JPH10305441A - Molding method of silicone resin material - Google Patents

Molding method of silicone resin material

Info

Publication number
JPH10305441A
JPH10305441A JP11371797A JP11371797A JPH10305441A JP H10305441 A JPH10305441 A JP H10305441A JP 11371797 A JP11371797 A JP 11371797A JP 11371797 A JP11371797 A JP 11371797A JP H10305441 A JPH10305441 A JP H10305441A
Authority
JP
Japan
Prior art keywords
molding
molding material
silicone resin
mold
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11371797A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hiruma
信幸 昼間
Yoshinari Shizukuda
能成 雫田
Takao Shimizu
隆男 清水
Tsutomu Nagasawa
務 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP11371797A priority Critical patent/JPH10305441A/en
Publication of JPH10305441A publication Critical patent/JPH10305441A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To mold a strain-free optical lens by a method wherein a thermosetting silicone resin material containing an organopolysiloxane having a specified cold viscosity and a specified composition is poured in a molding metal mold until the overflowing of the material occurs so as to harden a molded article part after the gate parts on a bung hole side and on an overflowing part side are sealed by hardening. SOLUTION: A thermosetting silicone resin material containing an organopolysiloxane, the viscosity at normal temperature of which is 20-300 poise and an average compositional formula of which is: Rn(C6 H5 )mSiO(4-n-m) /2, in which R is the same kind or different kinds, substituent or non-substituent, aliphatic or clicyclid monovalent hydrocarbon group and 0.1-50 mol.% of R is aliphatic unsaturated hydrocarbon group, and (n) and (m) are positive numbers, which satisfy inequalities: 1<=n+m<2 and 0.02<=m/(n+m)<=0.8, is used. The above-mentioned molding material 5 is poured in a molding metal mold, the temperature of which is controlled to be a predetermined one. The pouring is stopped at the instant that the overflowing of the material starts. A nozzle 11 is left as being connected and, after the gate parts 7 and 7' are hardened, is disconnected. Thus, a ultra low pressure molding becomes possible, resulting in allowing to produce a molded article highly efficiently without molding strain.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコーン樹脂材
料を用いた成形歪みのない成形品の成形方法、特にカメ
ラ光学系、同ファインダー系、ビデオカメラ、ビデオプ
ロジェクター、双眼鏡、ルーペ、複写機光学系、プリン
ターの光学系などの各種OA機器及び光学関連機器に使
用される光学用レンズに係り、超低圧成形が可能なため
成形歪みがほとんど発生せず、これにより成形歪みに起
因する光学特性の低下を極力抑えることができ、高サイ
クルな成形にも対応できるシリコーン樹脂材料の成形方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for molding a molded product using a silicone resin material without molding distortion, and particularly to a camera optical system, a finder system, a video camera, a video projector, binoculars, a loupe, and a copying machine optical system. For optical lenses used in various OA equipment such as optical systems of printers and optical related equipment, it is possible to perform ultra-low pressure molding, so molding distortion hardly occurs, thereby lowering optical characteristics due to molding distortion. The present invention relates to a method for molding a silicone resin material, which can suppress the occurrence of the resin as much as possible and can cope with high-cycle molding.

【0002】[0002]

【従来の技術】上記各種のOA機器及び光学関連機器に
使用される光学用レンズなどの成形品の材料としては、
優れた透明性、高屈折、低分散性、低複屈折などの基本
的な光学特性を中心にクリーン、耐摩耗性、低吸収性、
耐熱性、高い強度、耐候性、高い寸法精度などの一般的
特性が要求されている。このような材料として従来、無
機ガラス材料からなる光学用レンズが使用されており、
そしてこれらはほぼ上記の特性を満たしていた。
2. Description of the Related Art As materials for molded articles such as optical lenses used in the above-mentioned various OA equipment and optical-related equipment, there are:
Clean, abrasion resistance, low absorption, focusing on basic optical properties such as excellent transparency, high refraction, low dispersion, low birefringence, etc.
General characteristics such as heat resistance, high strength, weather resistance, and high dimensional accuracy are required. Conventionally, as such a material, an optical lens made of an inorganic glass material has been used,
These almost satisfied the above-mentioned characteristics.

【0003】近年、上述の各種OA機器及び光学関連機
器市場は個人ユーザ向けに拡大されており、各種OA機
器及び光学関連機器の小型化、軽量化、低コスト化、そ
してファッション性などが非常に強く要望されるように
なってきた。これらの要望に応えるために、例えば光学
用レンズの場合、前述の特性に加えて更に、非球面レン
ズといった複雑な形状の光学用レンズを容易に得るため
の加工性、耐衝撃性などのより多くの特性を満足させる
ことが必要になってきた。これに対して従来の無機ガラ
ス材料からなる光学用レンズは比重が大きく、耐衝撃性
が劣り、加工性が悪いため、非球面レンズのような複雑
な形状に対応しにくいという欠点があり、上述の要望を
十分に満足させ得ない場合が多くなってきた。
[0003] In recent years, the market for various OA equipment and optical-related equipment described above has been expanded for individual users, and the size, weight, cost, and fashion of various OA equipment and optical-related equipment are extremely high. It has become strongly desired. In order to respond to these demands, for example, in the case of an optical lens, in addition to the above-mentioned characteristics, furthermore, a workability for easily obtaining an optical lens having a complicated shape such as an aspherical lens, more impact resistance, etc. It has become necessary to satisfy the above characteristics. In contrast, conventional optical lenses made of an inorganic glass material have a disadvantage that they have a large specific gravity, are inferior in impact resistance, and have poor workability, so that it is difficult to cope with a complicated shape such as an aspherical lens. In many cases, it has not been possible to fully satisfy the requirements of the above.

【0004】そこで光学用無機ガラス材料に替わって光
学用樹脂材料、例えばPMMA、PC、PS、ジエチレ
ングリコールビスアリルカーボネート(CR−39)、
ポリシクロヘキシルメタクリレート(PCHMA)、ポ
リ−4−メチルペンテン、非晶性脂環型ポリオレフィ
ン、多環ノルボルネン系ポリマーといった材料を使用し
た光学用レンズが開発され使用されるようになった。こ
れらの樹脂材料を用いた光学用レンズは、比重も光学用
無機ガラス材料に比べて小さく、非球面レンズのような
複雑形状のレンズの成形が可能であるので、各種OA機
器及び光学関連機器の光学系を形成する際、無機ガラス
材料の光学用レンズよりも簡略な構成にすることがで
き、これにより各種OA機器及び光学関連機器の小型化
が可能である。
Therefore, optical resin materials such as PMMA, PC, PS, diethylene glycol bisallyl carbonate (CR-39),
Optical lenses using materials such as polycyclohexyl methacrylate (PCHMA), poly-4-methylpentene, amorphous alicyclic polyolefin, and polycyclic norbornene-based polymers have been developed and used. Optical lenses using these resin materials also have a lower specific gravity than inorganic glass materials for optics, and can be used to mold lenses of complex shapes such as aspherical lenses. When forming the optical system, it is possible to make the configuration simpler than the optical lens made of an inorganic glass material, and thus it is possible to reduce the size of various OA devices and optical-related devices.

【0005】[0005]

【発明が解決しようとする課題】ところで、光学用樹脂
材料で光学用レンズなどの成形品を成形する場合、屈折
率、光線透過率、複屈折率などの様々な光学特性及び成
形品のそりやねじれを含めた寸法精度を良好に維持する
ような成形条件を設定しなければならない。上述の光学
用樹脂材料を原料とする光学用レンズの成形は、一般に
射出成形、射出圧縮成形、注型による成形といった成形
方法が用いられているが、光学特性及び寸法精度の良好
な光学用レンズを得るには成形歪みを極力なくした成形
品とする必要がある。
When a molded article such as an optical lens is molded from an optical resin material, various optical characteristics such as a refractive index, a light transmittance and a birefringence, and the warpage of the molded article. Molding conditions must be set to maintain good dimensional accuracy including torsion. Molding of an optical lens using the above-mentioned optical resin material as a raw material is generally performed by a molding method such as injection molding, injection compression molding, or molding by casting. However, the optical lens having good optical characteristics and dimensional accuracy is used. In order to obtain a molded product, it is necessary to form a molded product with minimum molding distortion.

【0006】しかしながら、上述の光学用樹脂材料の中
でも熱可塑性樹脂を用いた場合には、成形品のひけなど
を防止するために材料を高圧力で金型に充填しなければ
ならない。これは成形歪みを生じる要因となり、光学特
性の低下を招くという問題があった。また、成形歪みを
できるだけ低減させようとすると成形時の加圧時間や冷
却時間を含めた成形時間を十分にとらなければならず、
このため高サイクルな生産ができないという問題も生じ
た。一方、熱硬化性樹脂を用いた場合でも、注型による
成形方法を行えば比較的小さな成形圧力で成形すること
ができるので、成形歪みのない成形品を得ることができ
る。しかし、成形時間が長くなるため高サイクルな生産
ができないという問題があった。
However, when a thermoplastic resin is used among the above-mentioned optical resin materials, the mold must be filled with the material at a high pressure in order to prevent sinking of a molded product. This is a factor that causes molding distortion, and causes a problem that optical characteristics are deteriorated. Also, in order to reduce molding distortion as much as possible, it is necessary to take sufficient molding time including pressurizing time and cooling time during molding,
For this reason, there also arises a problem that high cycle production cannot be performed. On the other hand, even when a thermosetting resin is used, if a molding method by casting is used, molding can be performed with a relatively small molding pressure, so that a molded product without molding distortion can be obtained. However, there is a problem that a high cycle production cannot be performed due to a long molding time.

【0007】本発明の課題は、上述の問題点を解決する
もので、超低圧成形が可能で成形歪みのない成形品が容
易に得られ、また簡易的な装置で生産でき、かつ高サイ
クルな生産が可能であり、特に光学的基本性能の優れた
OA機器及び光学関連機器に用いられる光学用レンズな
どを容易に成形できるシリコーン樹脂材料の成形方法を
提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and it is possible to easily obtain a molded article which can be formed by ultra-low pressure and has no molding distortion, can be produced by a simple apparatus, and has a high cycle cycle. An object of the present invention is to provide a method of molding a silicone resin material which can be produced and which can easily mold an optical lens used for OA equipment and optical-related equipment having particularly excellent optical basic performance.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明者らは、鋭意研究を行った結果、金型下部に成
形材料注入口が設けられ、金型上部には注入された成形
材料のオーバーフロー部が設けられ、該成形材料注入口
側のゲート部及びオーバーフロー部側のゲート部が成形
品の厚さより細く絞り形成された成形用金型を用いたシ
リコーン樹脂材料の成形方法であって、常温における粘
度が20〜300ポアズの下記平均組成式(1)で示さ
れるオルガノポリシロキサンを含有する熱硬化型のシリ
コーン樹脂材料を該成形用金型の成形材料注入口から注
入し、少なくとも該成形用金型のオーバーフロー部に成
形材料が出るまで成形材料を注入し、次いで該成形材料
注入口側及びオーバーフロー部側のゲート部を硬化し、
シールさせた後に成形品部を硬化させることにより、非
球面を初めとする自由な形状で成形歪みのない光学用レ
ンズなどの成形品が得られ、しかも従来の光学用樹脂材
料を用いて成形した場合に比べて、高サイクルで成形し
ても成形歪みを極力抑えることができるので、良好な光
学特性を持つ光学用レンズなどの成形品が高効率に得ら
れることを見いだし、本発明を完成させた。 Rn(C6H5)mSiO(4-n-m)/2 (1) [ここで、Rは同種又は異種の置換もしくは非置換の脂
肪族又は脂環式一価炭化水素基で、Rの0.1〜50モ
ル%が脂肪族不飽和炭化水素基であり、n,mは1≦n
+m<2かつ0.05≦m/(n+m)≦0.8を満た
す正数である。]
Means for Solving the Problems In order to solve the above problems, the present inventors have conducted intensive studies and as a result, a molding material injection port is provided at the lower part of the mold, and the injected molding material is provided at the upper part of the mold. A method of molding a silicone resin material using a molding die in which an overflow portion of a material is provided, and a gate portion on the molding material injection port side and a gate portion on the overflow portion side are formed by drawing to be thinner than the thickness of the molded product. Then, a thermosetting silicone resin material containing an organopolysiloxane represented by the following average composition formula (1) having a viscosity at room temperature of 20 to 300 poise is injected from a molding material injection port of the molding die. Injecting the molding material until the molding material comes out to the overflow portion of the molding die, and then curing the molding material injection port side and the gate portion on the overflow portion side,
By curing the molded part after sealing, molded parts such as optical lenses with free shapes and no molding distortion can be obtained, including aspherical surfaces, and molded using conventional optical resin materials. In comparison with the case, even if molding is performed at a high cycle, molding distortion can be suppressed as much as possible, and it has been found that molded products such as optical lenses having good optical characteristics can be obtained with high efficiency, and the present invention has been completed. Was. R n (C 6 H 5 ) m SiO (4-nm) / 2 (1) wherein R is the same or different, substituted or unsubstituted aliphatic or alicyclic monovalent hydrocarbon group, 0.1 to 50 mol% is an aliphatic unsaturated hydrocarbon group, and n and m are 1 ≦ n
It is a positive number satisfying + m <2 and 0.05 ≦ m / (n + m) ≦ 0.8. ]

【0009】[0009]

【発明の実施の形態】以下、本発明を添付図面に基づい
て詳細に説明する。図1は、本発明のシリコーン樹脂材
料の成形方法を示す概略説明図である。この図に示すよ
うに、本発明に使用する成形装置は、成形用金型、成形
材料供給部、成形用温調装置、成形用金型開閉装置など
から主に構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic explanatory view showing a method for molding a silicone resin material of the present invention. As shown in this figure, the molding apparatus used in the present invention mainly includes a molding die, a molding material supply unit, a molding temperature control device, a molding die opening / closing device, and the like.

【0010】成形用金型1は、図1に示すように、金型
下部2に成形材料注入口3が設けられ、金型上部4には
注入された成形材料5のオーバーフロー部6が設けら
れ、該成形材料注入口3側及び注入材料5のオーバーフ
ロー部6側のそれぞれに、得られる成形品の厚さより細
く絞り形成されたゲート部7,7’を有している構造で
ある。このゲート部7,7’の寸法は、得ようとする成
形品の厚さとの兼ね合いがあるが、ゲート部に接してい
る成形品の厚さに対し、1/2〜1/5の範囲内の長さ
であり、ゲート部の形状はピンポイント形状が好ましい
が、フィルムゲート形状、ファンゲート形状であって
も、ゲートの厚さが成形品の厚さに対して、1/2〜1
/5の範囲内にあればよい。このゲート部の寸法比率が
1/2よりも大きいと、本発明の特徴となるゲート部の
硬化及びシールに時間がかかり、成形時間が長くなって
しまう不利があり、逆に寸法比率が1/5よりも小さい
と、金型内への材料注入抵抗が大きくなるので、材料注
入圧力を上げなければならず、成形時の歪みの原因とな
るので好ましくない。また、この図には記載されていな
いが、材料注入用ノズル11と成形材料供給部8の間の
管の途中及びオーバーフロー部6の先に栓を設けてお
き、金型内への材料注入後、ゲート部が硬化する前に、
両方の栓を閉じることで金型内部に圧力をかけられるよ
うにしてもよい。
As shown in FIG. 1, the molding die 1 is provided with a molding material injection port 3 in a lower mold portion 2 and an overflow portion 6 of the injected molding material 5 in an upper mold portion 4. On the molding material injection port 3 side and the overflow portion 6 side of the injection material 5, there are provided gate portions 7 and 7 'formed by drawing to be thinner than the thickness of the obtained molded product. The dimensions of the gate portions 7, 7 'have a trade-off with the thickness of the molded product to be obtained, but are within a range of 1/2 to 1/5 of the thickness of the molded product in contact with the gate portion. And the shape of the gate portion is preferably a pinpoint shape. However, even in the case of a film gate shape or a fan gate shape, the gate thickness is 1 / to 1 times the thickness of the molded product.
/ 5. If the dimensional ratio of the gate portion is larger than 1/2, it takes time to cure and seal the gate portion, which is a feature of the present invention, and there is a disadvantage that the molding time is lengthened. If it is smaller than 5, the material injection resistance into the mold becomes large, so that the material injection pressure must be increased, which causes distortion during molding, which is not preferable. Although not shown in this figure, plugs are provided in the middle of the pipe between the material injection nozzle 11 and the molding material supply unit 8 and at the tip of the overflow unit 6 so that the material is injected into the mold. Before the gate is cured,
By closing both stoppers, pressure inside the mold may be applied.

【0011】成形材料供給部8は、成形金型1内の成形
材料注入口3に成形材料5を供給するためのものであ
り、例えば圧空による供給法、チューブポンプなどを用
いた供給法、あるいは図1に示すサーボモーター9を用
いたサーボネジ送り機構による供給法など、液状材料を
供給する一般的な方式を採用することができる。該成形
材料供給部8は、材料の粘度を一定に保つために必要に
応じて温調してもよい。
The molding material supply section 8 is for supplying the molding material 5 to the molding material injection port 3 in the molding die 1, for example, a supply method using compressed air, a supply method using a tube pump or the like, or A general method for supplying a liquid material, such as a supply method using a servo screw feed mechanism using the servo motor 9 shown in FIG. 1, can be adopted. The molding material supply unit 8 may control the temperature as needed in order to keep the viscosity of the material constant.

【0012】本発明で使用する成形材料はオルガノポリ
シロキサンを含有する熱硬化性樹脂材料であるため、該
成形用金型1には温調装置が設けられている。この温調
装置としては、棒形状や板状の電気ヒーター、あるいは
オイル循環方式など各種温調機構を利用できるが、光学
用レンズなどの成形といった温度管理を精密に行う必要
のある成形においては、特に図1に示すようなオイル温
調機構10を用いることが望ましい。
Since the molding material used in the present invention is a thermosetting resin material containing organopolysiloxane, the molding die 1 is provided with a temperature controller. As this temperature control device, various temperature control mechanisms such as a rod-shaped or plate-shaped electric heater, or an oil circulation system can be used, but in molding that requires precise temperature control such as molding of an optical lens, In particular, it is desirable to use an oil temperature control mechanism 10 as shown in FIG.

【0013】成形用金型の開閉装置は、通常の射出成形
機で使用されるような型締め型開き機構であれば特に制
限はないが、本発明では射出成形法のように高圧力で成
形材料を注入する必要がないため、型締め力が10kg/c
m2以上であれば十分である。この型締め力が10kg/cm2
より小さいと、成形材料を注入して硬化する前に、金型
内で材料粘度がいったん低下する現象が生じるため、金
型のパーティングラインから樹脂漏れが発生し、良品が
得られなくなるので好ましくない。以上の点から型締め
型開きの駆動には油圧機構はもちろんであるが、その他
にもエアーシリンダーによる駆動機構でも十分対応する
ことができる。
The opening / closing device for the molding die is not particularly limited as long as it is a mold-clamping opening mechanism used in an ordinary injection molding machine. The mold clamping force is 10kg / c because there is no need to inject the material
m 2 or more is sufficient. This mold clamping force is 10kg / cm 2
If it is smaller, before the molding material is injected and cured, a phenomenon occurs in which the material viscosity temporarily decreases in the mold, and resin leakage occurs from the parting line of the mold, so that a good product cannot be obtained. Absent. In view of the above, not only a hydraulic mechanism but also a drive mechanism using an air cylinder can sufficiently cope with the drive for opening the mold clamping mold.

【0014】本発明に用いられる成形材料は、常温にお
ける粘度が20〜300ポアズの下記平均組成式(1)
で示されるオルガノポリシロキサンを含有する熱硬化型
のシリコーン樹脂材料が採用される。 Rn(C6H5)mSiO(4-n-m)/2 (1) ここで、Rは好ましくは炭素数1〜20、特に好ましく
は炭素数1〜10の同種又は異種の非置換もしくは置換
の脂肪族又は脂環式一価炭化水素基であり、このような
炭化水素基としてメチル基、エチル基、プロピル基など
のアルキル基、シクロアルキル基などの飽和炭化水素
基、ビニル基、アリル基、プロペニル基、ブテニル基な
どの不飽和炭化水素基、3,3,3−トリフルオロプロ
ピル基などのハロゲン原子置換炭化水素基、シアノ基置
換炭化水素基などが例示される。そしてRの0.1〜5
0モル%が不飽和炭化水素基であることが必要で、好ま
しくは1〜20モル%が脂肪族不飽和炭化水素基、より
好ましくはアルケニル基である。不飽和炭化水素基の含
有量が0.1モル%未満であると硬化後のシリコーン樹
脂としてこの場合に必要な硬度が得られなくなる。ま
た、不飽和炭化水素基含有量が50モル%を超えると架
橋点が多くなり過ぎるため、硬化後のシリコーン樹脂が
脆くなり、光学用レンズとして必要な強度が保てなくな
る。またn,mは1≦n+m<2で、フェニル基の含有
量は全有機基の5〜80モル%[0.05≦m/(n+
m)≦0.8]、特に5〜50%であることが好まし
く、フェニル基がこの範囲内であれば、光学用レンズと
しての特性を十分に満足させることができる。
The molding material used in the present invention has an average compositional formula (1) having a viscosity at room temperature of 20 to 300 poise.
A thermosetting silicone resin material containing an organopolysiloxane represented by the following formula is used. R n (C 6 H 5) m SiO (4-nm) / 2 (1) wherein, R represents preferably 1 to 20 carbon atoms, particularly preferably unsubstituted or substituted the same or different 1 to 10 carbon atoms An aliphatic or alicyclic monovalent hydrocarbon group such as a methyl group, an ethyl group, an alkyl group such as a propyl group, a saturated hydrocarbon group such as a cycloalkyl group, a vinyl group, an allyl group. And unsaturated hydrocarbon groups such as propenyl group and butenyl group, halogen atom-substituted hydrocarbon groups such as 3,3,3-trifluoropropyl group, and cyano group-substituted hydrocarbon groups. And R of 0.1 to 5
It is necessary that 0 mol% is an unsaturated hydrocarbon group, preferably 1 to 20 mol% is an aliphatic unsaturated hydrocarbon group, more preferably an alkenyl group. If the content of the unsaturated hydrocarbon group is less than 0.1 mol%, the required hardness of the cured silicone resin cannot be obtained in this case. On the other hand, if the unsaturated hydrocarbon group content exceeds 50 mol%, the number of crosslinking points becomes too large, so that the cured silicone resin becomes brittle, and the strength required as an optical lens cannot be maintained. N and m are 1 ≦ n + m <2, and the content of the phenyl group is 5 to 80 mol% of all organic groups [0.05 ≦ m / (n + m)
m) ≦ 0.8], and particularly preferably 5 to 50%. When the phenyl group is within this range, the characteristics as an optical lens can be sufficiently satisfied.

【0015】また、このオルガノポリシロキサンは、常
温(20〜25℃)における粘度が20ポアズより小さ
いと、パーティングラインからの樹脂漏れが起こり易く
なるため、これを防ぐために型締力を大きくしなければ
ならなくなり、本発明の特徴が活かせなくなるという不
利があり、逆に300ポアズより大きいと、注入時の圧
力損失が大きくなるために、射出圧を高くしなければな
らなくなるので、この場合も本発明の超低圧成形の主旨
に合わなくなるという不利があるので、粘度20〜30
0ポアズの範囲内が好ましい。更に本発明に用いられる
シリコーン樹脂材料は、上記したオルガノポリシロキサ
ンの他に、オルガノハイドロジェンポリシロキサン,塩
化白金酸などの触媒,あるいはその他の添加剤を配合す
ることができる。このようなシリコーン樹脂材料として
は、例えば出願人が先に提案した特願平8−31588
8号明細書に記載されたシリコーン樹脂材料を用いれば
よい。
If the viscosity of this organopolysiloxane at room temperature (20 to 25 ° C.) is less than 20 poise, resin leakage from the parting line is likely to occur, and the mold clamping force must be increased to prevent this. The disadvantage is that the characteristics of the present invention cannot be utilized. Conversely, if it is larger than 300 poise, the injection pressure must be increased because the pressure loss during injection becomes large. Since it has a disadvantage that it does not conform to the gist of the ultra-low pressure molding of the present invention, the viscosity is 20 to 30.
It is preferably within the range of 0 poise. Further, the silicone resin material used in the present invention may contain a catalyst such as organohydrogenpolysiloxane, chloroplatinic acid, or other additives in addition to the above-mentioned organopolysiloxane. Examples of such a silicone resin material include, for example, Japanese Patent Application No. 8-31588 previously proposed by the applicant.
No. 8, the silicone resin material described in the specification may be used.

【0016】次に、上述した成形装置及び成形材料で成
形品を成形する方法について説明する。まず予め100
〜180℃の範囲内に温調された成形用金型を10kg/c
m2以上の型締め力で型締めする。このとき金型温度が1
00℃より低いと硬化に要する時間が非常に長くなって
しまうので生産性が劣り、また180℃より高いと成形
材料の成分が揮発し出して成形品内部での発泡が生じる
ので好ましくない。次いで材料供給部8につながった材
料注入用ノズル11を金型下部2に設けられた成形材料
注入口3に接続し、成形材料5を注入する。次に金型上
部4に設けられたオーバーフロー部6に、注入された成
形材料5が出てきたところで注入を止め、ノズル11を
成形材料注入口3に接続させたまま、しばらく放置す
る。金型上部2側及び下部4側のゲート部7,7’が硬
化したところでノズル11を成形用金型1の注入口3か
ら離す。成形用金型1内の成形品部12が硬化するため
の所定の時間放置し、その後金型開閉装置により成形用
金型1を型開きし、成形品を取り出す。この取り出しに
は成形品の形状に合わせた取り出し装置を使用すればよ
い。
Next, a method for molding a molded article using the molding apparatus and the molding material described above will be described. First 100
10kg / c of mold for temperature controlled within the range of ~ 180 ° C
Clamp with a clamping force of m 2 or more. At this time, the mold temperature is 1
If the temperature is lower than 00 ° C., the time required for curing becomes extremely long, so that the productivity is poor. On the other hand, if the temperature is higher than 180 ° C., the components of the molding material volatilize and foaming occurs inside the molded product, which is not preferable. Next, the material injection nozzle 11 connected to the material supply unit 8 is connected to the molding material injection port 3 provided in the lower part 2 of the mold, and the molding material 5 is injected. Next, when the injected molding material 5 comes out into the overflow portion 6 provided in the mold upper part 4, the injection is stopped, and the nozzle 11 is left for a while while being connected to the molding material injection port 3. When the gates 7, 7 'on the upper mold side 2 and lower gate 4 side are hardened, the nozzle 11 is separated from the injection port 3 of the molding die 1. The molding part 12 in the molding die 1 is left for a predetermined time for hardening, and then the molding die 1 is opened by the die opening / closing device, and the molded product is taken out. For this removal, a removal device that matches the shape of the molded article may be used.

