasing the fuel consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】移動型炉床炉の伝熱形態の説明図である。FIG. 1 is an explanatory diagram of a heat transfer mode of a movable hearth furnace.

【図2】上部表面積Aを定義するための説明図である。FIG. 2 is an explanatory diagram for defining an upper surface area A.

【図3】層の上部表面を波状にしたときの輻射伝熱挙動
を示す説明図である。
FIG. 3 is an explanatory view showing radiation heat transfer behavior when the upper surface of a layer is wavy.

【図4】層内の熱伝導の説明図である。FIG. 4 is an explanatory diagram of heat conduction in a layer.

【図5】式(2) の条件から外れる層の上部表面形状を示
す説明図である。
FIG. 5 is an explanatory diagram showing an upper surface shape of a layer that deviates from the condition of Expression (2).

【図6】式(3) の条件から外れる層の上部表面形状を示
す説明図である。
FIG. 6 is an explanatory diagram showing an upper surface shape of a layer that deviates from the condition of Expression (3).

【図7】鋸刃状ならし装置の説明図である。FIG. 7 is an explanatory diagram of a saw blade leveling device.

【図8】2次元方向に凹凸形状を形成した層上部表面形
状の一例を示す鳥瞰図である。
FIG. 8 is a bird's-eye view showing an example of a layer upper surface shape in which unevenness is formed in a two-dimensional direction.

【図9】粉鉄鉱石の還元実験に用いた電気炉の説明図で
ある。
FIG. 9 is an explanatory view of an electric furnace used in a reduction experiment of fine iron ore.

【図10】実験条件1の層上部表面の凹凸形状を示す説
明図である。
FIG. 10 is an explanatory diagram showing an uneven shape of a layer upper surface under an experimental condition 1.

【図11】小さい波状の凹凸と大きい波状の凹凸とが重
なり合った層の上部表面形状の断面図である。
FIG. 11 is a cross-sectional view of an upper surface shape of a layer in which small wavy irregularities and large wavy irregularities overlap each other.

【図12】回転炉床の移動型炉床炉の説明図である。FIG. 12 is an explanatory view of a movable hearth furnace with a rotary hearth.

【図13】上部表面を平均にするならし装置の説明図で
ある。
FIG. 13 is an explanatory diagram of a leveling device for averaging an upper surface.

【符号の説明】[Explanation of symbols]

1 粉鉄鉱石と粉状の固体還元剤とからなる層 2 バーナ 3 炉体 4 輻射伝熱 5 層内の熱伝導 6 粉鉄鉱石または粉状の固体還元剤の個々の粒子 7 層の上部表面 8 反射した輻射伝熱 9 輻射伝熱による被加熱帯 10 発熱体 11 容器 12 回転炉床 13 上部表面ならし装置 Reference Signs List 1 layer composed of fine iron ore and powdery solid reducing agent 2 burner 3 furnace body 4 radiant heat transfer 5 heat conduction in layer 6 individual particles of fine iron ore or powdery solid reducing agent 7 upper surface of layer 8 Reflected radiant heat transfer 9 Heated zone by radiant heat transfer 10 Heating element 11 Vessel 12 Rotary hearth 13 Upper surface leveling device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水平に移動する炉床上に、粉鉄鉱石と粉
状の固体還元剤とを供給して所定厚みの層に積み付け、
炉内上方からの加熱によって鉄鉱石の還元を行う移動型
炉床炉の操業方法において、 層の上部表面に凹凸形状を形成させ、かつ、該凹凸形状
が下記式(1), (2)および(3) を同時に満足することを特
徴とする移動型炉床炉の操業方法。 〔記〕 A≧A′×1.2 ---(1) Lmax ≦ 120 ---(2) L×0.8 ≦層上部表面の凹凸のピーク間距離 ---(3) ただし A:凹凸形状の層の上部表面積 (mm2) A′:上部表面が平面の場合の層の上部表面積 (mm2) Lmax :層の最大厚さ (mm) L:層の平均厚さ (mm)
1. A fine iron ore and a pulverulent solid reducing agent are supplied on a horizontally moving hearth and stacked in a layer having a predetermined thickness.
In a method for operating a movable hearth furnace in which iron ore is reduced by heating from above the furnace, an uneven shape is formed on the upper surface of the layer, and the uneven shape is expressed by the following formulas (1), (2) and (3) A method for operating a movable hearth furnace characterized by simultaneously satisfying (3). [Note] A ≧ A ′ × 1.2 --- (1) L max ≤120 --- (2) L × 0.8 ≤Distance between peaks of unevenness on the upper surface of the layer --- (3) where A: Upper surface area of layer (mm 2 ) A ′: Upper surface area of layer when upper surface is flat (mm 2 ) L max : Maximum thickness of layer (mm) L: Average thickness of layer (mm)
JP11254597A 1997-04-30 1997-04-30 Operation method of mobile hearth furnace Expired - Fee Related JP3873367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11254597A JP3873367B2 (en) 1997-04-30 1997-04-30 Operation method of mobile hearth furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11254597A JP3873367B2 (en) 1997-04-30 1997-04-30 Operation method of mobile hearth furnace

