JPH10301293A - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JPH10301293A
JPH10301293A JP9108574A JP10857497A JPH10301293A JP H10301293 A JPH10301293 A JP H10301293A JP 9108574 A JP9108574 A JP 9108574A JP 10857497 A JP10857497 A JP 10857497A JP H10301293 A JPH10301293 A JP H10301293A
Authority
JP
Japan
Prior art keywords
photoresist
exposure
photofading
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9108574A
Other languages
Japanese (ja)
Inventor
Minoru Chokai
実 鳥海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9108574A priority Critical patent/JPH10301293A/en
Publication of JPH10301293A publication Critical patent/JPH10301293A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To recover a degraded beam shape and to form a good fine pattern by forming a thin film comprising a photosensitive compsn. having inhomogeneous density distribution in the thickness direction and using a photoresist which causes photofading in the wavelengths of exposure light. SOLUTION: A photofading layer which converts a degraded beam shape of exposure light with low contrast into a good shape with high contrast is formed on a chemically amplifying photoresist. As for the photofading layer, various photofading dyes having absorption of light in the wavelengths of exposure light can be used. It is especially preferable to use a photosensitive agent as the dye used for the photofading layer, because not only the beam shape of the exposure light but development characteristics are improved. Even when the upper photofading layer is mixed into the photoresist layer, it is no problem as far as the density distribution of the photofading layer gives the highest density on the surface of the photofading layer while the density gradually decreases in the depth direction of the photoresist and becomes lowest near the substrate in the lower part of the photoresist layer. A continuous decrease in the density distribution is more preferable because reflection on interfaces in a multilayered structure is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料基板上に半導
体集積回路や液晶素子等のパターンを転写する方法に関
し、特に解像性の高い光リソグラフィを使用可能とさせ
る技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for transferring a pattern of a semiconductor integrated circuit, a liquid crystal element or the like onto a sample substrate, and more particularly to a technique for enabling use of photolithography having high resolution.

【0002】[0002]

【従来の技術】半導体集積回路や液晶素子等のパターン
の形成には、リソグラフィ技術と呼ばれているマスク上
に描かれたパターンを試料基板上に転写する方法が広く
採用されている。このパターン転写を行うために、一般
には、マスク上のパターンを縮小して転写する縮小投影
型の投影露光装置が用いられる。
2. Description of the Related Art A method of transferring a pattern drawn on a mask onto a sample substrate, which is called a lithography technique, is widely used for forming a pattern of a semiconductor integrated circuit or a liquid crystal element. In order to perform this pattern transfer, a reduced-projection type projection exposure apparatus for reducing and transferring a pattern on a mask is generally used.

【0003】半導体集積回路等のパターンの微細化が進
むにしたがって、上記投影露光装置には、従来以上に解
像力が高い微細なパターンの転写が要求されている。露
光装置の解像限界に近づくと光の回折現象などのため
に、転写すべきパターンの光強度分布がぼやけて、劣化
した光パターンになってしまい問題となる。一般に、投
影レンズの開口数(NA)が大きいほど、あるいは露光
に用いられる光の波長が短いほど解像力は向上する。し
かし、投影レンズは露光領域が広いことも同時に要求さ
れ、実際上NAの向上には限界がある。そのため露光に
用いられる光を短波長化する試みがなされている。従来
用いられていた高圧水銀灯(波長436nmあるいは3
65nm等)よりも短波長の発光波長を持つ、例えばエ
キシマレーザ(波長308nm,248nmあるいは1
93nm等)が有効な光源と考えられている。
As the pattern miniaturization of semiconductor integrated circuits and the like progresses, the projection exposure apparatus is required to transfer a fine pattern having a higher resolution than before. When the resolution limit of the exposure apparatus is approached, the light intensity distribution of a pattern to be transferred is blurred due to a light diffraction phenomenon or the like, which causes a problem that a deteriorated light pattern is formed. In general, the higher the numerical aperture (NA) of the projection lens or the shorter the wavelength of light used for exposure, the higher the resolution. However, the projection lens is also required to have a large exposure area at the same time, and there is practically a limit in improving the NA. Therefore, attempts have been made to shorten the wavelength of light used for exposure. A conventional high-pressure mercury lamp (wavelength 436 nm or 3
For example, an excimer laser (wavelength: 308 nm, 248 nm, or 1) having an emission wavelength shorter than 65 nm is used.
93 nm) is considered an effective light source.

【0004】しかしながら、短波長の露光光源では、感
光性組成物(以下、ホトレジストと記す)による露光の
光吸収が強く、露光・現像後に基板上に垂直な断面形状
を有する実用的な微細パターンを形成することが難し
い。すなわち、露光の光がホトレジスト上部で強く吸収
されてしまい、ホトレジスト下部の基板付近では露光の
光が殆ど到達しない。その結果、ホトレジスト中の光化
学反応はホトレジスト表面で多く起こり、基板に接する
側では殆ど起こっていない。
However, in the case of an exposure light source having a short wavelength, the photosensitive composition (hereinafter, referred to as a photoresist) has a strong light absorption upon exposure, and after exposure and development, a practical fine pattern having a vertical cross-sectional shape on a substrate is formed. Difficult to form. That is, the exposure light is strongly absorbed in the upper portion of the photoresist, and the exposure light hardly reaches near the substrate below the photoresist. As a result, the photochemical reaction in the photoresist frequently occurs on the photoresist surface, and hardly occurs on the side in contact with the substrate.

【0005】このような露光による潜像パターンを現像
すると、光化学反応により現像に耐性を有するようにな
るネガ型ホトレジストの場合には、ホトレジスト上部が
突き出し、ホトレジスト下部が現像時に横方向から侵食
された、所謂、逆テーパ形状となり実用に適さないパタ
ーンとなる。
When developing a latent image pattern by such exposure, in the case of a negative type photoresist which becomes resistant to development due to a photochemical reaction, the upper portion of the photoresist protrudes, and the lower portion of the photoresist is eroded laterally during development. In other words, it becomes a so-called reverse tapered shape and becomes a pattern that is not suitable for practical use.

【0006】更に、ホトレジストの光吸収がより強い場
合には、基板付近のホトレジストの光化学反応は起こら
ないためにホトレジスト下部が全て現像時に溶解除去さ
れて、パターンがなくなってしまうこともある。
Further, when the photo-absorption of the photoresist is stronger, since the photo-chemical reaction of the photoresist near the substrate does not occur, the entire lower portion of the photoresist is dissolved and removed at the time of development, and the pattern may be lost.

【0007】光化学反応により現像液に溶解するように
なるポジ型ホトレジストの場合でも同様に、ホトレジス
トの光吸収が強い場合には微細パターンを形成すること
はできない。
[0007] Similarly, even in the case of a positive type photoresist which becomes soluble in a developer due to a photochemical reaction, a fine pattern cannot be formed if the photoresist has a strong light absorption.

【0008】ホトレジストの吸光性の主成分としてはバ
インダーとしての高分子と感光剤がある。特に感光剤は
露光前には光吸収が強く、露光により光の透過率が上昇
するという、所謂、光退色性がある。光退色性により露
光量の増大と共に光がホトレジスト内部にまで到達す
る。
The light-absorbing main components of a photoresist include a polymer as a binder and a photosensitive agent. In particular, the photosensitive agent has a so-called photobleaching property, in which light absorption is strong before exposure and light transmittance increases upon exposure. Due to the photobleaching property, the light reaches the inside of the photoresist as the exposure amount increases.

【0009】高解像性のホトレジストには、光回折など
で劣化した露光形状を、このホトレジスト内部における
光退色効果で向上させ、コントラストの高い露光形状に
回復させるという重要な特性があり、高い解像性が得ら
れている。
The high-resolution photoresist has an important characteristic that an exposure shape deteriorated by light diffraction or the like is improved by a photobleaching effect in the inside of the photoresist to recover an exposure shape having a high contrast. Image quality is obtained.

【0010】通常のホトレジストでは露光の光を吸収す
る感光剤の含有量が30%程度含まれており、短波長露
光では強い吸収を有してしまい、通常のホトレジストは
使用できない。つまり、より高い解像性を得ようとして
露光波長を短波長化しても、通常のホトレジストでは実
用的なパターンが得られない。
A normal photoresist contains about 30% of a photosensitive agent which absorbs light for exposure, and has a strong absorption in short-wavelength exposure, so that a normal photoresist cannot be used. That is, even if the exposure wavelength is shortened in order to obtain higher resolution, a practical pattern cannot be obtained with an ordinary photoresist.

