JPH1030130A - Method for regenerating cemented carbide - Google Patents

Method for regenerating cemented carbide

Info

Publication number
JPH1030130A
JPH1030130A JP20664496A JP20664496A JPH1030130A JP H1030130 A JPH1030130 A JP H1030130A JP 20664496 A JP20664496 A JP 20664496A JP 20664496 A JP20664496 A JP 20664496A JP H1030130 A JPH1030130 A JP H1030130A
Authority
JP
Japan
Prior art keywords
cemented carbide
carbide
aqueous solution
binder
acidic aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20664496A
Other languages
Japanese (ja)
Inventor
Yuji Nomura
祐二 野村
Tomio Kashiwai
富雄 柏井
Isao Matsushita
功 松下
Yoshitaka Yamashita
芳孝 山下
Nakamichi Yamazaki
仲道 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Denka Kogyo Co Ltd
Original Assignee
Toyo Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Denka Kogyo Co Ltd filed Critical Toyo Denka Kogyo Co Ltd
Priority to JP20664496A priority Critical patent/JPH1030130A/en
Publication of JPH1030130A publication Critical patent/JPH1030130A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/36Obtaining tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To recover a raw material powder and a binding material from cemented carbide scrap and regenerated them and particularly to provide a method for regenerating cemented carbide, capable of regenerating a raw material powder of tungsten carbide, etc., into a state free from grain growth and impurity contamination so that it can be reclaimed in the state as a raw material powder for cemented carbide. SOLUTION: In this method of regenerating cemented carbide, a heat resistant pressure container is filled with cemented carbide together with acidic aqueous solution and hydrothermal treatment is performed to dissolve a binding material contained in the cement carbide in the acidic aqueous solution and recover the binding material. Further, a heat resistant pressure container is filled with cemented carbide together with acidic aqueous solution and hydrothermal treatment is performed to dissolve the binding material contained in the cemented carbide in the acidic aqueous solution and remove the binding material, and then, the resultant residual carbide is heated under a nonoxidizing atmosphere, cooled rapidly, and further crushed and reduced to powder, by which the resultant powder is recovered as a raw material powder for cemented carbide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超硬合金スクラップ
より原料粉末及び結合材を回収して再生すること、特に
は炭化タングステン等の原料粉末を粒子成長や不純物の
混入がなく、超硬合金の原料粉末としてそのまま再利用
できるように再生する超硬合金の再生方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering raw material powder and a binder from cemented carbide scrap and regenerating the same. The present invention relates to a method for regenerating a cemented carbide that can be recycled as raw material powder as it is.

【0002】[0002]

【従来の技術】超硬合金は極めて硬質であるため超硬工
具、特に切削工具の使い捨て刃先として多用されてお
り、これに伴い使用済みのスクラップが多量に発生す
る。この超硬合金は一般に炭化タングステン(WC),
炭化チタン(TiC),炭化タンタル(TaC)等の周
期律表のIVa,Va及びVIa族金属の炭化物のうちの少
なくとも1種以上を主体とする硬質相と、鉄(Fe),
ニッケル(Ni)及びコバルト(Co)のうちの少なく
とも1種以上から成る結合相とから構成されている。こ
れらタングステン等の超硬合金原料は希少資源であると
ともに、非常に高価であるため、従来より超硬合金スク
ラップからWC,TiC,TaC等の炭化物を回収する
方法が数多く提案されている。
2. Description of the Related Art Since cemented carbide is extremely hard, it is frequently used as a disposable cutting edge of a cemented carbide tool, especially a cutting tool, and accordingly, a large amount of used scrap is generated. This cemented carbide is generally made of tungsten carbide (WC),
A hard phase mainly composed of at least one of the group IVa, Va and VIa group metal carbides of the periodic table such as titanium carbide (TiC) and tantalum carbide (TaC);
And a binder phase composed of at least one of nickel (Ni) and cobalt (Co). Since these cemented carbide materials such as tungsten are scarce resources and very expensive, many methods for recovering carbides such as WC, TiC and TaC from cemented carbide scrap have been proposed.

【0003】例えば特公昭44−27457号公報に
は、超硬合金くずを炭素で包被し、1800〜2300
℃で加熱処理した後、破砕して粉末化させる方法が開示
されている。しかしながら、かかる手段においては18
00℃以上の加熱を必要とするため、炭化物粒子が粒子
成長を起こしてしまい超硬合金原料として再利用するこ
とができない。
For example, Japanese Patent Publication No. 44-27457 discloses a method in which cemented carbide scrap is covered with carbon, and
There is disclosed a method of heat-treating at a temperature of ° C., followed by crushing and powdering. However, in such means, 18
Since heating at a temperature of 00 ° C. or more is required, the carbide particles undergo particle growth and cannot be reused as a cemented carbide material.

【0004】また、特公昭56−36692号公報に
は、超硬合金を塩化第二鉄,硝酸第二鉄,塩化第二銅の
うちから選ばれた少なくとも1種の溶液、若しくはこれ
らの溶液に無機酸を添加した溶液に80℃以下の温度で
浸漬し、結合材であるFe,Ni,CoまたはCuを溶
出せしめ、残渣炭化物を粉砕することにより再生粉を得
る手法が開示されている。かかる手段は炭化物を単独で
回収することができ再生技術として有効な手法である
が、結合材が溶出し難くて回収率が低く、又結合材が除
かれたとはいえ残渣炭化物の強度はさほど低下していな
いため粉砕が困難であり、超硬合金のの原材料としてそ
のまま利用することができない。
Japanese Patent Publication No. 56-36692 discloses that a cemented carbide is used in at least one kind of solution selected from ferric chloride, ferric nitrate, and cupric chloride, or a solution thereof. A method is disclosed in which a regenerated powder is obtained by immersing in a solution to which an inorganic acid has been added at a temperature of 80 ° C. or less to elute the Fe, Ni, Co, or Cu binder and pulverizing the residual carbide. Such a means is an effective technique as a regeneration technique that can recover carbide alone, but the binder is difficult to elute and the recovery rate is low, and even though the binder is removed, the strength of the residual carbide is significantly reduced. Since it is not ground, it is difficult to pulverize and cannot be used as it is as a raw material for cemented carbide.

【0005】更に米国特許第3,595,484号公報
には、超硬合金を溶融亜鉛中で処理した後、亜鉛を減圧
蒸留回収し、残留超硬合金組成物を粉砕して粉末化させ
る方法が開示されている。しかしながら、かかる手段で
は前記特公昭44−27457号と同様に炭化物粒子の
成長や使用した亜鉛の残留等の問題があり、超硬合金原
料として再利用することができない。
Further, US Pat. No. 3,595,484 discloses a method of treating a cemented carbide in molten zinc, recovering the zinc by distillation under reduced pressure, and pulverizing the residual cemented carbide composition to powder. Is disclosed. However, such means have problems such as growth of carbide particles and residual zinc used as in the above-mentioned JP-B-44-27457, and cannot be reused as a cemented carbide material.

【0006】そのほか、特公昭38−4052号公報に
は、超硬合金を塩素ガスと反応させて金属炭化物及び結
合金属を塩化物として揮発せしめ、捕集した後化学処理
を行って金属として回収する方法が、特開昭51−37
020号公報には、酸化雰囲気中で加熱酸化せしめた超
硬合金を粉砕し、次いで還元処理を行って精製分離し、
組成金属を回収する方法が開示されているが、いずれも
処理費用が高くなり経済的でない。
[0006] In addition, Japanese Patent Publication No. 38-4052 discloses that a cemented carbide is reacted with chlorine gas to volatilize metal carbides and binding metals as chlorides. The method is disclosed in JP-A-51-37.
No. 020 discloses that a cemented carbide that has been heated and oxidized in an oxidizing atmosphere is pulverized, then subjected to a reduction treatment and purified and separated.
Methods for recovering the constituent metals are disclosed, but all of these methods are expensive and not economical.

【0007】[0007]

【発明が解決しようとする課題】以上のように、従来よ
り種々の方法が提案されているが、いずれも回収品質や
処理費用に問題があり、現状では十分な成果が得られて
いるとは言い難く、スパイクタイヤや高速度鋼の副原料
の一部として利用されているに過ぎない。即ち、従来の
再生方法では再生した金属炭化物粉末の粒子成長や、再
生時の不純物の混入、更には焼結特性等に問題があり、
超硬合金用の原料としての再利用は困難であり、実用化
されていないのが現状である。
As described above, various methods have been conventionally proposed. However, all of them have problems in the recovery quality and processing cost, and it is considered that sufficient results have been obtained at present. It is hard to say that it is only used as a part of spike tires and high-speed steel supplementary materials. That is, in the conventional regenerating method, there is a problem in particle growth of the regenerated metal carbide powder, mixing of impurities during the regenerating, and further, sintering characteristics and the like.
It is difficult to reuse as a raw material for cemented carbide, and at present it has not been put to practical use.

【0008】そこで本発明は、周期律表のIVa,Va及
びVIa族金属の炭化物のうちの少なくとも1種以上を主
体とし、Fe,Ni及びCoのうちの少なくとも1種以
上を結合材とする超硬合金スクラップより、前記炭化物
及び結合材を極めて安価に、かつ、容易にそれぞれ単独
で回収して再生すること、特には炭化タングステン等の
原料粉末を粒子成長や不純物の混入がなく、超硬合金の
原料粉末としてそのまま再利用できるように再生する超
硬合金の再生方法を提供することを課題とする。
[0008] Accordingly, the present invention provides a superconducting material comprising at least one or more of carbides of metals belonging to Group IVa, Va and VIa of the periodic table and a binder comprising at least one or more of Fe, Ni and Co. Carbide and binder can be recovered and reclaimed independently at low cost and easily from hard alloy scrap, and in particular, raw material powder such as tungsten carbide is free from particle growth and impurity contamination, It is an object of the present invention to provide a method for regenerating a cemented carbide which is reclaimed so that it can be reused as raw material powder.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するために、超硬合金を酸性水溶液とともに耐熱性圧力
容器に充填し、水熱処理を実施することにより超硬合金
中の結合材を酸性水溶液に溶解させて回収すること、及
び結合材の溶解した酸性水溶液にアルカリを添加して得
られた水酸化物を焼成して酸化物とした後、水素還元を
行って結合材を金属として再生する手段を提供する。
In order to solve the above-mentioned problems, the present invention fills a cemented carbide together with an acidic aqueous solution in a heat-resistant pressure vessel and performs a hydrothermal treatment to reduce the binder in the cemented carbide. After being dissolved in an acidic aqueous solution and collected, and the hydroxide obtained by adding an alkali to the acidic aqueous solution in which the binder is dissolved is calcined to form an oxide, the hydrogen is reduced to convert the binder into a metal. Provide a means to regenerate.

【0010】また、超硬合金を酸性水溶液とともに耐熱
性圧力容器に充填し、水熱処理を実施することにより超
硬合金中の結合材を酸性水溶液に溶解させて除去し、得
られた残渣炭化物を非酸化性雰囲気下で加熱処理した
後、急冷し、更に粉砕を行って粉末化することにより超
硬合金の原料粉末として回収する手段を提供する。そし
て、残渣炭化物の加熱処理温度を500〜1600℃の
範囲とした手段、非酸化性雰囲気は残渣炭化物と非反応
性のガスを加熱炉内に充填して形成する手段、非反応性
のガスがヘリウムガス,アルゴンガス又はネオンガスか
ら選択されたものである手段、加熱処理した残渣炭化物
の急冷は温度差500℃以上で、かつ、100℃以下の
温度まで急冷する手段を提供する。
[0010] Further, the cemented carbide is filled in a heat resistant pressure vessel together with an acidic aqueous solution, and a hydrothermal treatment is performed to dissolve and remove the binder in the cemented carbide in the acidic aqueous solution. A means for recovering as a raw material powder of a cemented carbide by heat-treating in a non-oxidizing atmosphere, quenching, and further pulverizing into powder. The means for setting the heat treatment temperature of the residual carbide in the range of 500 to 1600 ° C., the means for forming the non-oxidizing atmosphere by filling the non-reactive gas with the non-reactive gas in the heating furnace, the method for forming the non-reactive gas The present invention provides a means selected from helium gas, argon gas, or neon gas, and a means for rapidly cooling the heat-treated residual carbide to a temperature difference of 500 ° C. or more and 100 ° C. or less.

【0011】更に、酸性水溶液のpHが2以下である手
段、水熱処理条件は耐熱性圧力容器内の温度100〜3
00℃の範囲である手段、超硬合金は周期律表のIVa、
Va、及びVIa族金属の炭化物のうちの少なくとも1種
以上を主体とし、鉄,ニッケル又はコバルトのうちの少
なくとも1種以上を結合材とする手段を提供する。
Further, the means for adjusting the pH of the acidic aqueous solution to 2 or less and the conditions of the hydrothermal treatment are as follows.
Means in the range of 00 ° C., the cemented carbide is IVa of the periodic table,
A means is provided in which at least one of carbides of Va and VIa group metals is a main component, and at least one of iron, nickel and cobalt is a binder.

【0012】超硬合金は炭化物粒子間の結合相が非常に
狭いために、常温、常圧下においては完全に結合相を溶
解することは極めて困難であるが、上記した本発明にか
かる超硬合金の再生方法よれば、超硬合金のスクラップ
を酸性水溶液とともに耐熱性圧力容器に充填し、水熱処
理を実施することにより、結合材としてのCo等を完全
に、かつ、短時間で酸性水溶液中に溶解させて回収する
ことができる。一方結合材を溶出させて得られた残渣炭
化物は結合相の溶解によって多孔体状となっており、処
理前に比べて強度を低下させることができる。しかしな
がら、なお炭化物粒子同士の結合に起因すると思われる
強度を有しており、このままでは簡単に粉砕することは
困難であるため、得られた残渣炭化物を非酸化性雰囲気
下で加熱処理した後、急冷することにより、強度を著し
く低下させ、容易に粉砕を行うことができ、しかも、粉
末化したものは粒子成長や、不純物の混入もなく、焼結
特性にも優れているため、そのまま超硬合金の原料粉末
として再利用することができる。
Since the cemented carbide has a very narrow binder phase between carbide particles, it is extremely difficult to completely dissolve the binder phase at normal temperature and normal pressure. According to the regeneration method, the cemented carbide scrap is filled in a heat-resistant pressure vessel together with an acidic aqueous solution, and by performing a hydrothermal treatment, Co and the like as a binder are completely and quickly converted into an acidic aqueous solution. It can be dissolved and recovered. On the other hand, the residual carbide obtained by eluting the binder becomes porous due to dissolution of the binder phase, and the strength can be reduced as compared with before the treatment. However, it still has the strength considered to be due to the bond between the carbide particles, and it is difficult to easily pulverize as it is, so after heating the obtained residual carbide in a non-oxidizing atmosphere, By quenching, the strength is remarkably reduced, and pulverization can be easily performed. In addition, the powdered material has excellent sintering characteristics without particle growth and contamination of impurities, so it is super hard as it is. It can be reused as alloy powder.

【0013】[0013]

【発明の実施の形態】以下本発明にかかる超硬合金の再
生方法の具体的な実施形態を説明する。本発明では、超
硬合金のスクラップを酸性水溶液とともに耐熱性圧力容
器に充填し、水熱処理を実施することにより超硬合金の
スクラップ中の結合材を酸性水溶液に溶解させて回収す
ること、及び得られた残渣炭化物を非酸化性雰囲気下で
加熱処理した後、急冷し、更に粉砕を行って粉末化する
ことにより超硬合金の原料粉末として回収することが特
徴となっている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a specific embodiment of a method for regenerating a cemented carbide according to the present invention will be described. In the present invention, the cemented carbide scrap is filled into a heat-resistant pressure vessel together with an acidic aqueous solution, and the binder in the cemented carbide scrap is dissolved and recovered in the acidic aqueous solution by performing hydrothermal treatment. It is characterized in that after heating the obtained residual carbide in a non-oxidizing atmosphere, it is rapidly cooled, further pulverized and powdered to recover as a raw material powder of a cemented carbide.

【0014】先づ、超硬合金のスクラップ中の結合材を
溶解させて抽出するために、WC,TiC,TaC等の
周期律表のIVa,Va,及びVIa族金属の炭化物のうち
の少なくとも1種以上を主体とし、Fe,Ni及びCo
のうちの少なくとも1種以上を結合材とする超硬合金の
スクラップを酸性水溶液とともに、密閉された耐熱性圧
力容器に充填して水熱処理を実施することにより、超硬
合金のスクラップ中の結合材を溶解させるとともに、炭
化物のみを固体として得る。
First, in order to dissolve and extract the binder in the scrap of the cemented carbide, at least one of the carbides of metals from Group IVa, Va, and VIa of the periodic table such as WC, TiC, and TaC is used. Fe, Ni and Co
Of cemented carbide in a scrap of cemented carbide by filling a sealed heat-resistant pressure vessel together with an acidic aqueous solution together with a scrap of cemented carbide having at least one of them as a binder. Is dissolved, and only the carbide is obtained as a solid.

【0015】超硬合金中の結合材を酸にて溶出させる方
法は特許公報昭56−36692号や文献(工業レアメ
タル,NO.77,1982,P110)等に記述があ
るが、超硬合金は炭化物粒子間の結合相が非常に狭いた
めに、常温、常圧下においては完全に結合相を溶解する
ことは極めて困難である。
A method for eluting a binder in a cemented carbide with an acid is described in Japanese Patent Publication No. 56-36692 or a document (Industrial Rare Metal, No. 77, 1982, P110). Since the binder phase between the carbide particles is very narrow, it is extremely difficult to completely dissolve the binder phase at normal temperature and normal pressure.

【0016】そこで本発明では、酸による結合相の溶解
を水熱条件下で行うことにより、結合材を完全に、か
つ、飛躍的に短時間で溶出させるものである。本発明に
用いる酸性水溶液はpHが2以下のものであればどのよ
うなものであってもよく、特に制限はない。ただ、酸化
作用の強い酸、例えばHNO3のような酸は金属炭化物
を酸化させてしまい、そのままでは超硬合金粉末として
再利用できなくなるので好ましくない。
Therefore, in the present invention, the binder is dissolved completely and drastically in a short time by dissolving the binder phase with an acid under hydrothermal conditions. The acidic aqueous solution used in the present invention may have any pH as long as it is 2 or less, and is not particularly limited. However, an acid having a strong oxidizing action, for example, an acid such as HNO 3 oxidizes the metal carbide and cannot be reused as a cemented carbide powder as it is, which is not preferable.

【0017】水熱処理温度は耐熱性圧力容器内の温度を
100〜300℃の範囲とする。水熱処理温度が100
℃以下、即ち水熱条件外では、現実的な処理時間内で結
合材を完全に溶出させることは困難であり、又水熱処理
温度が300℃以上では耐酸性、耐圧性に優れた特殊な
耐熱性圧力容器が必要となり、装置費が高価になりすぎ
るため現実的でない。好ましくは250℃以下の温度で
あれば、耐酸性に優れ、かつ、取り扱いの容易なテフロ
ン製の容器が使用可能であり好適である。なお、耐熱性
圧力容器としては上記したように耐酸性に優れ、かつ、
取り扱いの容易なものであればどのようなものであって
もよく、特に限定はない。
The temperature of the hydrothermal treatment is set so that the temperature inside the heat-resistant pressure vessel is in the range of 100 to 300 ° C. Hydrothermal treatment temperature is 100
It is difficult to completely elute the binder within a realistic processing time below ℃ C, that is, outside the hydrothermal condition, and special heat resistance excellent in acid resistance and pressure resistance when the hydrothermal treatment temperature is more than 300 ℃ Pressure vessel is required, and the equipment cost becomes too expensive, which is not practical. Preferably, if the temperature is 250 ° C. or lower, a Teflon container excellent in acid resistance and easy to handle can be used. The heat-resistant pressure vessel has excellent acid resistance as described above, and
Any material may be used as long as it is easy to handle, and there is no particular limitation.

【0018】水熱処理時間、即ち超硬合金のスクラップ
中の結合材を溶出させるのに要する時間は酸性水溶液の
pHや処理温度によって異なる。水熱処理時間は、pH
が低いほど、即ち用いる酸性水溶液が強酸であるほど、
又酸性水溶液の濃度が高いほど、あるいは処理温度が高
いほど短縮される。
The hydrothermal treatment time, that is, the time required to elute the binder in the scrap of the cemented carbide depends on the pH of the acidic aqueous solution and the treatment temperature. Hydrothermal treatment time is pH
Is lower, that is, as the acidic aqueous solution used is a stronger acid,
Also, the shorter the concentration of the acidic aqueous solution or the higher the processing temperature, the shorter the time.

【0019】次に酸性水溶液に溶出したCo等の結合材
を回収するために、水熱処理によって結合材の溶解した
酸性水溶液に水酸化ナトリウム(NaOH)や水酸化カ
リウム(KOH)等のアルカリを添加して水酸化物と
し、該水酸化物を焼成して酸化物とした後、水素還元を
行って結合材を金属として再生する。再生した結合材は
超硬合金の結合材及び他の用途にそのまま再利用するこ
とができる。
Next, in order to recover the binder such as Co eluted in the acidic aqueous solution, an alkali such as sodium hydroxide (NaOH) or potassium hydroxide (KOH) is added to the acidic aqueous solution in which the binder is dissolved by hydrothermal treatment. Then, the hydroxide is calcined to form an oxide, and then hydrogen is reduced to regenerate the binder as a metal. The recycled binder can be reused as it is for cemented carbide binders and other uses.

【0020】上記した水熱処理によって結合材を酸性水
溶液に溶解させて回収する再生処理により、結合材が金
属として再生されるとともに、超硬合金のスクラップ中
から結合材が除去された炭化物のみを固体として得るこ
とができる。この得られた残渣炭化物は結合相の溶解に
よって多孔体状となっており、水熱処理前に比べて強度
の低下はあるものの、なお炭化物粒子同士の結合に起因
すると思われる強度を有しており、このままでは簡単に
粉砕することは困難である。
The binder is regenerated as a metal by the regenerating process of dissolving and recovering the binder in the acidic aqueous solution by the above-mentioned hydrothermal treatment, and only the carbide from which the binder is removed from the cemented carbide scrap is solidified. Can be obtained as The obtained residual carbide has become porous due to the dissolution of the binder phase, and although there is a decrease in strength as compared to before the hydrothermal treatment, it still has a strength considered to be due to the bonding between the carbide particles. However, it is difficult to easily pulverize as it is.

【0021】そこで、この残渣炭化物の強度を飛躍的に
低下させ、通常の粉砕方法で容易に微粉末とすることが
できるようにするため、多孔体状となった残渣炭化物を
非酸化性雰囲気下の加熱炉で加熱して温度を上昇させた
後に急冷をする。これは加熱することによる膨脹及び急
冷することによる収縮により、多孔体状の残渣炭化物に
歪みを起こさせ、炭化物粒子どうしの結合を破壊するこ
とにより炭化物の強度を飛躍的に低下させるためであ
る。
Therefore, in order to drastically reduce the strength of the residual carbonized material and easily make it into a fine powder by an ordinary pulverizing method, the porous carbonized residual carbonized material is removed under a non-oxidizing atmosphere. After heating in a heating furnace to raise the temperature, rapid cooling is performed. This is because the expansion by heating and the shrinkage by rapid cooling cause distortion of the porous residual carbide, and break the bond between the carbide particles to drastically reduce the strength of the carbide.

【0022】この加熱及び急冷の温度差が大きいほど残
渣炭化物の強度低下が大きく、粉砕が容易となる。従っ
て加熱処理温度が高温であればあるほど急冷の際の温度
差が大きくなり好適ではあるが、1800℃以上に加熱
すると前記した特公昭44−27457号公報と同様に
炭化物が粒子成長してしまい、超硬合金原料として品質
悪化を招き、得られた再生粉末を超硬合金として再利用
するためには好ましくない。
The greater the temperature difference between the heating and the quenching, the greater the decrease in the strength of the residual carbide, and the easier the pulverization. Therefore, the higher the temperature of the heat treatment, the larger the temperature difference during quenching becomes, which is preferable. However, when the temperature is raised to 1800 ° C. or more, carbides grow as in the case of Japanese Patent Publication No. 44-27457. However, it deteriorates the quality of the cemented carbide raw material, and is not preferable for reusing the obtained regenerated powder as a cemented carbide.

【0023】そこで本発明では非酸化性雰囲気下で50
0〜1600℃の温度範囲で加熱処理した後、500℃
以上の温度差で、かつ、100℃以下の温度まで急冷を
する。この処理によれば残渣炭化物を容易に粉末化する
ことができ、かつ、炭化物の粒子成長も起こらず、再生
粉末を超硬合金原料として再利用することができる。5
00〜1600℃について詳細に試験を行った結果、か
かる温度範囲においては炭化物の粒子成長は殆ど認めら
れず、超硬合金原料として品質悪化を招くことはない。
また、急冷による温度差は500℃以上必要であり、そ
れ未満では炭化物粒子どうしの結合を破壊する効果が不
十分である。
Therefore, in the present invention, 50
After heat treatment in a temperature range of 0 to 1600 ° C., 500 ° C.
The quenching is performed to the temperature difference and the temperature of 100 ° C. or less. According to this treatment, the residual carbide can be easily pulverized, and the carbide particles do not grow, and the regenerated powder can be reused as a cemented carbide material. 5
As a result of conducting a detailed test at 00 to 1600 ° C., in this temperature range, almost no carbide grain growth is recognized, and the quality of the cemented carbide material does not deteriorate.
Further, the temperature difference due to rapid cooling needs to be 500 ° C. or more, and if it is less than 500 ° C., the effect of breaking the bond between carbide particles is insufficient.

【0024】急冷方法は加熱処理した高温の残渣炭化物
を液体窒素等の低温物質に接触させることにより急冷す
るものであり、急冷できるものであれば特に限定される
ものではない。また加熱炉も500〜1600℃の温度
に調節できる加熱炉であれば特に限定されるものではな
く、どのような加熱炉であってもよい。
The quenching method is a method in which the heat-treated high-temperature residual carbide is brought into contact with a low-temperature substance such as liquid nitrogen to quench rapidly, and is not particularly limited as long as it can be quenched. The heating furnace is not particularly limited as long as it can be adjusted to a temperature of 500 to 1600 ° C., and any heating furnace may be used.

【0025】ここで加熱をする際に非酸化性雰囲気とす
るのは炭化物の酸化を防ぐために必要であり、加熱炉内
にWC等の残渣炭化物と非反応性のガス、例えばヘリウ
ム(He)ガス,アルゴン(Ar)ガス、ネオン(N
e)ガス等の不活性ガスを充填する方法、或いは加熱処
理する炭化物を炭素で覆う等の方法により作り出すこと
ができる。
The use of a non-oxidizing atmosphere during heating is necessary to prevent the oxidation of carbides, and a gas that is non-reactive with residual carbides such as WC, such as helium (He) gas, is placed in the heating furnace. , Argon (Ar) gas, neon (N
e) It can be produced by a method of filling an inert gas such as a gas or a method of covering a carbide to be heat-treated with carbon.

【0026】上記した加熱、急冷処理をした多孔体状の
残渣炭化物の強度は著しく低下しているため、この強度
の低下した残渣炭化物をクラッシャ等を用いて粉砕し、
更にボールミルを用いて微粉化して超硬合金の原料粉末
として回収する。また加熱・急冷の温度差を大きく設定
した場合は、クラッシャによる粉砕をすることなく、ボ
ールミルのみを用いて微粉化することも可能である。
Since the strength of the above-described heated and quenched porous carbonized residue is significantly reduced, the reduced-residue carbonized residue is pulverized using a crusher or the like.
Further, the powder is pulverized using a ball mill and recovered as a raw material powder of a cemented carbide. When the temperature difference between heating and quenching is set large, it is also possible to pulverize using only a ball mill without crushing by a crusher.

【0027】[0027]

【実施例】【Example】

《実施例1》内容積10lのオートクレーブに、WCを
硬質相とし、Coを結合相とする超硬合金チップ(Co
含有量5%)のスクラップを総重量1kg、並びに濃度
10mol/lのHClをオートクレーブ本体が占める
空間の80%に達するまで充填し、密閉してこれを加熱
し、オートクレーブ内温度200℃、圧力15kg/c
2に維持して、15時間水熱処理を行った後、冷却し
開封して残渣炭化物、及びCoが溶解したHCl溶液を
取り出した。Coが溶解したHCl溶液にNaOHを加
えてCo(OH)2として回収し、これを焼成した後水
素還元を行って金属Coとした。
<< Example 1 >> A cemented carbide chip (Co) having WC as a hard phase and Co as a binder phase was placed in an autoclave having an internal volume of 10 l.
Content of 5%), a total weight of 1 kg, and HCl of a concentration of 10 mol / l were charged until reaching 80% of the space occupied by the autoclave main body, sealed and heated, and the temperature in the autoclave was 200 ° C. and the pressure was 15 kg. / C
After the hydrothermal treatment was performed for 15 hours while maintaining the pressure at m 2 , the mixture was cooled and opened, and the residual carbide and the HCl solution in which Co was dissolved were taken out. NaOH was added to the HCl solution in which Co was dissolved to recover Co (OH) 2 , which was calcined and then reduced with hydrogen to obtain metal Co.

【0028】残渣炭化物は、Arガスを充填した加熱炉
内で900℃で加熱処理した後、液体窒素(−197
℃)に投入して急冷した。次いで充分冷却された炭化物
をクラッシャを用いて粉砕し、更にボールミルで24時
間粉砕を行った。
The residual carbide is heated at 900 ° C. in a heating furnace filled with Ar gas, and then subjected to liquid nitrogen (−197
° C) and quenched. Next, the sufficiently cooled carbide was pulverized using a crusher, and further pulverized by a ball mill for 24 hours.

【0029】得られた炭化物は、1800℃以上での加
熱時にみられる粒子成長がみられない1μm前後の微細
な粉末で、組成分析を行った結果はCo0.02%、O
20.09%、WC残であり、結合材のCoはほとんど
溶解除去されており超硬合金原料として再利用が可能で
ある。また、WC回収率は99%であった。
The obtained carbide is a fine powder of about 1 μm in which no particle growth is observed when heated at 1800 ° C. or more.
2 0.09%, WC residue, Co in the binder is almost completely dissolved and removed, and it can be reused as a cemented carbide material. The WC recovery was 99%.

【0030】《実施例2》内容積10lのオートクレー
ブに、WC−TiC−TaCを主体とし、Coを結合材
とする超硬合金チップ(Co含有量6%)のスクラップ
を総重量1kg並びに濃度5mol/lのH2SO4をオ
ートクレーブ本体が占める空間の80%に達するまで充
填し、密閉してこれを加熱し、オートクレーブ内温度2
40℃、圧力33kg/cm2に維持して、24時間水
熱処理を行った後、冷却し開封して残渣炭化物、及びC
oが溶解したH2SO4溶液を取り出した。
Example 2 In a 10-liter autoclave, scraps of cemented carbide chips (Co content 6%) mainly composed of WC-TiC-TaC and Co as a binder were used in a total weight of 1 kg and a concentration of 5 mol. / L of H 2 SO 4 was filled up to 80% of the space occupied by the autoclave body, sealed and heated, and the autoclave was heated to a temperature of 2%.
After a hydrothermal treatment for 24 hours at 40 ° C. and a pressure of 33 kg / cm 2 , the mixture was cooled and opened to remove the residual carbide and C
The H 2 SO 4 solution in which o was dissolved was taken out.

【0031】Coが溶解したH2SO4溶液にNaOHを
加えてCo(OH)2として回収し、これを焼成した後
水素還元を行って金属Coとした。
NaOH was added to the H 2 SO 4 solution in which Co was dissolved to recover Co (OH) 2 , which was calcined and then hydrogen reduced to obtain metal Co.

【0032】残渣炭化物は、Arガスを充填した加熱炉
内で900℃で加熱処理した後、液体窒素(−197
℃)に投入して急冷した。次いで充分冷却された炭化物
をクラッシャを用いて粉砕し、更にボールミルで24時
間粉砕を行った。
The residual carbide is heated at 900 ° C. in a heating furnace filled with Ar gas, and then subjected to liquid nitrogen (−197
° C) and quenched. Next, the sufficiently cooled carbide was pulverized using a crusher, and further pulverized by a ball mill for 24 hours.

【0033】得られた炭化物は、1800℃以上での加
熱時にみられる粒子成長がみられない1μm前後の微細
な粉末で、組成分析を行った結果はCo0.01%、O
20.10%、WC−TiC−TaC残であり結合材の
Coはほとんど溶解除去されており超硬合金原料として
再利用が可能である。また、WC−TiC−TaC回収
率は98%であった。
The obtained carbide is a fine powder of about 1 μm in which no particle growth is observed when heated at 1800 ° C. or more.
2 0.10%, WC-TiC-TaC residue, Co is almost completely removed from the binder, and can be reused as a cemented carbide material. The WC-TiC-TaC recovery was 98%.

【0034】《比較例1》圧力容器内温度を90℃と
し、処理時間を24時間とする以外は実施例1に記載の
方法と同様の条件及び方法で超硬合金チップのスクラッ
プの処理を行った。得られた残渣炭化物中及び液相中の
Co含有量を調べた結果、Coの抽出率は29.7%で
あった。得られた残渣炭化物を実施例1と同様の方法で
加熱、急冷処理した後、クラッシャ及びボールミルにて
粉砕することを試みたが、容易に微粉末化することは困
難であった。
<< Comparative Example 1 >> Scrap of cemented carbide chips was performed under the same conditions and in the same manner as described in Example 1, except that the temperature in the pressure vessel was 90 ° C. and the processing time was 24 hours. Was. As a result of examining the Co content in the obtained residual carbide and the liquid phase, the Co extraction rate was 29.7%. After heating and quenching the obtained residual carbide in the same manner as in Example 1, an attempt was made to grind it with a crusher and a ball mill, but it was difficult to easily pulverize it.

【0035】比較例1に示すように100℃以上の水熱
処理をしなければ、Co等の結合材が十分に酸性水溶液
に溶解しないこと、及び結合材が十分に除去されていな
い残渣炭化物は加熱、急冷をしても強度を低下させるこ
とができないことが判る。これに対し実施例1に示す本
発明にかかる超硬合金の再生方法によれば、水熱処理に
よってCo等の結合材が略完全に除去でき、結合材を回
収できるとともに、残渣炭化物を加熱、急冷することに
より、容易に粉砕することができる。
As shown in Comparative Example 1, unless a hydrothermal treatment at a temperature of 100 ° C. or higher is performed, a binder such as Co is not sufficiently dissolved in an acidic aqueous solution, and the residual carbide from which the binder is not sufficiently removed is heated. It can be seen that the strength cannot be reduced even by rapid cooling. On the other hand, according to the cemented carbide regenerating method according to the present invention shown in Example 1, the binder such as Co can be almost completely removed by hydrothermal treatment, the binder can be recovered, and the residual carbide is heated and quenched. By doing so, it can be easily crushed.

【0036】《比較例2》実施例1で得られたCoを抽
出した残渣炭化物を加熱急冷することなしにそのまま粉
砕操作を行ったが、容易に微粉末化することは困難であ
った。
<< Comparative Example 2 >> The residue obtained by extracting Co obtained in Example 1 was directly pulverized without heating and quenching, but it was difficult to easily pulverize it.

【0037】比較例2に示すようにCo等の結合材を除
去したのみの残渣炭化物は多孔体状となっており、水熱
処理前に比べて強度の低下はあるものの、なお炭化物粒
子同士の結合に起因すると思われる強度を有しており、
このままでは簡単に粉砕することは困難であることが判
る。これに対し実施例1に示す本発明にかかる超硬合金
の再生方法によれば、加熱、急冷により残渣炭化物の強
度が著しく低下しており、容易に微粉末化することがで
き、しかも得られた炭化物は、1800℃以上での加熱
時にみられる粒子成長がみられない1μm前後の微細な
粉末で超硬合金原料としてそのまま再利用が可能であ
る。
As shown in Comparative Example 2, the residual carbide from which only the binder such as Co had been removed was porous and had a lower strength than before the hydrothermal treatment. Has the strength that seems to be due to
It turns out that it is difficult to easily pulverize as it is. On the other hand, according to the method for regenerating a cemented carbide according to the present invention shown in Example 1, the strength of the residual carbide is significantly reduced by heating and quenching, so that it can be easily pulverized and obtained. The carbide thus obtained is a fine powder of about 1 μm in which no grain growth is observed when heated at 1800 ° C. or more, and can be reused as a raw material of cemented carbide as it is.

【0038】[0038]

【発明の効果】以上詳細に説明したように本発明にかか
る超硬合金の再生方法によれば、結合材としてのCo等
を完全に、かつ、短時間で酸性水溶液中に溶解させて回
収することができる。一方結合材を溶出させて得られた
残渣炭化物から炭化タングステン等の原料粉末を粒子成
長や不純物の混入がなく再生するすることができ、その
まま超硬合金の原料粉末として再利用することができ
る。しかも操作工程が比較的簡単であり、安価に、か
つ、容易に再生処理することができる。
As described above in detail, according to the method for regenerating a cemented carbide according to the present invention, Co or the like as a binder is completely and rapidly dissolved and recovered in an acidic aqueous solution. be able to. On the other hand, a raw material powder such as tungsten carbide can be regenerated from the residual carbide obtained by eluting the binder without particle growth or contamination of impurities, and can be reused as a raw material powder of a cemented carbide as it is. In addition, the operation process is relatively simple, and the regeneration process can be performed easily at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 芳孝 高知県高知市南はりまや町1丁目15番2号 (72)発明者 山崎 仲道 高知県高岡郡佐川町甲107番地 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshitaka Yamashita 1-15-2, Minami Harimaya-cho, Kochi City, Kochi Prefecture (72) Inventor Nakamichi 107, Kogawa, Sagawa-cho, Takaoka-gun, Kochi Prefecture

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 超硬合金を酸性水溶液とともに耐熱性圧
力容器に充填し、水熱処理を実施することにより超硬合
金中の結合材を酸性水溶液に溶解させて回収することを
特徴とする超硬合金の再生方法。
1. A cemented carbide characterized by filling a cemented carbide together with an acidic aqueous solution into a heat-resistant pressure vessel and performing a hydrothermal treatment to dissolve and recover the binder in the cemented carbide in the acidic aqueous solution. Alloy recycling method.
【請求項2】 結合材の溶解した酸性水溶液にアルカリ
を添加して得られた水酸化物を焼成して酸化物とした
後、水素還元を行って結合材を金属として再生する請求
項1記載の超硬合金の再生方法。
2. The method according to claim 1, wherein the hydroxide obtained by adding an alkali to the acidic aqueous solution in which the binder is dissolved is calcined to form an oxide, and then subjected to hydrogen reduction to regenerate the binder as a metal. Recycling method of cemented carbide.
【請求項3】 超硬合金を酸性水溶液とともに耐熱性圧
力容器に充填し、水熱処理を実施することにより超硬合
金中の結合材を酸性水溶液に溶解させて除去し、得られ
た残渣炭化物を非酸化性雰囲気下で加熱処理した後、急
冷し、更に粉砕を行って粉末化することにより超硬合金
の原料粉末として回収することを特徴とする超硬合金の
再生方法。
3. A cemented hard alloy is charged together with an acidic aqueous solution into a heat-resistant pressure vessel, and a hydrothermal treatment is performed to dissolve and remove the binder in the cemented carbide in the acidic aqueous solution. A method for regenerating a cemented carbide, which comprises subjecting the mixture to a heat treatment in a non-oxidizing atmosphere, quenching, further pulverizing the mixture, and pulverizing the mixture to obtain raw material powder for the cemented carbide.
【請求項4】 残渣炭化物の加熱処理温度を500〜1
600℃の範囲とした請求項3記載の超硬合金の再生方
法。
4. The heat treatment temperature of the residual carbide is 500 to 1
The method for reclaiming cemented carbide according to claim 3, wherein the temperature is in the range of 600 ° C.
【請求項5】 非酸化性雰囲気は残渣炭化物と非反応性
のガスを加熱炉内に充填して形成する請求項4記載の超
硬合金の再生方法。
5. The method for reclaiming cemented carbide according to claim 4, wherein the non-oxidizing atmosphere is formed by filling a non-reactive gas with a non-reactive gas in a heating furnace.
【請求項6】 非反応性のガスがヘリウムガス,アルゴ
ンガス又はネオンガスから選択されたものである請求項
5記載の超硬合金の再生方法。
6. The method according to claim 5, wherein the non-reactive gas is selected from helium gas, argon gas and neon gas.
【請求項7】 加熱処理した残渣炭化物の急冷は温度差
500℃以上で、かつ、100℃以下の温度まで急冷す
る請求項4,5又は6記載の超硬合金の再生方法。
7. The method according to claim 4, wherein the quenching of the heat-treated residual carbide is quenched to a temperature difference of 500 ° C. or more and 100 ° C. or less.
【請求項8】 酸性水溶液のpHが2以下である請求項
1,2,3,4,5,6又は7記載の超硬合金の再生方
法。
8. The method for reclaiming cemented carbide according to claim 1, wherein the pH of the acidic aqueous solution is 2 or less.
【請求項9】 水熱処理条件は耐熱性圧力容器内の温度
100〜300℃の範囲である請求項1,2,3,4,
5,6,7又は8記載の超硬合金の再生方法。
9. The hydrothermal treatment condition is in a temperature range of 100 to 300 ° C. in the heat-resistant pressure vessel.
The method for reclaiming a cemented carbide according to 5, 6, 7 or 8.
【請求項10】 超硬合金は周期律表のIVa,Va,及
びVIa族金属の炭化物のうちの少なくとも1種以上を主
体とし、鉄,ニッケル又はコバルトのうちの少なくとも
1種以上を結合材とする請求項1,2,3,4,5,
6,7,8又は9記載の超硬合金の再生方法。
10. The cemented carbide mainly comprises at least one or more of carbides of metals of groups IVa, Va and VIa of the periodic table, and at least one or more of iron, nickel and cobalt as a binder. Claims 1, 2, 3, 4, 5,
10. The method for reclaiming a cemented carbide according to 6, 7, 8 or 9.
JP20664496A 1996-07-16 1996-07-16 Method for regenerating cemented carbide Pending JPH1030130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20664496A JPH1030130A (en) 1996-07-16 1996-07-16 Method for regenerating cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20664496A JPH1030130A (en) 1996-07-16 1996-07-16 Method for regenerating cemented carbide