Publications (2)

Publication Number Publication Date
JPH10306304A true JPH10306304A (en) 1998-11-17
JP3873367B2 JP3873367B2 (en) 2007-01-24

Family

ID=14589344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11254597A Expired - Fee Related JP3873367B2 (en) 1997-04-30 1997-04-30 Operation method of mobile hearth furnace

Country Status (1)

Country Link
JP (1) JP3873367B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602320B2 (en) 2000-04-10 2003-08-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing reduced iron
KR100500079B1 (en) * 1999-02-03 2005-07-14 제이에프이 스틸 가부시키가이샤 Method of producing a reduced metal, and traveling hearth furnace for producing same
JP2008523248A (en) * 2004-12-07 2008-07-03 ニュー−アイロン テクノロジー リミテッド ライアビリティー カンパニー Method and system for producing metallic iron nuggets
JP2012063956A (en) * 2010-09-15 2012-03-29 Asahi Tec:Kk Crime prevention device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500079B1 (en) * 1999-02-03 2005-07-14 제이에프이 스틸 가부시키가이샤 Method of producing a reduced metal, and traveling hearth furnace for producing same
US6602320B2 (en) 2000-04-10 2003-08-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing reduced iron
JP2008523248A (en) * 2004-12-07 2008-07-03 ニュー−アイロン テクノロジー リミテッド ライアビリティー カンパニー Method and system for producing metallic iron nuggets
JP2013040407A (en) * 2004-12-07 2013-02-28 Nu-Iron Technology Llc Method and system for producing metallic iron nugget
JP2012063956A (en) * 2010-09-15 2012-03-29 Asahi Tec:Kk Crime prevention device

Also Published As

Publication number Publication date
JP3873367B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
US4294436A (en) Furnace with protective atmosphere for heating metals
AU760611B2 (en) Iron production method of operation in a rotary hearth furnace and improved furnace apparatus
TW495552B (en) Method of producing reduced iron pellets
CN1216156C (en) Method and device for producing molten iron
AU2003264505A1 (en) Ferronickel and process for producing raw material for ferronickel smelting
JPH10306304A (en) Operation of shifting furnace hearth type furnace
EP0976840B1 (en) Method of operating rotary hearth furnace for reducing oxides
US6749664B1 (en) Furnace hearth for improved molten iron production and method of operation
JP3845978B2 (en) Operation method of rotary hearth furnace and rotary hearth furnace
CN1735702A (en) Method for reducing chromium containing raw material
EP3892744B1 (en) Sintered ore manufacturing method
EP0767242A1 (en) Sintered steel manufacturing process
JPH0733528B2 (en) Blast furnace operation method
CN1361832A (en) Metal oxide reduction method and device therefor
CN1202528A (en) Method and apparatus for sintering finely divided material
EP1512665B1 (en) Vertical conveyor apparatus for high temperature continuous processing of materials
US6447713B1 (en) Rotating-hearth furnace for reduction of metallic oxides
US3429974A (en) High temperature tunnel kiln for production of crystalline refractory and abrasive materials
JPH10317033A (en) Production of reduced iron
JP2000017343A (en) Two-stage ignition type production of sintered ore
JPH0821691A (en) Preheating and melting method for iron scrap of electric furnace
JP2000087150A (en) Production of iron ore pellet
JPH11106837A (en) Production of sintered ore
JPH10204516A (en) Production of reduced iron and apparatus thereof
CA3241252A1 (en) Iron recovery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees