JPH10300551A - Acoustic surface planimeter - Google Patents

Acoustic surface planimeter

Info

Publication number
JPH10300551A
JPH10300551A JP12623497A JP12623497A JPH10300551A JP H10300551 A JPH10300551 A JP H10300551A JP 12623497 A JP12623497 A JP 12623497A JP 12623497 A JP12623497 A JP 12623497A JP H10300551 A JPH10300551 A JP H10300551A
Authority
JP
Japan
Prior art keywords
container
surface area
measured
volume
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12623497A
Other languages
Japanese (ja)
Other versions
JP3790873B2 (en
Inventor
Yasushi Ishii
泰 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12623497A priority Critical patent/JP3790873B2/en
Publication of JPH10300551A publication Critical patent/JPH10300551A/en
Application granted granted Critical
Publication of JP3790873B2 publication Critical patent/JP3790873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an acoustic surface planimeter by which the surface area of an object can be measured quickly and simply in the air by a method wherein the phase difference between outputs of a plurality of microphones is measured and the surface area of the object is computed on the basis of the phase difference when the object is put into a measuring container. SOLUTION: A conductor 18 and a conductor 19 are connected to a loudspeaker 6 via a terminal 8 and a terminal 9. A sine-wave driving signal at an angular frequency is supplied from a signal generator 16 through the conductors. An alternating volume change is given differentially to a measuring container 2 and a reference container 1 according to the surface or the rear of the diaphragm 7 of the loudspeaker 6. As a result, pressure changes, i.e., sound pressures, are generated at the inside of the measuring container 2 and the reference container 1. A microphone 11 detects the sound pressure at the inside of the reference container 1, its output is amplified by an amplifier 13 so as to become a sound-presure signal e1 , and the signal is fetched by a signal processing device 15. A microphone 12 detects the sound pressure at the inside of the measuring container 2, its output reaches an amplifier 14 through a terminal 10 so as to be amplified here, and it becomes a sound-presure signal e2 so as to be fetched by the signal processing device 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、任意の形状の物体の表
面積または任意の形状の容器の内部表面積を音響的手段
によって測定する装置にかかわる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the surface area of an object of any shape or the internal surface area of a container of any shape by acoustic means.

【0002】[0002]

【従来の技術】任意の形状の物体の表面積を測定する方
法として、従来、いわゆるガス吸着法が用いられてい
る。これは、測定容器の中に物体を入れて真空に引き、
つぎに、物体を加熱してその表面に吸着されていたガス
を放出させ、そのときの測定容器内の圧力上昇から放出
されたガスの量を求めて表面積を知るという方法であ
る。
2. Description of the Related Art As a method for measuring the surface area of an object having an arbitrary shape, a so-called gas adsorption method has conventionally been used. This is done by putting an object in a measuring container and evacuating it.
Next, a method is used in which the object is heated to release the gas adsorbed on its surface, and the surface area is determined by obtaining the amount of the released gas from the pressure increase in the measuring container at that time.

【0003】[0003]

【発明が解決しようとする課題】上記のガス吸着法は、
測定に手間と時間がかかるだけでなく、測定容器の中を
一度真空にしたり被測定物体を熱したりするので、たと
えば人間のような生体に対して適用できないという問題
点もある。
The above-mentioned gas adsorption method is
In addition to the trouble and time required for the measurement, there is also a problem that it cannot be applied to a living body such as a human, for example, because the inside of the measurement container is once evacuated or the object to be measured is heated.

【0004】[0004]

【課題を解決するための手段】本発明は、測定容器の中
に被測定物体を入れて容器内部を音響的に駆動すると、
その物体の表面に接する熱的境界層の気体が物体と熱の
授受を行なうことにより音響エネルギの損失を生じ、そ
の結果、容器の口から内部をみた音響インピーダンスの
実数部が物体の表面積に比例して変化することに着目
し、この実数部変化を容器内部の音圧の位相変化として
検出して物体の表面積を求めるものである。
According to the present invention, when an object to be measured is placed in a measuring container and the inside of the container is acoustically driven,
The gas in the thermal boundary layer in contact with the surface of the object transfers heat to and from the object, causing a loss of acoustic energy. As a result, the real part of the acoustic impedance as seen from the mouth of the container is proportional to the surface area of the object. The change in the real part is detected as the phase change of the sound pressure inside the container, and the surface area of the object is obtained.

【0005】すなわち、本発明の表面積計の一形態は、
基準容器、測定容器、これら二つの容器に交番的体積変
化を差動的に与えるスピーカ、これら二つの容器のそれ
ぞれの内部の圧力変化を検出する二つのマイクロホン、
これらマイクロホンの出力をとり込んで処理する信号処
理装置等からなり、信号処理装置において上記二つのマ
イクロホンの出力の間の位相差を測定し、測定容器に物
体を入れたときの位相差により物体の表面積を算出す
る。
That is, one form of the surface area meter of the present invention is as follows.
A reference container, a measurement container, a speaker that differentially applies an alternating volume change to these two containers, two microphones that detect a pressure change inside each of these two containers,
The signal processing device measures the phase difference between the outputs of the two microphones.The signal processing device measures the phase difference between the outputs of the two microphones. Calculate the surface area.

【0006】[0006]

【発明の効果】上記のような本発明の表面積計では、測
定容器の中に物体を入れて数秒以内でその表面積が求め
られる。また、測定容器内を真空にしたり物体を加熱し
たりする必要がないから、生体に適用することもでき
る。さらに、使用する主要部品はスピーカやマイクロホ
ン等の音響部品であるから、製造コストが安く、また装
置の大きさも従来品と比べて小型になる。以下、実施例
により本発明の動作原理などを説明する。
According to the surface area meter of the present invention as described above, the surface area can be obtained within a few seconds after an object is placed in the measuring container. Further, since there is no need to evacuate the inside of the measurement container or heat the object, the method can be applied to a living body. Further, since the main components used are acoustic components such as speakers and microphones, the manufacturing cost is low and the size of the device is smaller than that of the conventional device. Hereinafter, the working principle of the present invention will be described with reference to examples.

【0007】[0007]

【第1実施例】図1において、2は空のときの内部体積
がV0 で内部表面積がS0 の測定容器で、その中に体積
がVで表面積がSの被測定物体3が入れられている。2
と3の間の空間の体積をV2 とし、その空間の内部表面
積をS2 とすると、それらはつぎのように表わされる。
First Embodiment In FIG. 1, reference numeral 2 denotes a measuring container having an empty internal volume V 0 and an internal surface area S 0 in which an object 3 having a volume V and a surface area S is placed. ing. 2
Assuming that the volume of the space between and 3 is V 2 and the internal surface area of the space is S 2 , they are expressed as follows.

【数1】 (Equation 1)

【数2】 (Equation 2)

【0008】4は蓋であって、その上に内部体積V1
基準容器1がつけられている。蓋4の上面の容器1と2
の間の隔壁を成す部分には連通管5がつけられていて、
容器1と2の内部を連通している。またこの隔壁の部分
には音源のスピーカ6もとりつけられている。7はスピ
ーカの振動板である。スピーカ6には端子8および9を
通して導線18および19がつながっており、これらの
導線を通して信号発生器16より角周波数ωの正弦波駆
動信号が供給され、振動板7の表裏によって測定容器2
と基準容器1に交番的体積変化を差動的に与える。その
結果、測定容器2および基準容器1の内部に圧力変化、
すなわち音圧、を生ずる。11は基準容器1の内部の音
圧を検出するマイクロホンで、その出力は増幅器13で
増幅されて音圧信号e1 となり信号処理装置15にとり
こまれる。12は測定容器2内部の音圧を検出するマイ
クロホンで、その出力は端子10を通って増幅器14に
至りここで増幅されて音圧信号e2 となり信号処理装置
15にとり込まれる。
[0008] 4 is a lid, and on the reference container of the internal volume V 1 is attached to that. Containers 1 and 2 on top of lid 4
A communication pipe 5 is attached to a part forming a partition wall between
The insides of the containers 1 and 2 are communicated. A speaker 6 as a sound source is also attached to the partition. Reference numeral 7 denotes a speaker diaphragm. Conductors 18 and 19 are connected to the speaker 6 through terminals 8 and 9, and a sine wave drive signal having an angular frequency ω is supplied from the signal generator 16 through these conductors.
And the reference container 1 is given an alternating volume change differentially. As a result, the pressure changes inside the measurement container 2 and the reference container 1,
That is, a sound pressure is generated. Reference numeral 11 denotes a microphone for detecting a sound pressure inside the reference container 1, and its output is amplified by an amplifier 13 to become a sound pressure signal e 1 , which is taken into a signal processing device 15. 12 is a microphone for detecting the measurement container 2 inside the sound pressure, the output of which written taken sound pressure signal e 2 next signal processing device 15 is amplified here reaches the amplifier 14 through the terminal 10.

【0009】図2は信号処理装置15の構成の一例を示
すものである。音圧信号e1 とe2 はそれぞれアナログ
ディジタル変換器151および152によってディジタ
ル量に変換され、ディジタル計算機150にとり込まれ
る。155は周波数逓倍器で、信号発生器16から導線
17を通して供給される同期信号を周波数逓倍してサン
プリングパルスとし、このサンプリングパルスに同期し
てアナログディジタル変換が行なわれる。しかし、信号
処理装置15の内部にクロックパルス発生器を設け、ア
ナログディジタル変換は、信号発生器16とは独立に、
この内部クロックパルスに同期して行なうようにしても
よい。この場合には、周波数逓倍器155および導線1
7は不要となる。なお、アナログディジタル変換の開始
は、ディジタル計算機150から導線153および15
4によって送られるスタートパルスによって制御され
る。
FIG. 2 shows an example of the configuration of the signal processing device 15. The sound pressure signals e 1 and e 2 are converted into digital quantities by analog / digital converters 151 and 152, respectively, and are taken into the digital computer 150. A frequency multiplier 155 multiplies the frequency of a synchronizing signal supplied from the signal generator 16 through the conductor 17 into a sampling pulse, and performs analog-to-digital conversion in synchronization with the sampling pulse. However, a clock pulse generator is provided inside the signal processing device 15, and the analog-to-digital conversion is performed independently of the signal generator 16.
It may be performed in synchronization with this internal clock pulse. In this case, the frequency multiplier 155 and the conductor 1
7 becomes unnecessary. The start of the analog-to-digital conversion starts from the digital computer 150 via the leads 153 and 15.
4 is controlled by the start pulse sent.

【0010】ディジタル計算機150は音圧信号e1
2 のフーリエ変換を行ない、e2 のe1 に対する位相
差θを測定し、また、物体の体積の測定も必要な場合に
は、信号e1 とe2 のそれぞれの振幅E1 とE2 も測定
する。すなわち、ディジタル計算機150では、時間を
tで表わすとして、音圧信号e1(t)とe2(t)の波形をt
=t0 からt=t0 +Tまでの間とり込んで、それらの
とり込んだ波形と sinωt、 cosωtとの積のtに関す
る積分を行なってフーリエ変換をするが、e1(t)sinω
tの積分値をE1S、e1(t) cosωtの積分値をE1C、e
2(t) sinωtの積分値をE2S、e2(t) cosωtの積分値
をE2Cとすると、これらの値からe2(t)のe1(t)に対す
る位相差θ、e1(t)の振幅E1 、e2(t)の振幅E2 はそ
れぞれ下記の式により求められる。
The digital computer 150 performs a Fourier transform of the sound pressure signals e 1 and e 2 , measures the phase difference θ of e 2 with respect to e 1 , and outputs the signal e if the measurement of the volume of the object is required. 1 and respective amplitudes E 1 and E 2 of e 2 is also measured. That is, in the digital computer 150, assuming that time is represented by t, the waveforms of the sound pressure signals e 1 (t) and e 2 (t) are represented by t
= T 0 to t = t 0 + T, and the Fourier transform is performed by integrating the product of the captured waveform with sinωt and cosωt with respect to t, but e 1 (t) sinω
The integral of t is E 1S , the integral of e 1 (t) cosωt is E 1C , e
2 (t) sin .omega.t of the integral value E 2S, When E 2C an integral value of e 2 (t) cosωt, the phase difference with respect to e 1 (t) of e 2 (t) from these values θ, e 1 ( The amplitude E 1 of t) and the amplitude E 2 of e 2 (t) are obtained by the following equations, respectively.

【数3】 (Equation 3)

【数4】 (Equation 4)

【数5】 (Equation 5)

【0011】上記の式において、G1 、G2 はアナログ
ディジタル変換器のゲインや積分時間T等を含む定数で
ある。なお、位相差と振幅の測定には、上記のフーリエ
変換による方法に限らず、他の既知の種々の方法が適用
できる。
In the above equation, G 1 and G 2 are constants including the gain of the analog-to-digital converter and the integration time T. The measurement of the phase difference and the amplitude is not limited to the above-described method using the Fourier transform, and various other known methods can be applied.

【0012】連通管5は基準容器1と測定容器2の内部
の静圧を平衡させるとともに、両者の中の気体の成分を
均一化する働きをするが、作動気体が空気の場合には、
湿度などの成分は両者の容器の間でほとんど違いがな
い。したがって連通管5に替えて静圧を平衡させるため
だけの毛細管を用いることもできる。また、特に容器の
シールを厳重に行なわないかぎり、容器1と2の内部の
静圧は、組み立てられた装置の部品の間のすき間を通じ
て外部の大気圧と等しくなっているのが普通であるか
ら、連通管や毛細管は必須なものではない。
The communication pipe 5 functions to balance the static pressures inside the reference vessel 1 and the measurement vessel 2 and to equalize the components of the gas in the two vessels, but when the working gas is air,
Components such as humidity have little difference between the two containers. Therefore, instead of the communication tube 5, a capillary tube only for balancing the static pressure can be used. Also, unless the container is particularly tightly sealed, the static pressure inside the containers 1 and 2 is usually equal to the outside atmospheric pressure through the gap between the assembled device components. However, communication tubes and capillaries are not essential.

【0013】スピーカ6から測定容器2の内部空間をみ
たときの音響インピーダンスをZ2 とすると、測定容器
の大きさが音の波長にくらべて十分小さい場合、Z2
近似的につぎのように表わされる。
Assuming that the acoustic impedance when the internal space of the measuring container 2 is viewed from the speaker 6 is Z 2 , when the size of the measuring container is sufficiently smaller than the wavelength of sound, Z 2 is approximately as follows. Is represented.

【数6】 (Equation 6)

【数7】 (Equation 7)

【数8】 (Equation 8)

【0014】これらの式において、jは単位虚数、γは
気体の比熱比(空気の場合は約1.4)、P0 は容器内
の気体の静圧、κは気体の熱伝導度、ρは気体の密度、
p は気体の定圧比熱である。δt は熱境界層の厚さを
意味するが、標準状態の空気の場合、f=ω/2π=2
5Hzでδt は約0.5mmである。
In these equations, j is the unit imaginary number, γ is the specific heat ratio of the gas (about 1.4 in the case of air), P 0 is the static pressure of the gas in the vessel, κ is the thermal conductivity of the gas, ρ Is the density of the gas,
c p is the specific heat at constant pressure of the gas. [delta] t denotes the thickness of the thermal boundary layer, but if the standard state of air, f = ω / 2π = 2
At 5 Hz, δ t is about 0.5 mm.

【0015】式(6)の音響インピーダンスZ2 の偏角
をαradとすると、それはつぎのようになる。
If the argument of the acoustic impedance Z 2 in the equation (6) is αrad, it is as follows.

【数9】 (Equation 9)

【0016】εは1にくらべて非常に小さいから、上式
は近似的につぎのようになる。
Since ε is very small compared to 1, the above equation is approximately obtained as follows.

【数10】 (Equation 10)

【0017】音響インピーダンスの偏角αの変化は測定
容器2内部の音圧の位相変化として現われるが、式
(7)に示したように、εは表面積S2 に比例して変化
するから、容器2に中に被測定物体3を入れたことでS
2 が変わると偏角αが変化し、それに応じて容器2内部
の音圧の位相が変化する。したがって、この音圧の位相
変化により被測定物体3の表面積Sを知ることができ
る。これが本発明の表面積計の基本原理である。
The change in the argument α of the acoustic impedance appears as a change in the phase of the sound pressure inside the measuring container 2, but as shown in the equation (7), ε changes in proportion to the surface area S 2. 2 puts the measured object 3 in S
When 2 changes, the argument α changes, and the phase of the sound pressure inside the container 2 changes accordingly. Therefore, the surface area S of the measured object 3 can be known from the phase change of the sound pressure. This is the basic principle of the surface area meter of the present invention.

【0018】前述したように、この実施例装置において
測定されるのは、測定容器2の中に体積がVで表面積が
Sの物体3を入れたときの信号e2 の信号e1 に対する
位相差θであるが、容器2を空にしたときのθをθ0
すると、式(1)、(2)、(7)、(10)より次式
が導き出される。
As described above, what is measured in this embodiment is that the phase difference between the signal e 2 and the signal e 1 when the object 3 having the volume V and the surface area S is placed in the measuring container 2 is measured. Assuming that θ when the container 2 is emptied is θ 0 , the following expression is derived from Expressions (1), (2), (7), and (10).

【数11】 [Equation 11]

【数12】 (Equation 12)

【0019】式(11)は表面積の測定式で、図3はそ
のグラフであるが、測定容器2の内部寸法の測定によっ
てその空容積V0 が求められており、また、容器2が空
のときの位相差θ0 が予め測定されていれば、体積と表
面積が既知の2個の標準物体を用いた較正で、式(1
1)の係数を定めることができる。すなわち、体積VA
で表面積SA の第1の標準物体を容器2の中に入れてそ
のときの位相差θA を測定して図3のグラフのA点を定
め、つぎに、体積VB で表面積SB の第2の標準物体を
容器2の中に入れてそのときの位相差θB を測定してグ
ラフのB点を定めれば、A、Bの2点を結ぶ直線が係数
が定められた測定式を表わす。この式はディジタル計算
機150の中で生成され記憶される。被測定物体3の体
積Vが既知でその表面積Sが未知の場合、物体3を測定
容器2の中に入れてそのときの位相差θを測定し、その
値と体積Vの値を上記の記憶されている測定式に当ては
めればS/Vがわかり、したがって表面積Sの値が求め
られる。
Equation (11) is an equation for measuring the surface area, and FIG. 3 is a graph of the equation. The empty volume V 0 is obtained by measuring the internal dimensions of the measuring container 2, and the container 2 is empty. If the phase difference θ 0 at this time is measured in advance, the equation (1) is obtained by calibration using two standard objects whose volumes and surface areas are known.
The coefficient of 1) can be determined. That is, the volume V A
In defining a point A in the graph of FIG. 3 the first standard object surface area S A by measuring the phase difference theta A at that time placed in a container 2, then the surface area S B by volume V B If the second standard object is put in the container 2 and the phase difference θ B at that time is measured to determine the point B on the graph, a straight line connecting the two points A and B has a measurement formula in which the coefficient is determined. Represents This formula is generated and stored in the digital computer 150. If the volume V of the measured object 3 is known and its surface area S is unknown, the object 3 is placed in the measuring container 2 and the phase difference θ at that time is measured, and the value and the value of the volume V are stored in the above-described memory. The S / V can be determined by applying the measurement formula, and thus the value of the surface area S can be obtained.

【0020】以上の説明では、測定容器2の内部体積V
0 や被測定物体3の体積Vは、寸法測定やアルキメデス
の原理による水中重量法など、他の方法により測定され
予めわかっているものとしたが、本発明の表面積計に
は、任意の形状の物体の体積を音響的手段により測定す
る体積計としての機能を併せもたせることができ、この
機能を使って求められた物体の体積の値を表示するとと
もに、その値を物体の表面積の測定に利用することがで
きる。以下に、この体積測定の機能を説明する。
In the above description, the internal volume V of the measuring container 2
Although 0 and the volume V of the measured object 3 are measured and known in advance by other methods such as dimensional measurement and the underwater gravimetric method based on Archimedes' principle, the surface area meter of the present invention has an arbitrary shape. It can also have a function as a volume meter that measures the volume of an object by acoustic means, displays the value of the volume of the object obtained using this function, and uses that value to measure the surface area of the object can do. Hereinafter, the function of the volume measurement will be described.

【0021】信号発生器16からの信号によってスピー
カ6が駆動され、ある瞬間において振動板7が押し出さ
れて測定容器2の内部空間の体積V2 がΔVS なる微小
体積だけ圧縮されると、基準容器1の内部体積V1 はΔ
S だけ膨張する。また連通管5を通して測定容器2の
中にΔVP なる微小体積の気体が流入すると、基準容器
1からはΔVP なる体積の気体が連通管5を通して流出
する。このとき基準容器1および測定容器2の内部に生
ずる圧力変化をそれぞれ−ΔP1 、ΔP2 とし、また
When the speaker 6 is driven by the signal from the signal generator 16 and the diaphragm 7 is pushed out at a certain moment and the volume V 2 of the internal space of the measuring container 2 is compressed by a minute volume ΔV S , The internal volume V 1 of the container 1 is Δ
Inflate by V S. Also, if [Delta] V P becomes very small volume of gas into the measurement vessel 2 through the communicating pipe 5 flows, [Delta] V P becomes the volume of gas flowing through the communicating pipe 5 from the reference container 1. At this time, the pressure changes occurring inside the reference container 1 and the measurement container 2 are -ΔP 1 and ΔP 2 , respectively.

【数13】 (Equation 13)

【0022】とおくと、気体の断熱変化の関係式よりつ
ぎのようになる。
The following is obtained from the relational expression of adiabatic change of gas.

【数14】 [Equation 14]

【数15】 (Equation 15)

【0023】上記2つの式より次式の関係がえられる。From the above two equations, the following equation is obtained.

【数16】 (Equation 16)

【0024】式(1)と式(16)より被測定物体の体
積Vはつぎのように表わされる。
From the equations (1) and (16), the volume V of the measured object is expressed as follows.

【数17】 [Equation 17]

【0025】上式において、V0 とV1 は一定値である
から、物体の体積Vは圧力変化の大きさの比ΔP1 /Δ
2 から求められることになる。
In the above equation, since V 0 and V 1 are constant values, the volume V of the object is represented by the ratio ΔP 1 / Δ
It will be obtained from the P 2.

【0026】ディジタル計算機150においては、上式
におけるΔP1 /ΔP2 に対応する量としてフーリエ変
換によって測定された音圧信号の振幅比E1 /E2 を用
い、つぎの体積測定式によって物体の体積Vを算出す
る。
In the digital computer 150, the amplitude ratio E 1 / E 2 of the sound pressure signal measured by the Fourier transform is used as a quantity corresponding to ΔP 1 / ΔP 2 in the above equation, and the volume of the object is calculated by the following volume measurement equation. Calculate the volume V.

【数18】 (Equation 18)

【0027】図4は上式のグラフであるが、この式の係
数V0 とV1 は体積既知の標準物体を用いた較正により
定めることができる。まず、測定容器2を空にしてV=
0の状態とし、そのときの振幅比E1 /E2 の値R0
よりE1 /E2 軸上のR0 点を定め、つぎに体積VC
標準物体を容器2の中に入れてそのときの振幅比の値R
C によりC点を定めれば、R0 、Cの2点を結ぶ直線が
係数が定められた測定式を表わし、この直線が縦座標軸
をよぎる点がV0 の値を表わす。被測定物体3の体積V
と表面積Sがともに未知の場合、被測定物体3を測定容
器2の中に入れ、そのときの信号e1 、e2 の振幅の比
1 /E2 から上記の体積測定式によってまずVを求
め、つぎにe1 とe2 の位相差θを測定し、その値と求
められた体積Vの値を用いて式(11)の表面積測定式
により表面積Sを算出し、その値を表示する。
FIG. 4 is a graph of the above equation. The coefficients V 0 and V 1 in this equation can be determined by calibration using a standard object whose volume is known. First, the measurement container 2 is emptied and V =
And 0 states, determine the R 0 points on E 1 / E 2-axis by the value R 0 of the amplitude ratio E 1 / E 2 at that time, and then placed a standard object of volume V C in the container 2 The value R of the amplitude ratio at that time
Be determined point C by C, represents R 0, measurement equation linear coefficient connecting the two points C has been determined, that the straight line crosses the ordinate represents the value of V 0. Volume V of measured object 3
When both the surface area S and the surface area S are unknown, the object to be measured 3 is put into the measuring container 2 and V is first determined from the ratio E 1 / E 2 of the amplitudes of the signals e 1 and e 2 at the time by the above volume measurement equation. Then, the phase difference θ between e 1 and e 2 is measured, the surface area S is calculated by the surface area measurement formula of the equation (11) using the value and the obtained volume V value, and the value is displayed. .

【0028】以上に説明した体積測定の方法は、スピー
カ6から測定容器2の内部をみたときの音響インピーダ
ンスの絶対値|Z2 |を測ることと等価である。式
(6)により明らかなように、|Z2 |は表面積S2
影響を少し受け、その結果、測定容器2の中の被測定物
体3の体積Vは、その表面積Sに比例して、(γ−1)
δtS/2だけ真の体積より小さく測定される。したが
って、前述した方法で求められた物体表面積の値を用い
てこの誤差を補正してより正確な体積測定値を得て、こ
の補正された体積測定値を用いてもう一段正確な表面積
の測定値を得るようにすることもできる。
The method of measuring the volume described above is equivalent to measuring the absolute value | Z 2 | of the acoustic impedance when the inside of the measuring container 2 is viewed from the speaker 6. As is clear from equation (6), | Z 2 | is slightly affected by the surface area S 2 , so that the volume V of the measured object 3 in the measurement container 2 is proportional to the surface area S, (Γ-1)
It is measured smaller than the true volume by δ t S / 2. Therefore, the error is corrected using the value of the object surface area obtained by the method described above to obtain a more accurate volume measurement value, and the more accurate surface measurement value is obtained using the corrected volume measurement value. Can be obtained.

【0029】[0029]

【第2実施例】図5は本発明を容器の内部表面積測定に
適用した例である。基準容器1とそれにつけられたスピ
ーカ6、マイクロホン11、12、連通管5、信号発生
器16および信号処理装置15は図1の場合と同じであ
る。図5の装置では、基準容器1の下に内部体積V0
アダプタ22が固定されてつけられている。そして、基
準容器1は、内部体積Vの被測定容器23の上にアダプ
タ22を下にして載せることにより23と結合される。
ここで、アダプタ22の内部空間と被測定容器23の内
部空間は断面積SH の測定孔21によって通じ、内部体
積V0 +Vの音響的に閉じた一つの空間を構成する。
Second Embodiment FIG. 5 shows an example in which the present invention is applied to the measurement of the internal surface area of a container. The reference container 1 and the speakers 6, the microphones 11, 12, the communication tube 5, the signal generator 16, and the signal processing device 15 attached thereto are the same as those in FIG. In the apparatus of FIG. 5, an adapter 22 having an internal volume V 0 is fixedly attached below the reference container 1. Then, the reference container 1 is coupled to the measured container 23 having the internal volume V by placing the adapter 22 down on the container 23.
Here, the internal space and the internal space of the container to be measured 23 of the adapter 22 through the measurement hole 21 of the cross-sectional area S H, constituting the acoustically closed one space inside the volume V 0 + V.