Publications (1)

Publication Number Publication Date
JPH1030130A true JPH1030130A (en) 1998-02-03

Family

ID=16526771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20664496A Pending JPH1030130A (en) 1996-07-16 1996-07-16 Method for regenerating cemented carbide

Country Status (1)

Country Link
JP (1) JPH1030130A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503177A (en) * 2002-07-22 2006-01-26 タイタノックス・ディベロップメント・リミテッド Separation method
JP2011006735A (en) * 2009-06-25 2011-01-13 Kyocera Corp Method for regenerating cemented carbide
JP2011179039A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp Method for recovering useful metal
JP2011179036A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp Method for treating scrap of hard metal
JP2011179037A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp Method for treating scrap of hard metal
JP2011179038A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp Method for collecting tungsten from scrap of hard metal
KR101101755B1 (en) 2009-09-16 2012-01-05 주식회사 리싸이텍코리아 Method for recycling waste cemented carbide sludge
CN102758089A (en) * 2011-04-25 2012-10-31 自贡科瑞德新材料有限责任公司 Recovering and regenerating method of cemented carbide scrap material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503177A (en) * 2002-07-22 2006-01-26 タイタノックス・ディベロップメント・リミテッド Separation method
JP2011006735A (en) * 2009-06-25 2011-01-13 Kyocera Corp Method for regenerating cemented carbide
KR101101755B1 (en) 2009-09-16 2012-01-05 주식회사 리싸이텍코리아 Method for recycling waste cemented carbide sludge
JP2011179039A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp Method for recovering useful metal
JP2011179036A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp Method for treating scrap of hard metal
JP2011179037A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp Method for treating scrap of hard metal
JP2011179038A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp Method for collecting tungsten from scrap of hard metal
CN102758089A (en) * 2011-04-25 2012-10-31 自贡科瑞德新材料有限责任公司 Recovering and regenerating method of cemented carbide scrap material

Similar Documents

Publication Publication Date Title
CN111575567B (en) Regeneration method of waste high-cobalt coarse-grain hard alloy
JPS62238344A (en) Mechanical alloying method
JP3056476B1 (en) Method for producing recycled W—Co raw material powder from cemented carbide scrap and method for producing tungsten-based sintered heavy alloy using the same
JP5149164B2 (en) Method for recovering useful materials from rare earth-iron-boron magnet scrap
JPH1030130A (en) Method for regenerating cemented carbide
JP2004002927A (en) Method for processing super hard alloy scrap
EP0299590A2 (en) Method for producing dysprosium-iron-boron alloy powder
JP3290929B2 (en) Recycling treatment of cemented carbide
JP2002356724A (en) Method for reclaiming rare earth magnet alloy slag, and method for manufacturing rare earth magnet alloy
CN111778399A (en) Method for recovering nickel and cobalt in waste cobalt-based high-temperature alloy through melt extraction separation
CN101239720A (en) Method for fast crushing separating extracting tungsten carbide and cobalt carbonate by using waste ultra-fine hard alloy body
JP2000226601A (en) Production of reproduced tungsten raw material powder from tungsten alloy scrap and production of tungsten base sintered heavy alloy using same
JP2003051418A (en) Method for recycling rare-earth magnet scrap
JP4418129B2 (en) Collection method of valuable metals
US2515463A (en) Process for making titanium carbide
JPH1088250A (en) Method for recovering valuable metal from used nickel-hydrogen secondary battery
EP2427286A1 (en) Recycling of tungsten carbides
KR20110029853A (en) Method for recycling waste cemented carbide sludge
JPH05271852A (en) Production of rare earth magnet alloy
US2848313A (en) Method of chemically disintegrating and pulverizing solid material
US2107277A (en) Tantalum recovery
JP2002339023A (en) Method for recovering valuable metal
JP2000072430A (en) Repowdering technique for spent sintered hard alloy part by tin impregnation method
KR960010813B1 (en) Tungsten scrap treatment method
JPS61502615A (en) Titanium, hafnium and zirconium group 4B transition metal group passivated metal powder for powder metallurgy and method for producing the same