JPH10300692A - Method and device for measuring assembly organization of metal material - Google Patents

Method and device for measuring assembly organization of metal material

Info

Publication number
JPH10300692A
JPH10300692A JP9117499A JP11749997A JPH10300692A JP H10300692 A JPH10300692 A JP H10300692A JP 9117499 A JP9117499 A JP 9117499A JP 11749997 A JP11749997 A JP 11749997A JP H10300692 A JPH10300692 A JP H10300692A
Authority
JP
Japan
Prior art keywords
crystal orientation
layer
odf
metal material
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9117499A
Other languages
Japanese (ja)
Inventor
Chizuko Maeda
千寿子 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9117499A priority Critical patent/JPH10300692A/en
Publication of JPH10300692A publication Critical patent/JPH10300692A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure an assembly organization in the direction of a plate thickness accurately and quickly by scanning a plurality of layers that are in parallel with the surface of a metal material with electron beams and calculating the crystal orientation distribution (ODF) strength in a specific orientation from crystal orientation data for each layer being obtained from the diffraction pattern of reflection electron beams. SOLUTION: A sample 1 is cut from a metal material S and is divided into a plurality of layers 21-2N that are in parallel with a rolled surface over the measurement depth of the assembly organization of the metal material S. Then, while the sample 1 is moved automatically at a constant interval, electron beams are applied to an electron beam irradiation point 4 within a specific range for each of the layers 21-2N, an electron beam rear scattering pattern(EBSP) is detected by a two-dimensional screen detector that is installed in a reflection electronic diffraction cone being generated at each irradiation point 4. Then, the EBSP is analyzed for obtaining the crystal orientation of each crystal particle and the crystal orientation file for each layer is created, thus specifying an ODF function at an arbitrary position from the surface of the metal material S. Then, ODF strength at a specific orientation is calculated by the ODF function.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料の集合組
織を測定する方法および装置に係り、特に鉄鋼などの金
属材料の集合組織の板厚方向に亘る変化を精度よく、か
つ迅速に測定するための方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a texture of a metal material, and more particularly to a method for accurately and quickly measuring a change in a texture of a metal material such as steel in the thickness direction. And an apparatus for the same.

【0002】[0002]

【従来の技術】金属材料、特に鉄鋼の集合組織は鉄鋼材
料の加工性や磁気特性に大きな影響を及ぼすので、その
制御は品質向上のために重要である。鉄鋼材料の場合、
集合組織の起源はスラブ組織にあり、スラブでは{10
0}面がスラブ表面と平行となるように発達した柱状晶
が表面近傍に、比較的ランダムな方位を持った等軸晶が
中心部に発達していたものが、圧延時にかかる剪断応力
によって変化し、最終製品の集合組織が形作られる。そ
の際、圧延時の剪断応力が板厚方向にわたって一様でな
いため、集合組織が板厚方向に複雑に変化する。そのた
め、最終製品のみならず、製造過程においても集合組織
をチェックし、適正に制御することが必要である。たと
えば、一方向性珪素鋼板では、集合組織の板厚方向変化
が積極的に製品の特性向上に利用され、磁気特性に大き
な影響をおよぼす二次再結晶粒の(110)[001]
方位への集積度の向上のためには、最終焼鈍前の冷延板
において板厚1/10〜1/5の部分で{111}〈1
12〉方位の集合組織を発達させるように制御されてい
る。一方、深絞り用の冷延鋼板においては塑性歪み比
(平均r値、ランクフォード値)を向上させるために
は、{111}方位の集合組織を板厚方向に均一に生成
させなければならず、またフェライト系ステンレス鋼板
のリジング防止のためには、(110)[001]方位
の再結晶組織を鋼板表面下深くまで発達させ、中心層で
の{100}〈011〉方位の集合組織の発達を抑制す
ることが重要である。
2. Description of the Related Art Since the texture of a metal material, particularly steel, has a great influence on the workability and magnetic properties of the steel material, its control is important for quality improvement. For steel materials,
The origin of the texture is in the slab structure, and in slabs, $ 10
Columnar crystals developed so that the 0 ° plane was parallel to the slab surface, and equiaxed crystals with relatively random orientations developed in the center near the surface, but changed due to shear stress applied during rolling. The final product texture is formed. At that time, since the shear stress at the time of rolling is not uniform in the thickness direction, the texture changes in a complicated manner in the thickness direction. Therefore, it is necessary to check and properly control the texture not only in the final product but also in the manufacturing process. For example, in a unidirectional silicon steel sheet, the change in the thickness direction of the texture is positively utilized for improving the properties of the product, and the secondary recrystallized grains (110) [001] which greatly affect the magnetic properties are obtained.
In order to improve the degree of integration in the orientation, {111} <1 in the portion of the sheet thickness of 1/10 to 1/5 in the cold-rolled sheet before final annealing.
12> The texture is controlled to develop the texture of the orientation. On the other hand, in the cold-rolled steel sheet for deep drawing, in order to improve the plastic strain ratio (average r value, Rankford value), a {111} orientation texture must be uniformly generated in the thickness direction. In order to prevent ridging of ferritic stainless steel sheets, a (110) [001] recrystallized structure is developed deep under the steel sheet surface, and a {100} <011> oriented texture is developed in the central layer. It is important to control

【0003】板厚方向の集合組織を制御するためには、
板厚方向の集合組織変化を簡便かつ精度よく測定する手
段が不可欠である。そのため、従来からX線回折法で反
転極点図強度(インバース強度)または正極点図から結
晶方位分布関数(以下ODF関数という)を解析する方
法が採られているが、板厚方向の変化を測定するには、
試料を表面から板厚方向に段削りした複数枚の試料を測
定するか、あるいは特定の板面上の位置において集合組
織の測定と研削を逐次繰り返すという煩雑な作業が必要
であり、研削、測定の繰り返しに時間が掛かり、能率的
でなかった。
In order to control the texture in the thickness direction,
A means for simply and accurately measuring the texture change in the thickness direction is indispensable. Therefore, conventionally, a method of analyzing the crystal orientation distribution function (hereinafter referred to as ODF function) from the inverted pole figure intensity (inverse intensity) or the positive pole figure by the X-ray diffraction method has been adopted, but the change in the plate thickness direction is measured. to do so,
It is necessary to measure multiple specimens by cutting the specimen in the thickness direction from the surface, or to repeat the measurement and grinding of the texture at a specific position on the plate surface. The repetition took time and was inefficient.

【0004】かかる煩雑な作業を行うことなく非破壊で
板厚方向にわたる集合組織の変化を測定するするため
に、本発明者らは、X線はその波長が短くなるほど試料
への侵入深さが深くなることに着目し、特開平5−19
99号公報において半導体検出器と多重波高分析装置を
具備したエネルギー分散型X線回折装置を用いて対称反
射スキャンを行い、X線侵入深さが順次変化した複数の
回折パターンについて表面から順次差分解析を行って、
特定深さでのインバース強度を求めるという方法を提案
した。一方、特開平7−63709号公報では、通常の
角度分散型のX線回折装置に入射側と受光側にそれぞれ
X線を平行とするようなソーラースリットおよびスリッ
ト位置がX線光軸に対して垂直方向にスキャンする可動
スリットを取付け、スリット位置を連続的に変化させな
がら回折パターンを測定することにより、インバース強
度の板厚方向変化を測定するという方法も開示されてい
る。しかしながら、これらの方法はいずれも測定そのも
のは非常に簡便であるものの、測定可能な板厚深さがX
線侵入深さである数十μmに制限され、しかも試料面か
らの深さが深いほど、指数関数的に回折X線の強度が減
衰するため、測定誤差が急激に増大するという根本的な
問題があった。その他、板厚方向の集合組織を簡便に評
価する手段として、試料表面のエッチピットから推定す
る方法もあるが、結晶方位を大まかに推定することがで
きるにすぎず、定量的な評価すには不向きである。
In order to measure the change of texture in the thickness direction in a non-destructive manner without performing such a complicated operation, the present inventors have proposed that the penetration depth of the X-ray into the sample decreases as the wavelength becomes shorter. Paying attention to becoming deeper,
In Japanese Patent Publication No. 99, a symmetrical reflection scan is performed using an energy dispersive X-ray diffractometer equipped with a semiconductor detector and a multi-wave height analyzer, and a differential analysis is sequentially performed on a plurality of diffraction patterns whose X-ray penetration depths are sequentially changed from the surface. Go to
A method of finding the inverse strength at a specific depth was proposed. On the other hand, in Japanese Patent Application Laid-Open No. 7-63709, a conventional angle-dispersion type X-ray diffractometer has a solar slit and a slit position with respect to the X-ray optical axis such that the X-rays are parallel to the incident side and the light receiving side, respectively. There is also disclosed a method in which a movable slit for scanning in the vertical direction is attached, and a diffraction pattern is measured while continuously changing the slit position, thereby measuring a change in the inverse intensity in the thickness direction. However, in all of these methods, although the measurement itself is very simple, the measurable plate thickness depth is X
The fundamental problem is that the measurement depth is limited to several tens of μm, which is the penetration depth of the ray, and the deeper the depth from the sample surface, the more the intensity of the diffracted X-rays decays exponentially. was there. In addition, as a simple means to evaluate the texture in the thickness direction, there is a method of estimating from the etch pits on the sample surface.However, it is only possible to roughly estimate the crystal orientation. Not suitable.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術の現状に鑑み、鋼材などの金属材料の集合組織を表面
からの垂直方向、たとえば板厚方向の変化を含め、精度
良く、かつ迅速に測定する方法及び装置を提案すること
を目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned state of the art, the present invention makes it possible to accurately and rapidly change the texture of a metal material such as steel, including changes in the direction perpendicular to the surface, for example, in the thickness direction. It is an object of the present invention to propose a method and an apparatus for performing measurement.

【0006】[0006]

【課題を解決するための手段】図2に示すように、電子
線11に対して45〜85゜傾斜させた試料1の表面に
電子線11を照射すると、二次電子とともに電子線照射
位置を中心に半径数十nm〜0.1μm程度の領域から
大量の反射電子が発生し、この反射電子が試料内を通過
する際に試料の結晶格子により回折された反射電子回折
円錐12が形成される。この回折円錐12中に反射電子
の二次元スクリーン検出器13を置く。この検出器上に
は電子線後方散乱図形(EBSP)と呼ばれる回折図形
が得られる。この回折図形は透過電子顕微鏡で観察され
るキクチパターンや走査電子顕微鏡で観察される電子線
チャンネリングパターンと同様のものであるが、この図
形(パターン)を公知の方法、たとえば古君らが鉄と
鋼、70(1984)S565で「電子線チャンネリン
グパターンからの結晶方位解析法」として述べているよ
うな方法、すなわち互いに交差する任意の三組の(hk
l)線ペアを画像処理装置で二値化し、交差する(hk
l)線の交差角度と交点座標から結晶方位を決定する方
法、を用いると電子線照射位置における結晶粒の方位が
測定できる。本発明者はかかる測定を金属材料の断面上
において材料の表面から任意の深さの層で行えば、その
深さでの結晶方位を決定できること、および、その深さ
で一定範囲に亘って走査しながら多数の結晶粒について
方位を測定し、その結果をS.I.WrightらがJ
ournal of Computer−Assist
ed Microscopy,5(1993)p207
で述べている方法で処理すればODF関数が決定できる
ことを知見し、本発明を完成させたものである。
As shown in FIG. 2, when the electron beam 11 is irradiated on the surface of the sample 1 inclined at 45 to 85 ° with respect to the electron beam 11, the electron beam irradiation position is changed together with the secondary electrons. A large amount of backscattered electrons are generated from a region having a radius of about several tens nm to about 0.1 μm at the center, and when the backscattered electrons pass through the inside of the sample, a backscattered electron diffraction cone 12 diffracted by the crystal lattice of the sample is formed. . A two-dimensional screen detector 13 for reflected electrons is placed in the diffraction cone 12. A diffraction pattern called an electron beam backscattering pattern (EBSP) is obtained on this detector. This diffraction pattern is similar to a kick pattern observed with a transmission electron microscope or an electron beam channeling pattern observed with a scanning electron microscope. And Steel, 70 (1984) S565, "Method for Analyzing Crystal Orientation from Electron Beam Channeling Pattern", ie, any three sets of (hk
l) The line pair is binarized by the image processing device and intersected (hk
By using 1) a method of determining the crystal orientation from the intersection angle of the lines and the coordinates of the intersection, the orientation of the crystal grains at the electron beam irradiation position can be measured. The inventor of the present invention can determine the crystal orientation at that depth by performing such a measurement on a section of the metal material in a layer having an arbitrary depth from the surface of the material, and scan the crystal over a certain range at that depth. The orientation was measured for a large number of crystal grains while performing the measurement. I. Wright et al.
own of computer-assist
ed Microscopy, 5 (1993) p207
It has been found that the ODF function can be determined by performing the processing described in the above section, and the present invention has been completed.

【0007】本発明は、したがって、金属材料の集合組
織の測定方法として、金属材料の断面を、集合組織の測
定深さに亘って素材表面と平行な複数の層に区分し、前
記区分された各層を電子線を照射しながら走査し、反射
電子線が回折することによって形成される回折パターン
を走査線上に存在する結晶粒について逐次解析して一連
の結晶方位データを各層毎に得、前記一連のデータを前
記走査を行った層に対応させて蓄積して層別結晶方位フ
ァイルを作成し、前記層別結晶方位データを前記層別又
は複数層に亘って解析してODF関数を特定し、前記O
DF関数から特定方位のODF強度を前記層別又は複数
層に亘って算出するものであり、また、その測定装置を
金属材料の断面に対して電子線を照射しながら走査する
XY移動ステージを具備した微小領域結晶方位解析装置
と、走査によって得た結晶方位解析データを走査線に対
応して蓄積する複数個の層別結晶方位ファイルと、前記
層別結晶方位ファイルに蓄積された結晶方位データを解
析してODF関数を特定するODF解析装置と、前記O
DF関数に基づき特定方位のODF強度を算出する特定
方位ODF強度算出装置と、前記特定方位ODF強度を
走査線位置に対応させて表示する表示部からなるものと
するものである。
Accordingly, the present invention provides a method for measuring the texture of a metal material, in which the cross section of the metal material is divided into a plurality of layers parallel to the surface of the material over the measurement depth of the texture. Each layer is scanned while being irradiated with an electron beam, and a diffraction pattern formed by diffracting a reflected electron beam is sequentially analyzed for crystal grains present on the scanning line to obtain a series of crystal orientation data for each layer. The data of the above is stored in correspondence with the layer subjected to the scanning, and a crystal orientation file for each layer is created, and the crystal orientation data for each layer is analyzed over the layer or a plurality of layers to specify an ODF function, Said O
The DF function is used to calculate the ODF intensity in a specific direction for each of the layers or for a plurality of layers from the DF function. A micro-domain crystal orientation analysis device, a plurality of layer-by-layer crystal orientation files that accumulate crystal orientation analysis data obtained by scanning corresponding to the scanning lines, and crystal orientation data stored in the layer-by-layer crystal orientation file An ODF analyzer for analyzing and specifying an ODF function;
The apparatus comprises a specific azimuth ODF intensity calculating device for calculating the ODF intensity in a specific azimuth based on the DF function, and a display unit for displaying the specific azimuth ODF intensity in correspondence with the scanning line position.

【0008】[0008]

【発明の実施の形態】以下本発明を具体的に説明する。
図1(a)に示すように、金属材料Sから試料1が切り
出されるが、一般に圧延方向(RD)と垂直に交差する
断面を測定に供する電子線照射面2とする。その断面で
は、金属を圧延する際に生じた圧延方向に平行な繊維組
織による集合組織の影響を受けず、正しい測定結果を得
ることができるからである。しかし、必要ならば、圧延
方向と平行な面を照射面とすることもできる。上記照射
面は図1(b)に示すように集合組織の測定深さに亘っ
て複数の任意の数Nの層(21、22、23、・・・2
N)に区分する。区分は金属材料、たとえば鋼板の表面
(一般に圧延面)と平行な層を形成するように行い、材
料表面からの深さごとに電子線走査ができるようにす
る。この場合において集合組織の測定深さおよび測定層
の数、N、は測定さるべき材料の要求によって決定され
る。しかし、層間の間隔があまりに細かすぎると、結晶
粒度との関係もあるが、重複測定を行う結果となり、作
業効率を害するので、1μm以上の間隔をおくのがよ
い。なお、上記測定層は製品形状が線材であるときに
は、その表面形状に沿って円弧状とすることも可能であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below.
As shown in FIG. 1A, a sample 1 is cut out of a metal material S. Generally, a cross section perpendicular to the rolling direction (RD) is defined as an electron beam irradiation surface 2 to be used for measurement. This is because, in the cross section, a correct measurement result can be obtained without being affected by the texture caused by the fiber structure parallel to the rolling direction generated when the metal is rolled. However, if necessary, a plane parallel to the rolling direction can be used as the irradiation plane. As shown in FIG. 1B, the irradiation surface has a plurality of arbitrary number N of layers (21, 22, 23,..., 2) over the measurement depth of the texture.
N). The division is performed so as to form a layer parallel to the surface (generally, a rolling surface) of a metal material, for example, a steel plate, so that an electron beam can be scanned at each depth from the material surface. In this case, the measuring depth of the texture and the number of measuring layers, N, are determined by the requirements of the material to be measured. However, if the distance between the layers is too small, there is a relationship with the crystal grain size, but this results in duplicate measurement, which impairs the work efficiency. Therefore, it is preferable to provide an interval of 1 μm or more. When the product shape is a wire, the measurement layer can be formed in an arc shape along the surface shape.

【0009】試料1の照射面2に対して上記各層ごとに
電子線走査を行い、走査線3上に存在する結晶粒につい
て逐次結晶粒方位の測定が行われる。すなわち、図2に
示すように試料を一定間隔でX−Y方向に自動的に移動
できるX−Y試料ステージ14に試料を固定し、これを
ステージコントロールユニット15により移動させなが
ら、前記各層ごとに所定範囲内の電子線照射点4に対し
て電子線を照射する。走査範囲は板面(圧延面)に沿っ
た平均粒径の100倍以上の範囲とするのがよい。この
範囲があまりに少いと後の級数展開法等によるODF関
数の解析において、従来のX線解析法で板面測定した場
合と同等レベルの分解能を確保できないからであり、好
ましくは600〜800個程度の結晶粒を包含する範囲
とするのがよい。
Electron beam scanning is performed on the irradiation surface 2 of the sample 1 for each of the above layers, and the crystal grains existing on the scanning lines 3 are sequentially measured for crystal grain orientation. That is, as shown in FIG. 2, the sample is fixed on an XY sample stage 14 which can automatically move the sample at regular intervals in the XY directions, and the sample is moved by the stage control unit 15 for each of the layers. An electron beam is irradiated to an electron beam irradiation point 4 within a predetermined range. The scanning range is preferably set to a range of 100 times or more the average particle size along the plate surface (rolled surface). If the range is too small, in the subsequent analysis of the ODF function by the series expansion method or the like, it is not possible to secure the same level of resolution as in the case where the plate surface is measured by the conventional X-ray analysis method. It is preferable to set the range to include the crystal grains.

【0010】電子線照射は図2(b)に示すように上記
走査線3上において一定間隔ごとに行うのがよい。その
間隔は結晶粒の大きさ、必要精度などによって定められ
るが、その層の平均結晶粒径以下とし、かつ1μm以上
とするのがよい。平均結晶粒径以下としたのは、これ以
上粗い間隔で結晶方位測定を行うと方位測定にかからな
い結晶粒が増加し、ODF精度が低下するからであり、
最小ピッチを1μm以上としたのは、これ以上細かい間
隔で結晶方位測定を行っても時間を要するだけでODF
関数の解析精度向上につながらないからである。各電子
線照射点4において発生する反射電子回折円錐12は二
次元スクリーン検出器13を通すことによってEBSP
となり、これを検出器コントロールユニット16、イメ
ージデジタイザー17によって制御される画像解析コン
ピュータ18によって解析することにより、各照射点4
における結晶粒の結晶方位が算出される。
The electron beam irradiation is preferably performed at regular intervals on the scanning line 3 as shown in FIG. The spacing is determined by the size of the crystal grains, the required precision, and the like, but is preferably equal to or less than the average crystal grain size of the layer and equal to or more than 1 μm. The reason why the average crystal grain size is set to be equal to or smaller than that is that if the crystal orientation measurement is performed at a coarser interval than this, crystal grains that do not affect the orientation measurement increase, and the ODF accuracy decreases,
The reason why the minimum pitch is set to 1 μm or more is that even if the crystal orientation is measured at finer intervals than this, it takes a long time, but the ODF is required.
This is because it does not lead to the improvement of the function analysis accuracy. The reflected electron diffraction cone 12 generated at each electron beam irradiation point 4 is passed through a two-dimensional screen detector 13 to form an EBSP.
This is analyzed by an image analysis computer 18 controlled by a detector control unit 16 and an image digitizer 17, so that each irradiation point 4
Is calculated.

【0011】上記測定は、各層(21、22、・・・2
N)ごとに各測定点(照射点4)を追って逐次行われる
ので、走査範囲に亘る電子線照射点4上に存在する結晶
粒についての一連の結晶方位データが得られることにな
る。上記一連の測定データは、走査を行った層と対応さ
せてデータ解析用コンピュータ30の記憶装置に蓄積
し、層別結晶方位ファイル32を作成する。例を挙げれ
ば、素材の表面直下の層を逐次方位解析して得られる一
連の結晶方位データ、すなわち第1層目の測定結果を第
1層結晶方位ファイルとして記憶させ、次に板厚方向に
所定深さだけ入った位置の層の測定結果を第2層結晶方
位ファイルとして記憶させるのである。この作業を繰り
返して、第N層までの結晶方位ファイルを作成する。
The above measurement was performed for each layer (21, 22,... 2).
Since each measurement point (irradiation point 4) is performed successively for each N), a series of crystal orientation data on crystal grains existing on the electron beam irradiation point 4 over the scanning range can be obtained. The series of measurement data is stored in the storage device of the data analysis computer 30 in association with the scanned layer, and a layer-by-layer crystal orientation file 32 is created. For example, a series of crystal orientation data obtained by sequentially analyzing the orientation of a layer immediately below the surface of the material, that is, the measurement result of the first layer is stored as a first layer crystal orientation file, and then stored in the thickness direction. The measurement result of the layer at a position at a predetermined depth is stored as a second layer crystal orientation file. This operation is repeated to create a crystal orientation file up to the Nth layer.

【0012】上記によって板厚方向に所望の範囲にわた
る測定を繰り返して得られた第1層から第N層分のN個
のファイルに記憶されているデータは解析装置によって
解析され、ODF関数が特定される。このODF関数は
上記層別のファイル個々に作成してもよく、また、任意
の表面深さ範囲のファイルを連結して作成した積算ファ
イルについてその深さ範囲のODF関数として作成して
もよい。後者の場合は連結したファイルの平均深さ位置
での解析結果として評価されることになる。
The data stored in the N files for the first to Nth layers obtained by repeating the measurement over the desired range in the plate thickness direction as described above is analyzed by the analyzer, and the ODF function is specified. Is done. The ODF function may be created for each of the above-described files for each layer, or may be created as an ODF function for an integrated file created by connecting files having an arbitrary surface depth range. In the latter case, evaluation is performed as an analysis result at the average depth position of the connected files.

【0013】上記により素材表面から任意の位置におけ
るODF関数が特定されたので、次いでこのODF関数
を用いて特定方位でのODF強度を算出する。算出は上
記素材表面から任意の位置におけるODF関数に対して
特定方位をオイラー角によって指定することによって行
う。その結果を板厚方向に対してプロットすれば、板厚
方向に亘る特定方位の結晶粒の分布状況を知ることがで
きる。たとえば、第1層目から第N層目まで順次プロッ
トすれば、板厚方向の集合組織の変化となるのである。
Since the ODF function at an arbitrary position from the surface of the material has been specified as described above, the ODF intensity in a specific direction is calculated using the ODF function. The calculation is performed by designating a specific direction by an Euler angle with respect to the ODF function at an arbitrary position from the material surface. If the results are plotted in the plate thickness direction, it is possible to know the distribution state of crystal grains in a specific orientation in the plate thickness direction. For example, if the plots are sequentially plotted from the first layer to the Nth layer, the texture changes in the thickness direction.

【0014】本発明の金属材料の集合組織の測定に当っ
ては、金属材料の断面に対して電子線を照射しながら走
査するXY移動ステージを具備する微小領域結晶方位解
析装置10を用い、該装置によって測定される一連のデ
ータを蓄積し、解析するコンピュータ30を利用するの
がよい。結晶方位測定には鉄鋼の場合、EBSPを用い
る。鉄鋼材料の再結晶組織は平均粒径が5μm以下と微
細である場合があり、ビーム収束最小径が10μmと大
きいX線回折法では無論のこと、電子線チャンネリング
パターンやコッセルパターンでも最小測定領域の直径が
5μmと結晶粒径に比べて大きく、方位解析ができない
場合があるからである。これに対し、EBSPでは前記
電子線のチャンネルパターンやコッセルパターンと同一
の試料電流で最小測定領域の直径が0.5〜1μmとな
り、試料電流をやや低めに設定すれば、結晶方位測定限
度を0.1μmの領域まで絞ることができ、微細組織を
有する鉄鋼材料の再結晶組織の結晶方位解析が可能であ
る。ビームスポットは、直径1μm以下とするのが好ま
しく、ビーム電流を1×10-9A以下で使用すれば、粒
径1μmの結晶粒の方位測定が可能であることが実測の
結果確認されている。
In the measurement of the texture of the metal material of the present invention, a micro-domain crystal orientation analyzer 10 having an XY movement stage that scans a cross section of the metal material while irradiating it with an electron beam is used. A computer 30 that accumulates and analyzes a series of data measured by the device may be used. In the case of steel, EBSP is used for crystal orientation measurement. The recrystallized structure of steel materials may be as fine as 5 μm or less in average grain size. The minimum beam convergence diameter is as large as 10 μm, which is of course the case for X-ray diffraction, and the minimum measurement area even for electron channeling patterns and Kossel patterns. Is 5 μm, which is larger than the crystal grain size, and orientation analysis cannot be performed in some cases. On the other hand, in the EBSP, the diameter of the minimum measurement area is 0.5 to 1 μm at the same sample current as the channel pattern or Kossel pattern of the electron beam, and if the sample current is set slightly lower, the crystal orientation measurement limit becomes 0. .1 μm, and the crystal orientation of the recrystallized structure of a steel material having a fine structure can be analyzed. The beam spot preferably has a diameter of 1 μm or less, and it has been confirmed by actual measurement that if the beam current is used at 1 × 10 −9 A or less, it is possible to measure the orientation of crystal grains having a particle size of 1 μm. .

【0015】上記微小領域結晶方位解析装置10による
測定結果を解析するコンピュータ30は、上記装置の走
査の結果得られる一連の方位解析データを走査を行った
層に対応して蓄積する複数の層別方位ファイル32を持
つ。この層別方位ファイル32は、走査線上を電子線照
射することによって得られる方位解析データを逐次蓄積
し、素材試料表面の同一平面上に対応するデータを、た
とえば同一番地に関連づけて収容することによって一定
範囲の深さ方向に亘って積算可能なように構成される。
A computer 30 for analyzing the measurement results obtained by the micro-domain crystal orientation analysis apparatus 10 stores a plurality of orientation analysis data obtained as a result of scanning by the above-described apparatus corresponding to the scanned layers. It has an orientation file 32. The stratified orientation file 32 is obtained by sequentially accumulating orientation analysis data obtained by irradiating a scanning line with an electron beam, and storing data corresponding to the same plane on the surface of the material sample, for example, in association with the same address. It is configured such that integration can be performed over a certain range of depth directions.

【0016】前記ファイル32に蓄積されたデータを解
析しODF強度を算出するため、ODF関数解析装置3
3、ODF強度算出装置34を有する。ODF解析装置
33には前記層別結晶方位ファイル32に蓄積されたデ
ータを電子線走査の行われた層(21、22、・・・2
N)ごとに解析するプログラムを有する。必要によって
は、複数のファイルを積算して解析することも可能であ
り、解析結果を記憶するODF関数ファイル36を備え
ることも可能である。ODF強度算出装置34は、特定
方位の入力を受けて各測定面における特定方位の強度の
算出を可能にする計算装置である。表示部35は上記計
算結果を受けて、特定方位のODF強度を試料の圧延面
からの距離に対応させて表示するもので、たとえば、C
RT等である。なお、データ解析用コンピュータ30は
入力部37、出力部38を有する。
The ODF function analyzer 3 analyzes the data stored in the file 32 to calculate the ODF intensity.
3. It has an ODF intensity calculator 34. The ODF analyzer 33 stores the data stored in the layer-by-layer crystal orientation file 32 into the layers (21, 22,.
N) Each program has a program for analyzing the data. If necessary, a plurality of files can be integrated for analysis, and an ODF function file 36 for storing analysis results can be provided. The ODF intensity calculation device 34 is a calculation device that receives an input of a specific azimuth and calculates the intensity of a specific azimuth on each measurement surface. The display unit 35 receives the above calculation result and displays the ODF intensity in a specific direction in correspondence with the distance from the rolling surface of the sample.
RT and the like. The data analysis computer 30 has an input unit 37 and an output unit 38.

【0017】[0017]

【実施例】板厚1mm、平均粒径20μmの鋼板の板厚
方向集合組織の測定に、従来の段削り法では、表面から
100μmステップで中心層まで計6ステップの測定に
かかる時間が5分×6=30分、段削り5回に要する時
間が30分×5=150分で合計180分を要してい
た。本発明の方法を用いると、測定範囲は20μm×1
00でこれを5μmステップで方位測定すれば十分であ
り、測定点1点あたりの方位測定と解析に要する時間は
1.5秒であり、板厚方向に同様に6ステップ測定する
として、合計1.5秒×2000/5×6=60分とい
う従来法の1/3の短時間で板厚方向の集合組織測定が
可能であった。
EXAMPLE For measuring the texture in the thickness direction of a steel sheet having a thickness of 1 mm and an average grain size of 20 μm, the conventional step-cutting method requires 5 minutes in a total of 6 steps from the surface to the central layer in 100 μm steps. × 6 = 30 minutes, the time required for 5 times of step cutting was 30 minutes × 5 = 150 minutes, which required a total of 180 minutes. Using the method of the present invention, the measurement range is 20 μm × 1
It is sufficient to measure the orientation in 5 μm steps at 00, and the time required for the orientation measurement and analysis per measurement point is 1.5 seconds. It was possible to measure the texture in the sheet thickness direction in a short time of 1/3 × 2000/5 × 6 = 60 minutes, which is 1/3 of the conventional method.

【0018】[0018]

【発明の効果】以上説明したとおり、本発明によれば、
簡便に金属材料の板厚方向の集合組織変化を精度よく迅
速に測定できるという優れた効果が得られる。
As described above, according to the present invention,
An excellent effect is obtained in that the texture change of the metal material in the thickness direction can be easily and accurately measured quickly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方位測定に供する素材と試料の関係を
示す見取り図である。(a)は金属材料と試料、電子線
照射面との関係を示し、(b)は電子線照射面内におけ
る走査線と電子線照射点の取り方を示す。
FIG. 1 is a sketch showing the relationship between a sample and a material used for orientation measurement according to the present invention. (A) shows the relationship between the metal material and the sample and the electron beam irradiation surface, and (b) shows how to set the scanning line and the electron beam irradiation point in the electron beam irradiation surface.

【図2】本発明で用いる微小領域結晶方位解析装置の構
成を示す概念図である。
FIG. 2 is a conceptual diagram showing a configuration of a micro-domain crystal orientation analyzer used in the present invention.

【図3】本発明で用いるデータ解析用コンピュータの構
成を示す概念図である。
FIG. 3 is a conceptual diagram showing a configuration of a data analysis computer used in the present invention.

【符号の説明】 1:試料 2:電子線照射面 3:走査線 4:電子線照射点 10:微小領域結晶方位解析装置 11:電子線 12:反射電子回折円錐 30:データ解析用コンピュータ 31:制御装置 32:層別ファイル結晶方位ファイル 33:ODF関数解析装置 34:特定方位ODF強度算出装置 35:表示部 36:金属材料[Description of Signs] 1: Sample 2: Electron beam irradiation surface 3: Scanning line 4: Electron beam irradiation point 10: Micro-domain crystal orientation analyzer 11: Electron beam 12: Reflection electron diffraction cone 30: Computer for data analysis 31: Control device 32: Layer-by-layer file Crystal orientation file 33: ODF function analyzer 34: Specific orientation ODF intensity calculator 35: Display unit 36: Metal material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属材料の断面を、集合組織の測定深さ
に亘って素材表面と平行な複数の層に区分し、 前記区分された各層を電子線を照射しながら走査し、反
射電子線が回折することによって形成される回折パター
ンを走査線上に存在する結晶粒について逐次解析して一
連の結晶方位データを各層毎に得、 前記一連の結晶方位データを前記走査を行った層に対応
させて蓄積して層別結晶方位ファイルを作成し、 前記層別結晶方位ファイルに蓄積された一連の結晶方位
解析データを前記層別又は複数の層に亘って解析してO
DF関数を特定し、 前記ODF関数から特定方位のODF強度を前記層別又
は複数の層に亘って算出することを特徴とする金属材料
の集合組織の測定方法。
1. A section of a metal material is divided into a plurality of layers parallel to the surface of the material over a measurement depth of a texture, and each of the divided layers is scanned while being irradiated with an electron beam, and a reflected electron beam is scanned. A series of crystal orientation data is obtained for each layer by sequentially analyzing the diffraction pattern formed by diffracting the crystal grains present on the scanning line, and the series of crystal orientation data is made to correspond to the layer subjected to the scanning. To generate a crystal orientation file for each layer, and analyze a series of crystal orientation analysis data accumulated in the crystal orientation file for each layer and analyze the data for each layer or for a plurality of layers.
A method for measuring a texture of a metal material, comprising: identifying a DF function; and calculating an ODF intensity in a specific direction from the ODF function for each of the layers or over a plurality of layers.
【請求項2】 結晶方位測定にEBSPを用い、電子線
照射走査範囲が測定層に存在する結晶の平均結晶粒径の
100倍以上であり、かつ照射ピッチが走査線上で1μ
m以上、平均結晶粒径以下である請求項1記載の金属材
料の集合組織の測定方法。
2. An EBSP is used for measuring a crystal orientation, an electron beam irradiation scanning range is 100 times or more of an average crystal grain size of a crystal present in a measurement layer, and an irradiation pitch is 1 μm on a scanning line.
The method for measuring a texture of a metal material according to claim 1, wherein the metal material has an average crystal grain size of at least m.
【請求項3】 金属材料の断面に対して電子線を照射し
ながら走査するXY移動ステージを具備したEBSPを
用いた微小領域結晶方位解析装置と、 走査によって得た一連の結晶方位データを走査線位置に
対応して蓄積する複数個の層別結晶方位ファイルと、 前記層別結晶方位ファイルに蓄積された結晶方位データ
を解析してODF関数を決定するODF関数解析装置
と、 前記ODF関数に基づき特定方位のODF強度を算出す
る特定方位ODF強度の算出装置と、 前記特定方位ODF強度を走査線位置に対応させて特定
ODF強度−走査線位置関係図として表示する表示部か
らなる金属材料の集合組織測定装置。
3. A micro-area crystal orientation analysis apparatus using an EBSP having an XY movement stage that scans a cross section of a metal material while irradiating an electron beam, and scans a series of crystal orientation data obtained by scanning. A plurality of layer-by-layer crystal orientation files stored corresponding to the position; an ODF function analyzer that analyzes the crystal orientation data stored in the layer-by-layer crystal orientation file to determine an ODF function; A collection device of a specific azimuth ODF intensity calculating device for calculating the ODF intensity of a specific azimuth, and a display unit for displaying the specific azimuth ODF intensity as a specific ODF intensity-scanning line positional relationship diagram in correspondence with a scanning line position. Tissue measuring device.
JP9117499A 1997-04-21 1997-04-21 Method and device for measuring assembly organization of metal material Pending JPH10300692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9117499A JPH10300692A (en) 1997-04-21 1997-04-21 Method and device for measuring assembly organization of metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9117499A JPH10300692A (en) 1997-04-21 1997-04-21 Method and device for measuring assembly organization of metal material