【0017】ここで使用する材料注入用ノズル11は、
成形用金型下部2に設けられた材料注入口3に合わせた
形状にして、注入時に成形材料の漏れ、空気の巻き込み
が起こらないようにすればよい。また成形材料注入後に
ゲート部が硬化するまで、硬化に必要な温度に温調され
ている成形用金型の成形材料注入口に接続しておく必要
があるため、材料注入用ノズル11部分には冷却水13
を流せる構造にしておくなどの冷却機構を設けておくこ
とが望ましい。更に成形材料の注入が終了した時点です
ぐに成形材料の供給を止められるように、例えばシャッ
トオフノズルにするといった工夫を取り入れることもで
きる。本発明では、特に光学用レンズについて主に説明
したが、この光学用レンズのみに限定されるものではな
く、これ以外にもシリコーン樹脂材料で成形される成形
品にも応用することができる。
The material injection nozzle 11 used here is
The shape may be adapted to the material injection port 3 provided in the lower portion 2 of the molding die so as to prevent leakage of the molding material and air entrapment during the injection. In addition, it is necessary to connect to the molding material injection port of the molding die whose temperature is controlled to the temperature required for curing until the gate portion is cured after molding material injection. Cooling water 13
It is desirable to provide a cooling mechanism such as a structure capable of flowing air. Furthermore, a device such as a shut-off nozzle may be employed so that the supply of the molding material can be stopped immediately after the injection of the molding material is completed. In the present invention, an optical lens has been mainly described in particular. However, the present invention is not limited to this optical lens alone, and may be applied to a molded article molded of a silicone resin material.

【0018】[0018]

【実施例】以下、実施例により本発明を更に具体的に説
明するが、本発明はこれらに限定されるものではない。 (実施例1)下記平均組成式(2)で示されるオルガノ
ポリシロキサン100重量部、下記平均組成式(3)で
示されるオルガノハイドロジェンポリシロキサン10重
量部、塩化白金酸のイソプロパノール溶液(白金含有量
0.20重量%)1.2重量部を混合し、真空撹拌によ
り脱泡してシリコーン樹脂材料を調製した。 (CH3)1.02(C6H5)0.40(CH2=CH)0.08SiO1.25 (2) (CH3)3SiO-[(CH3)2SiO]3-[(CH3)HSiO]3-[(C6H5)2SiO]4-Si(CH3)3 (3) このシリコーン樹脂材料を注入用ノズルを通して、温調
150℃、100kg/cm2の圧力で型締めされた光学レン
ズ成形用金型に注入し、該成形用金型上部に設けたオー
バーフロー部に成形材料が出てきたところで注入を中止
した。注入用ノズルを該成形用金型下部に設けた材料注
入口にゲート部が硬化するまで接続させた。その後注入
用ノズルを離し、5分間加熱硬化してから金型開閉装置
により型開きを行ない、レンズ成形品を得た。このレン
ズ成形品を用いて、複屈折率、光線透過率の各特性を下
記測定方法により測定した。また金型内に樹脂圧測定用
センサーを埋め込んで樹脂圧を測定した。以上の結果を
表1に示した。 [複屈折率]デジタル屈折計を用いて測定した。 [光線透過率]JIS K7105に準拠し、SM−3
型(スガ試験機械社製)を用いて測定した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. (Example 1) 100 parts by weight of an organopolysiloxane represented by the following average composition formula (2), 10 parts by weight of an organohydrogenpolysiloxane represented by the following average composition formula (3), and a solution of chloroplatinic acid in isopropanol (containing platinum) (Amount: 0.20% by weight) and 1.2 parts by weight were mixed and degassed by vacuum stirring to prepare a silicone resin material. (CH 3 ) 1.02 (C 6 H 5 ) 0.40 (CH 2 = CH) 0.08 SiO 1.25 (2) (CH 3 ) 3 SiO-[(CH 3 ) 2 SiO] 3 -[(CH 3 ) HSiO] 3- [(C 6 H 5 ) 2 SiO] 4 —Si (CH 3 ) 3 (3) Molding of an optical lens with the silicone resin material clamped at a temperature of 150 ° C. and a pressure of 100 kg / cm 2 through an injection nozzle. The injection was stopped when the molding material came out of an overflow section provided above the molding die. The injection nozzle was connected to a material injection port provided below the molding die until the gate was cured. Thereafter, the injection nozzle was released, and the mixture was cured by heating for 5 minutes, and then the mold was opened with a mold opening / closing device to obtain a lens molded product. Using this lens molded product, the characteristics of birefringence and light transmittance were measured by the following measurement methods. A resin pressure measurement sensor was embedded in the mold to measure the resin pressure. Table 1 shows the above results. [Birefringence] Measured using a digital refractometer. [Light transmittance] According to JIS K7105, SM-3
It was measured using a mold (manufactured by Suga Test Machine Co., Ltd.).