【0011】そこで、露光の光の吸収が少ない感光性組
成物として、化学増幅系ホトレジストが研究されてい
る。化学増幅系ホトレジストは光化学反応で生成した触
媒の連鎖反応を利用するので高感度である。露光の光を
吸収する感光性成分の含有量を数%と少なくすることが
できるので、光吸収を少なくできる特徴がある。しか
し、化学増幅系ホトレジストの場合には感光性成分の含
有量が少ないために、露光の開始時と終了時でのホトレ
ジストの透過率変化が少なく、光退色効果がなく露光の
光形状が劣化したままで、解像性が悪いという欠点があ
る。
Therefore, a chemically amplified photoresist has been studied as a photosensitive composition that absorbs less light during exposure. A chemically amplified photoresist is highly sensitive because it utilizes a chain reaction of a catalyst generated by a photochemical reaction. Since the content of the photosensitive component that absorbs light for exposure can be reduced to several percent, there is a feature that light absorption can be reduced. However, in the case of a chemically amplified photoresist, since the content of the photosensitive component was small, the change in the transmittance of the photoresist at the start and end of the exposure was small, and the light shape of the exposure was deteriorated without the photobleaching effect. As it is, there is a disadvantage that the resolution is poor.

【0012】[0012]

【発明が解決しようとする課題】化学増幅系ホトレジス
トの場合には感光性成分の含有量が少ないために、露光
の開始時と露光の終了時のホトレジストの透過率の変化
が少ない。そのために、露光の光形状が劣化したまま
で、劣化した光形状を回復する特性がない。
In the case of a chemically amplified photoresist, since the content of the photosensitive component is small, the change in the transmittance of the photoresist at the start of exposure and at the end of exposure is small. Therefore, there is no characteristic of recovering the deteriorated light shape while the light shape of the exposure remains deteriorated.

【0013】本発明の課題は、劣化した光形状を回復し
て良好な微細パターン形成するパターン形成方法を提供
することにある。
An object of the present invention is to provide a pattern forming method for recovering a degraded light shape and forming a good fine pattern.

【0014】[0014]

【課題を解決するための手段】上記課題は、感光性組成
物からなる薄膜が厚さ方向に不均一な濃度分布を有し、
且つ、露光の光の波長において光退色するホトレジスト
を用いることにより達成される。
The object of the present invention is to provide a thin film comprising a photosensitive composition having a non-uniform concentration distribution in a thickness direction.
It is also achieved by using a photoresist that undergoes photobleaching at the wavelength of the exposure light.

【0015】従来の化学増幅系ホトレジストを用いるパ
ターン形成方法では、露光装置の解像限界に近い微細パ
ターンを光転写する時には光パターン形状は光回折のた
めに劣化しており、そのままの劣化した形状の光がホト
レジストを感光していた。そのために、解像性が悪かっ
た。
In a conventional pattern forming method using a chemically amplified photoresist, when a fine pattern close to the resolution limit of an exposure apparatus is optically transferred, the light pattern shape is deteriorated due to light diffraction. Was exposing the photoresist. Therefore, the resolution was poor.

【0016】これに対し、本発明では化学増幅系ホトレ
ジストの上部に、コントラストが低く劣化した露光形状
をコントラストの高い良好な光形状に変換する光退色層
を設けている。この光退色層としては、露光波長におい
て光吸収を有する種々の光退性色素を用いることができ
る。光退色層に用いる色素として、感光剤を用いると露
光形状の改良だけでなく、現像特性も改良されるので、
特に好ましい。
On the other hand, in the present invention, a photobleaching layer is provided above the chemically amplified photoresist to convert an exposure shape having low contrast and degraded into a good light shape with high contrast. For this photobleaching layer, various photobleachable dyes having light absorption at the exposure wavelength can be used. When a photosensitive agent is used as a dye for the photobleaching layer, not only the exposure shape is improved, but also the development characteristics are improved.
Particularly preferred.

【0017】光退色層をホトレジストの上に重ねた二層
構造でなくてもよい。ホトレジスト層に上層の光退色層
が混合しても光退色剤の濃度分布が光退色層表面で一番
高く、ホトレジストの深さ方向に徐々に減少し、ホトレ
ジスト層の下部の基板付近で一番低ければ良い。このよ
うに連続的に濃度分布が減少すると、多層構造の境界面
での反射がなくなるので、より好ましい。ホトレジスト
内部で光退色が行われても高い解像力が得られる。特
に、表面濃度は、基板付近の濃度の2倍以上であること
が、劣化した光形状を回復する上で、より望ましい。
The photobleaching layer may not have a two-layer structure in which the photobleaching layer is overlaid on a photoresist. Even if the upper photobleaching layer is mixed with the photoresist layer, the concentration distribution of the photobleaching agent is the highest on the surface of the photobleaching layer, gradually decreases in the depth direction of the photoresist, and becomes the highest near the substrate below the photoresist layer. Good if it is low. Such a continuous decrease in the concentration distribution is more preferable because reflection at the boundary surface of the multilayer structure disappears. High resolving power can be obtained even when photobleaching is performed inside the photoresist. In particular, it is more desirable that the surface concentration is at least twice the concentration near the substrate in order to recover the deteriorated light shape.

【0018】この様な不均一な濃度分布を有する薄膜の
形成方法は通常の方法を用いれば良い。例えば、ホトレ
ジスト溶液を塗布,乾燥した後、光退色剤を含有した溶
液を回転塗布するという重ね塗りの方法がある。両層が
適度に混合して、光退色剤の濃度が表面で高く、基板側
で低くなる不均一濃度勾配を有する薄膜ができる。
As a method for forming a thin film having such a non-uniform concentration distribution, a usual method may be used. For example, there is a multi-coating method in which a photoresist solution is applied and dried, and then a solution containing a photobleaching agent is spin-coated. Both layers are appropriately mixed to form a thin film having a non-uniform concentration gradient in which the concentration of the photobleaching agent is high on the surface and low on the substrate side.

【0019】或いは、ホトレジスト表面から光退色剤を
浸透させて不均一濃度勾配を有する薄膜を作製してもよ
い。勿論、ラングミュアー・ブロジェット法を用いて濃
度の異なる層を累積することにより不均一濃度勾配を有
する薄膜を作製することも可能である。
Alternatively, a thin film having a non-uniform concentration gradient may be produced by infiltrating a photobleaching agent from the photoresist surface. Of course, it is also possible to produce a thin film having a non-uniform concentration gradient by accumulating layers having different concentrations using the Langmuir-Blodgett method.

【0020】不均一濃度勾配を有する薄膜中の深さ方向
の濃度分布はイオンミリングを伴った光電子分光法,2
次イオン質量分析法,全反射分光法などにより容易に直
接測定できる。
The concentration distribution in the depth direction in a thin film having a non-uniform concentration gradient is determined by photoelectron spectroscopy with ion milling, 2
It can be easily measured directly by secondary ion mass spectrometry, total reflection spectroscopy, etc.

【0021】光退色層に用いる色素として感光剤を用い
た場合でも、感光剤の深さ方向の濃度分布としては、表
面で高く、基板付近で低くなることが必要である。特
に、表面濃度は、基板付近の濃度の2倍以上であること
が、劣化した光形状を回復する上で、より望ましい。感
光剤を用いた場合には、露光と共に、感光剤濃度が減少
する。露光後の感光剤の深さ方向の濃度分布が一定にな
る露光量で露光するのが効率的である。また、この露光
量が、ホトレジストのパターン形成に必要な露光量と一
致していることが、特に効率的で良い。
Even when a photosensitive agent is used as a dye for the photobleaching layer, the concentration distribution of the photosensitive agent in the depth direction needs to be high at the surface and low near the substrate. In particular, it is more desirable that the surface concentration is at least twice the concentration near the substrate in order to recover the deteriorated light shape. When a photosensitive agent is used, the concentration of the photosensitive agent decreases with exposure. It is efficient to perform exposure at an exposure amount at which the density distribution of the photosensitive agent in the depth direction after exposure is constant. It is particularly efficient and efficient that the exposure amount matches the exposure amount required for forming a photoresist pattern.

【0022】以上、化学増幅系ホトレジストを例として
説明したが、使用するホトレジストとしては、光透過性
のよい感光性材料を有するホトレジストを使用すること
ができる。その様なホトレジストの中では、化学増幅系
ホトレジストのように高感度なホトレジストが特に好ま
しい。
Although the above description has been made with reference to a chemically amplified photoresist as an example, a photoresist having a light-transmitting photosensitive material can be used as the photoresist to be used. Among such photoresists, highly sensitive photoresists such as chemically amplified photoresists are particularly preferred.

【0023】本発明の構造では、大気中の塩基性成分に
よる汚染を防ぐ点からも化学増幅系ホトレジストの場合
には特に好ましい。
The structure of the present invention is particularly preferable in the case of a chemically amplified photoresist from the viewpoint of preventing contamination by basic components in the atmosphere.

【0024】[0024]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)t−ブチルオキシカルボニル基で部分保護
化したポリ(p−ヒドロキシベンジルメチルシルセスキ
オキサン)100重量部にジフェニルヨードトリフロロ
メタンスルフォン酸を7重量部の割合で混合し、得られ
た混合物を酢酸エチルセロソルブに溶解した。このレジ
スト溶液をシリコン基板上に回転塗布し、100℃で2
分間にわたって加熱,乾燥した。レジスト膜の膜厚は
0.8μm であった。この化学増幅型ホトレジスト薄膜
の上に、t−ブチルオキシカルボニル基で部分保護化し
たポリ(p−ヒドロキシベンジルメチルシルセスキオキ
サン)100重量部とナフトキノンジアジド10重量部
の溶液を回転塗布し、80℃で10分間にわたって加熱
乾燥した。薄膜全体の膜厚は1μmであった。
Example 1 100 parts by weight of poly (p-hydroxybenzylmethylsilsesquioxane) partially protected with a t-butyloxycarbonyl group was mixed with 7 parts by weight of diphenyliodotrifluoromethanesulfonic acid to obtain a mixture. The resulting mixture was dissolved in ethyl acetate cellosolve. This resist solution is spin-coated on a silicon substrate,
Heated and dried for minutes. The thickness of the resist film was 0.8 μm. A solution of 100 parts by weight of poly (p-hydroxybenzylmethylsilsesquioxane) partially protected with t-butyloxycarbonyl group and 10 parts by weight of naphthoquinonediazide was spin-coated on the chemically amplified photoresist thin film, Heat drying at 10 ° C. for 10 minutes. The thickness of the entire thin film was 1 μm.

【0025】この薄膜を全反射分光法及びイオンミリン
グを伴った光電子分光法で測定したところ、薄膜中のナ
フトキノンジアジドの濃度分布は空気側表面で高く、基
板側界面へ向けて連続的に単調減少していた。表面濃度
は基板濃度の2.5 倍であった。
When this thin film was measured by total reflection spectroscopy and photoelectron spectroscopy with ion milling, the concentration distribution of naphthoquinonediazide in the thin film was high on the air side surface, and continuously decreased monotonically toward the substrate side interface. Was. The surface concentration was 2.5 times the substrate concentration.

【0026】このレジストに波長248nmの紫外線を
40mJ/cm2 の露光量でパターン照射し、さらに、1
00℃で10分間にわたって加熱した。加熱完了後、レ
ジスト膜をテトラメチルアンモニウムヒドロキシド1.
2% 水溶液で60秒間現像した。パターン寸法が0.2
μm で、垂直な断面形状の良好なポジ型レジストパタ
ーンが形成されていた。
The resist is irradiated with a pattern of ultraviolet light having a wavelength of 248 nm at an exposure amount of 40 mJ / cm 2 , and
Heated at 00 ° C. for 10 minutes. After completion of the heating, the resist film was treated with tetramethyl ammonium hydroxide 1.
Developed with a 2% aqueous solution for 60 seconds. The pattern size is 0.2
In the case of μm, a good positive resist pattern having a vertical cross-sectional shape was formed.

【0027】露光後の薄膜を全反射分光法及びイオンミ
リングを伴った光電子分光法で測定したところ、薄膜中
のナフトキノンジアジドの濃度分布は深さ方向に5%以
下の増減しかなく、ほぼ均一であった。
When the thin film after exposure was measured by total reflection spectroscopy and photoelectron spectroscopy with ion milling, the concentration distribution of naphthoquinonediazide in the thin film was substantially uniform with only a 5% or less increase or decrease in the depth direction. there were.

【0028】(実施例2)t−ブチルオキシカルボニル
基で部分保護化したポリ(p−ヒドロキシベンジルメチ
ルシルセスキオキサン)100重量部にジフェニルヨー
ドトリフロロメタンスルフォン酸を7重量部の割合で混
合し、得られた混合物を酢酸エチルセロソルブに溶解し
た。このレジスト溶液をシリコン基板上に回転塗布し、
80℃で10分間にわたって加熱乾燥した。レジスト膜
の膜厚は1μmであった。
Example 2 Diphenyliodotrifluoromethanesulfonic acid was mixed with 100 parts by weight of poly (p-hydroxybenzylmethylsilsesquioxane) partially protected with t-butyloxycarbonyl group at a ratio of 7 parts by weight. The resulting mixture was dissolved in ethyl acetate cellosolve. This resist solution is spin-coated on a silicon substrate,
It was dried by heating at 80 ° C. for 10 minutes. The thickness of the resist film was 1 μm.

【0029】この化学増幅型ホトレジスト薄膜の上に、
ナフトキノンジアジド溶液を滴下し、10分間接触さ
せ、除去した。
On this chemically amplified photoresist thin film,
A naphthoquinonediazide solution was added dropwise, contacted for 10 minutes and removed.

【0030】この薄膜を全反射分光法及びイオンミリン
グを伴った光電子分光法で測定したところ、薄膜中のナ
フトキノンジアジドの濃度分布は空気側表面で高く、基
板側界面へ向けて連続的に単調減少していた。表面部の
濃度は基板部の濃度の2倍であった。
When this thin film was measured by total reflection spectroscopy and photoelectron spectroscopy with ion milling, the concentration distribution of naphthoquinonediazide in the thin film was high on the air side surface and decreased monotonically continuously toward the substrate side interface. Was. The concentration at the surface was twice as high as that at the substrate.

【0031】このレジストに波長248nmの紫外線を
30mJ/cm2 の露光量でパターン照射し、さらに、1
00℃で10分間にわたって加熱した。加熱完了後、レ
ジスト膜をテトラメチルアンモニウムヒドロキシド1.
2% 水溶液で60秒間現像した。パターン寸法が0.2
μm で、良好な断面形状のポジ型レジストパターンが
形成されていた。
The resist was irradiated with a pattern of ultraviolet light having a wavelength of 248 nm at an exposure amount of 30 mJ / cm 2 ,
Heated at 00 ° C. for 10 minutes. After completion of the heating, the resist film was treated with tetramethyl ammonium hydroxide 1.
Developed with a 2% aqueous solution for 60 seconds. The pattern size is 0.2
μm, a positive resist pattern having a good cross-sectional shape was formed.

【0032】(実施例3)前記実施例1に記載の手法を
繰り返した。但し、本実施例の場合、ホトレジストの膜
厚0.8μmを0.4μmに変えて、且つ、露光波長を2
48nmから193nmに変えて実施した。その結果、0.
2μm の大きさの鮮明なポジ型レジストパターンが形
成されていた。露光量は30mJ/cm2 であった。
Example 3 The procedure described in Example 1 was repeated. However, in the case of this embodiment, the photoresist film thickness was changed from 0.8 μm to 0.4 μm, and the exposure wavelength was changed to 2 μm.
The test was performed by changing from 48 nm to 193 nm. As a result,
A clear positive resist pattern having a size of 2 μm was formed. The exposure amount was 30 mJ / cm 2 .

【0033】[0033]

【発明の効果】本発明により、短波長の光を用いた露光
で高解像度の微細パターンを形成することができる。す
なわち、劣化した光形状を回復して良好な露光形状にし
て露光ができるので微細パターンを形成できる。これに
より従来より微細な加工が実現でき、半導体集積回路等
の高集積化が容易になる。
According to the present invention, a high-resolution fine pattern can be formed by exposure using light having a short wavelength. In other words, a fine pattern can be formed since the deteriorated light shape can be recovered and a good exposure shape can be obtained for exposure. As a result, finer processing can be realized than before, and high integration of a semiconductor integrated circuit or the like can be easily performed.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】感光性組成物からなる薄膜が厚さ方向に不
均一な濃度分布を有し、且つ、露光の光の波長において
光退色することにより露光の光強度を制御することを特
徴とするパターン形成方法。
1. A thin film made of a photosensitive composition has a non-uniform density distribution in a thickness direction, and the light intensity of exposure is controlled by photobleaching at the wavelength of exposure light. Pattern forming method.
【請求項2】請求項1に記載のパターン形成方法におい
て光退色性物質が感光剤であることを特徴とするパター
ン形成方法。
2. The pattern forming method according to claim 1, wherein the photobleachable substance is a photosensitive agent.
【請求項3】請求項1または請求項2に記載のパターン
形成方法において、感光性組成物からなる薄膜が化学増
幅系ホトレジストであることを特徴とするパターン形成
方法。
3. The pattern forming method according to claim 1, wherein the thin film made of the photosensitive composition is a chemically amplified photoresist.
【請求項4】請求項1から請求項3のいずれかに記載の
パターン形成方法において、露光の光強度を制御する光
退色性物質の濃度分布が、膜の上部で大きく、膜の基板
部に近づくにつれて減少することを特徴とするパターン
形成方法。
4. A pattern forming method according to claim 1, wherein the concentration distribution of the photobleaching substance for controlling the light intensity of the exposure is large at the upper part of the film, and the concentration of the photobleaching substance is large in the substrate part of the film. A pattern forming method characterized by decreasing as approaching.
【請求項5】請求項4に記載のパターン形成方法におい
て、露光の光強度を制御する光退色性物質の膜の上部に
おける濃度が、膜の基板部における濃度の2倍以上であ
ることを特徴とするパターン形成方法。
5. The pattern forming method according to claim 4, wherein the concentration of the photobleachable substance for controlling the light intensity of exposure at the upper portion of the film is at least twice the concentration at the substrate portion of the film. Pattern forming method.
【請求項6】請求項4に記載のパターン形成方法におい
て、露光後に光退色性物質の未退色状態の物質濃度分布
が均一となる露光量で露光することを特徴とするパター
ン形成方法。
6. A pattern forming method according to claim 4, wherein after the exposure, the light bleaching substance is exposed at an exposure amount such that a substance concentration distribution in an unbleached state becomes uniform.
JP9108574A 1997-04-25 1997-04-25 Pattern forming method Pending JPH10301293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9108574A JPH10301293A (en) 1997-04-25 1997-04-25 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9108574A JPH10301293A (en) 1997-04-25 1997-04-25 Pattern forming method

Publications (1)

Publication Number Publication Date
JPH10301293A true JPH10301293A (en) 1998-11-13

Family

ID=14488276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9108574A Pending JPH10301293A (en) 1997-04-25 1997-04-25 Pattern forming method

Country Status (1)

Country Link
JP (1) JPH10301293A (en)

Similar Documents

Publication Publication Date Title
JP4146755B2 (en) Pattern formation method
JP4084710B2 (en) Pattern formation method
US8383322B2 (en) Immersion lithography watermark reduction
US5635333A (en) Antireflective coating process
JPS6358367B2 (en)
JPH04305915A (en) Adhesion type exposure device
Mimura et al. Deep-UV photolithography
US5139918A (en) Photoresist system and photoetching process employing an I-line peak light source
US7022452B2 (en) Contrast enhanced photolithography
KR20040094706A (en) Self-aligned pattern formation using dual wavelengths
JPH0664341B2 (en) Manufacturing method of semiconductor device
JP2543195B2 (en) Method of forming fine resist pattern
JPH05232684A (en) Manufacture of phase-shifted lithography mask
US6420101B1 (en) Method of reducing post-development defects in and around openings formed in photoresist by use of non-patterned exposure
US4804614A (en) Photoresist process of fabricating microelectronic circuits using water processable diazonium compound containing contrast enhancement layer
JPS59124134A (en) Method of forming resist mask
EP0331494A2 (en) Photoresist process
JPH10301293A (en) Pattern forming method
EP0282201A2 (en) Pattern forming method
JP2553545B2 (en) Pattern forming method
JPH01231039A (en) Material for photodecolorizable layer and method for forming pattern by using same
JP2588192B2 (en) Pattern forming method
JP2524993B2 (en) Method of forming resist pattern
KR19980028359A (en) Manufacturing method of fine pattern of semiconductor device
JP2653072B2 (en) Pattern formation method