Publications (1)

Publication Number Publication Date
JPH10300692A true JPH10300692A (en) 1998-11-13

Family

ID=14713260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9117499A Pending JPH10300692A (en) 1997-04-21 1997-04-21 Method and device for measuring assembly organization of metal material

Country Status (1)

Country Link
JP (1) JPH10300692A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064626A (en) * 2011-09-16 2013-04-11 Chubu Electric Power Co Inc Method for estimating destruction cause of metallic material and destruction cause estimation system
JP2014059230A (en) * 2012-09-18 2014-04-03 Hitachi High-Tech Science Corp Crystal analyzer, composite charged particle beam device and crystal analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064626A (en) * 2011-09-16 2013-04-11 Chubu Electric Power Co Inc Method for estimating destruction cause of metallic material and destruction cause estimation system
JP2014059230A (en) * 2012-09-18 2014-04-03 Hitachi High-Tech Science Corp Crystal analyzer, composite charged particle beam device and crystal analysis method
US9470642B2 (en) 2012-09-18 2016-10-18 Hitachi High-Tech Science Corporation Crystal analysis apparatus, composite charged particle beam device, and crystal analysis method

Similar Documents

Publication Publication Date Title
Dingley et al. Electron backscatter diffraction and orientation imaging microscopy
DE102006032431B4 (en) Method and device for detecting mechanical defects in a rod made of semiconductor material
US8754935B2 (en) Microstructure inspection method, microstructure inspection apparatus, and microstructure inspection program
US11408837B2 (en) Analysis method for fine structure, and apparatus and program thereof
JP2013083574A (en) Evaluation system of plastic strain and evaluation method thereof
US4709383A (en) Method for evaluating residual fatigue life of mechanical parts
Mark et al. Comparison of grain to grain orientation and stiffness mapping by spatially resolved acoustic spectroscopy and EBSD
Yazici et al. Defect structure analysis of polycrystalline materials by computer-controlled double-crystal diffractometer with position-sensitive detector
JP5533045B2 (en) Fine pattern measuring method and fine pattern measuring apparatus
JPH10300692A (en) Method and device for measuring assembly organization of metal material
Panetta et al. Use of electron backscatter diffraction in understanding texture and the mechanisms of backscattered noise generation in titanium alloys
Liu et al. Quantifying surface deformation around micrometer-scale indents by digital image correlation
EP3828534B1 (en) X-ray fluorescence imaging for determining layer thicknesses
JP2906924B2 (en) Wafer surface roughness measurement method
Robertson et al. The determination of the size and shape of buried InAs/InP quantum dots by transmission electron microscopy
Lear Improving the assessment of in situ timber members with the use of nondestructive and semi-destructive testing techniques
RU2818994C1 (en) Method for complex assessment of material inhomogeneity
JPS649575B2 (en)
Weissmann Characterization of lattice defects and concomitant strain distribution
RU2730929C1 (en) Method of estimating heterogeneity of structural materials and individual inhomogeneous areas by content of chemical elements
Coelho et al. Through-thickness texture profiling by energy dispersive synchrotron diffraction
JPH0627056A (en) Method for alalyzing composition and structure of substance
JPH09178675A (en) Measuring method for aggregate texture in depth direction
JPH10206355A (en) Method for evaluating degree of fatigue damage of metal
JPH06249803A (en) X-ray device and evaluating analyzing method using this device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050803

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20121107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20121107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5