【0019】(実施例2)実施例1において、成形用金
型の型締め圧力を10kg/cm2とした以外はすべて実施例
1と同様の条件で成形し、レンズ成形品を得た。このレ
ンズ成形品について、測定項目及び測定方法を実施例1
と同様にして測定を行い、その結果を表1に示した。
Example 2 A molded lens was obtained in the same manner as in Example 1, except that the clamping pressure of the molding die was changed to 10 kg / cm 2 . Example 1 describes the measurement items and the measurement method for this lens molded product.
The measurement was performed in the same manner as described above, and the results are shown in Table 1.

【0020】(比較例1)光学用PMMA樹脂[三菱レ
イヨン(株)製、アクリペット]を用いて実施例1と同
様のレンズ成形品を射出成形法により成形した。成形用
金型の型締め力はおよそ590kg/cm2であった。測定項
目及び測定方法は実施例1と同様に行い、その結果を表
1に示した。
Comparative Example 1 A lens molded product similar to that of Example 1 was molded by injection molding using PMMA resin for optics (Acrypet, manufactured by Mitsubishi Rayon Co., Ltd.). The clamping force of the molding die was about 590 kg / cm 2 . The measurement items and the measurement method were the same as in Example 1, and the results are shown in Table 1.

【0021】(比較例2)光学用PC樹脂[三菱ガス化
学(株)製、ユーピロン]を用いて実施例1と同様のレ
ンズ成形品を射出成形法により成形した。成形用金型の
型締め力はおよそ590kg/cm2であった。測定項目及び
測定方法は実施例1と同様に行い、その結果を表1に示
した。
(Comparative Example 2) A lens molded product similar to that of Example 1 was molded by an injection molding method using an optical PC resin (Iupilon, manufactured by Mitsubishi Gas Chemical Co., Ltd.). The clamping force of the molding die was about 590 kg / cm 2 . The measurement items and the measurement method were the same as in Example 1, and the results are shown in Table 1.

【0022】(比較例3)ジエチレングリコールビスア
リルカーボネート(CR−39)を用いて実施例1と同
様のレンズ成形品を注型成形法により成形した。測定項
目及び測定方法は実施例1と同様に行い、その結果を表
1に示した。
Comparative Example 3 The same lens molded article as in Example 1 was molded by casting using diethylene glycol bisallyl carbonate (CR-39). The measurement items and the measurement method were the same as in Example 1, and the results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明の方法によれば、超低圧成形が可
能であるため、成形歪みがなく、光学的基本特性に優れ
た光学用レンズなどの成形品を簡略な製造装置で高効率
に得ることができる。
According to the method of the present invention, since ultra-low pressure molding is possible, there is no molding distortion, and molded products such as optical lenses having excellent optical basic characteristics can be produced with high efficiency by a simple manufacturing apparatus. Obtainable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明のシリコーン樹脂材料の成形方
法を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing a method for molding a silicone resin material of the present invention.

【符号の説明】[Explanation of symbols]

1…成形用金型 2…金型下部 3…成形材料注入口 4…金型上部 5…成形材料 6…オーバーフロー部 7,7’…ゲート部 8…成形材料供給部 9…サーボモーター 10…オイル温調機構 11…材料注入用ノズル 12…成形品部 13…冷却水 DESCRIPTION OF SYMBOLS 1 ... Molding die 2 ... Mold lower part 3 ... Molding material inlet 4 ... Mold upper part 5 ... Molding material 6 ... Overflow part 7, 7 '... Gate part 8 ... Molding material supply part 9 ... Servo motor 10 ... Oil Temperature control mechanism 11 Material injection nozzle 12 Molded part 13 Cooling water

フロントページの続き (72)発明者 長沢 務 埼玉県大宮市吉野町1丁目406番地1 信 越ポリマー株式会社東京工場内Continuation of front page (72) Inventor Tsutomu Nagasawa 1-406-1, Yoshino-cho, Omiya-shi, Saitama Shin-Etsu Polymer Co., Ltd. Tokyo factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金型下部に成形材料注入口が設けられ、
金型上部には注入された成形材料のオーバーフロー部が
設けられ、該成形材料注入口側のゲート部及びオーバー
フロー部側のゲート部が成形品の厚さより細く絞り形成
された成形用金型を用いたシリコーン樹脂材料の成形方
法であって、常温における粘度が20〜300ポアズの
下記平均組成式(1)で示されるオルガノポリシロキサ
ンを含有する熱硬化型のシリコーン樹脂材料を該成形用
金型の成形材料注入口から注入し、少なくとも該成形用
金型のオーバーフロー部に成形材料が出るまで成形材料
を注入し、次いで該成形材料注入口側及びオーバーフロ
ー部側のゲート部を硬化し、シールさせた後に成形品部
を硬化させることを特徴とするシリコーン樹脂材料の成
形方法。 Rn(C6H5)mSiO(4-n-m)/2 (1) [ここで、Rは同種又は異種の置換もしくは非置換の脂
肪族又は脂環式一価炭化水素基で、Rの0.1〜50モ
ル%が脂肪族不飽和炭化水素基であり、n,mは1≦n
+m<2かつ0.05≦m/(n+m)≦0.8を満た
す正数である。]
1. A molding material injection port is provided at a lower part of a mold,
An overflow portion of the injected molding material is provided on the upper portion of the mold, and a molding die in which the gate portion on the molding material injection port side and the gate portion on the overflow portion side are formed by drawing to be thinner than the thickness of the molded product is used. A thermosetting silicone resin material containing an organopolysiloxane represented by the following average composition formula (1) having a viscosity at room temperature of 20 to 300 poise at room temperature. The molding material was injected from a molding material injection port, and the molding material was injected at least until the molding material appeared in the overflow portion of the molding die.Then, the molding material injection port side and the gate portion on the overflow portion side were cured and sealed. A method for molding a silicone resin material, wherein the molded article is cured later. R n (C 6 H 5 ) m SiO (4-nm) / 2 (1) wherein R is the same or different, substituted or unsubstituted aliphatic or alicyclic monovalent hydrocarbon group, 0.1 to 50 mol% is an aliphatic unsaturated hydrocarbon group, and n and m are 1 ≦ n
It is a positive number satisfying + m <2 and 0.05 ≦ m / (n + m) ≦ 0.8. ]
JP11371797A 1997-05-01 1997-05-01 Molding method of silicone resin material Pending JPH10305441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11371797A JPH10305441A (en) 1997-05-01 1997-05-01 Molding method of silicone resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11371797A JPH10305441A (en) 1997-05-01 1997-05-01 Molding method of silicone resin material

Publications (1)

Publication Number Publication Date
JPH10305441A true JPH10305441A (en) 1998-11-17

Family

ID=14619367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11371797A Pending JPH10305441A (en) 1997-05-01 1997-05-01 Molding method of silicone resin material

Country Status (1)

Country Link
JP (1) JPH10305441A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103536A (en) * 2001-09-28 2003-04-09 Tomey Corp Filling method for monomer mixed liquid
JP2008545553A (en) * 2005-05-26 2008-12-18 ダウ・コーニング・コーポレイション Process for molding small shapes and silicone encapsulant composition
CN104608319A (en) * 2015-02-16 2015-05-13 杭州清渠科技有限公司 Preparation device and preparation method for compound lens on basis of sequential fluid injection moulding
CN104647701A (en) * 2015-02-16 2015-05-27 杭州清渠科技有限公司 Lens preparation device based on flowing injection molding
JP2019084788A (en) * 2017-11-09 2019-06-06 トヨタ紡織株式会社 Molding apparatus, and method for manufacturing fiber reinforced resin molded product
CN115139462A (en) * 2022-05-26 2022-10-04 东风柳州汽车有限公司 Reaction injection molding die and preparation method of reaction injection molding product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103536A (en) * 2001-09-28 2003-04-09 Tomey Corp Filling method for monomer mixed liquid
JP2008545553A (en) * 2005-05-26 2008-12-18 ダウ・コーニング・コーポレイション Process for molding small shapes and silicone encapsulant composition
CN104608319A (en) * 2015-02-16 2015-05-13 杭州清渠科技有限公司 Preparation device and preparation method for compound lens on basis of sequential fluid injection moulding
CN104647701A (en) * 2015-02-16 2015-05-27 杭州清渠科技有限公司 Lens preparation device based on flowing injection molding
JP2019084788A (en) * 2017-11-09 2019-06-06 トヨタ紡織株式会社 Molding apparatus, and method for manufacturing fiber reinforced resin molded product
CN115139462A (en) * 2022-05-26 2022-10-04 东风柳州汽车有限公司 Reaction injection molding die and preparation method of reaction injection molding product
CN115139462B (en) * 2022-05-26 2023-12-15 东风柳州汽车有限公司 Reaction injection molding die and preparation method of reaction injection molding product

Similar Documents

Publication Publication Date Title
EP0471022B1 (en) Controlled casting of shrinkable material
EP1963085B1 (en) A method for coating an ophthalmic lens within an injection molding machine
JP5579069B2 (en) Method for producing coated molded article
BRPI0620139A2 (en) composition, ophthalmic lens, and method of coating an ophthalmic lens within a mold cavity
JPH10305441A (en) Molding method of silicone resin material
JPH08157735A (en) Production of organic/inorganic composite polymer
US20080152886A1 (en) High-pressure injection moulding process for the production of optical components
JP7032885B2 (en) Methacrylic resin compositions, molded bodies, and optical members
JPH11160503A (en) Production of optical lens
KR20100058518A (en) Method and apparatus for molding optical member and optical member
JP2013537255A (en) Resin composition for injection containing low birefringence polymer blend and front panel manufactured using the same
US11801626B2 (en) Resin part and its manufacturing method
WO1983000066A1 (en) Plastic lens with high refractive index
Greis et al. Injection molding of plastic optics
US4725397A (en) Thermosetting preform having superior transparency and process for producing molded articles from said preform
JPS61100420A (en) Manufacture of plastic lens
JPH0531738A (en) Plastic lens and preparation thereof
JP2024054649A (en) Manufacturing method of optical member and optical member
JP2022065314A (en) Method for manufacturing optical member
US20210316487A1 (en) Resin part and its manufacturing method
JP2023145995A (en) Manufacturing method for optical component
JPH0931134A (en) Methacrylic resin for light transmitter
JPH08281823A (en) Manufacture of synthetic resin spectacle lens for correcting visual acuity
JPH0939055A (en) Injection molding method for methacrylate resin
Liu et al. Injection compression molding of wedge-shaped plates: effects of processing parameters