【0030】以上に説明した状況は、図1において測定
容器2の中の物体3が−Vなる負の体積を有することと
等価である。したがって、図5の装置の表面積測定式
は、式(11)においてVの替わりに−Vを代入するこ
とにより得られる。すなわち、被測定容器23の内部表
面積Sは下記の式により測定される。
The situation described above is equivalent to the situation in FIG. 1 where the object 3 in the measuring container 2 has a negative volume of -V. Therefore, the surface area measurement formula of the apparatus of FIG. 5 is obtained by substituting -V for V in formula (11). That is, the internal surface area S of the container 23 to be measured is measured by the following equation.

【数19】 [Equation 19]

【数20】 (Equation 20)

【0031】上記において、S0 は、被測定容器23を
とって測定孔21を平板で閉じたときのアダプタ22の
内部表面積で、θ0 はこのときの信号e2 の信号e1
対する位相差である。SX は上記の平板をとって被測定
容器23を結合したときの内部表面積の増加分で、23
の内部表面積Sは、式(20)に示すように、このSX
に、別途測定することにより求められた測定孔21の断
面積SH を加えたものになる。また、式(11)の場合
と同様に、アダプタ22の内部体積V0 が知れており、
θ0 が予め測定されていれば、被測定容器23の替わり
に内部体積と内部表面積が既知の2個の標準容器を順次
に結合して較正を行なうことにより、式(19)が定め
られる。そして、内部体積Vがわかっている被測定容器
23を結合してそのときの位相差θを測定し、その値と
Vの値を上記の定められた測定式に当てはめてSX を算
出し、それから式(20)により被測定容器23の内部
表面積Sを求める。
In the above, S 0 is the internal surface area of the adapter 22 when the container 23 to be measured is taken and the measurement hole 21 is closed with a flat plate, and θ 0 is the phase difference between the signal e 2 and the signal e 1 at this time. It is. S X is the increment of the internal surface area when bound to the container to be measured 23 by taking the above flat plate 23
The internal surface area S of this X
To become plus the cross-sectional area S H of the measurement hole 21 obtained by separately measured. Further, similarly to the case of the equation (11), the internal volume V 0 of the adapter 22 is known,
If θ 0 is measured in advance, Equation (19) is determined by sequentially connecting two standard containers having known internal volumes and internal surface areas in place of the container 23 to be measured and performing calibration. Then, the measured container 23 whose internal volume V is known is connected, the phase difference θ at that time is measured, and the value and the value of V are applied to the above-described measurement formula to calculate S X , Then, the internal surface area S of the container 23 to be measured is obtained by the equation (20).

【0032】図1の装置の場合と同様に、図5の装置に
よってアダプタ22の内部体積V0 や被測定容器23の
内部体積Vを求めることもできる。このときの体積測定
式は、式(18)においてVの替わりに−Vを代入して
得られる次式である。
As in the case of the apparatus of FIG. 1, the internal volume V 0 of the adapter 22 and the internal volume V of the container 23 to be measured can be obtained by the apparatus of FIG. The volume measurement equation at this time is the following equation obtained by substituting -V for V in equation (18).

【数21】 (Equation 21)

【0033】式(18)の場合と同様に、内部体積既知
の標準容器を用いた較正により上記の測定式は定められ
る。そして、被測定容器23を結合したときの信号e1
とe2の振幅の比E1 /E2 をこの定められた体積測定
式に当てはめることにより、23の内部体積Vが測定さ
れ表示され、また、その値は23の内部表面積Sの算出
に用いられる。
As in the case of equation (18), the above measurement equation is determined by calibration using a standard container having a known internal volume. Then, a signal e 1 when the measured container 23 is connected.
By the fitting ratio E 1 / E 2 of the amplitude of e 2 in this-determined volumetric, displays the measured internal volume V of 23, also, the value used to calculate the internal surface area S of 23 Can be

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の表面積計である。FIG. 1 is a surface area meter according to an embodiment of the present invention.

【図2】図1における信号処理装置の構成の一例であ
る。
FIG. 2 is an example of a configuration of a signal processing device in FIG. 1;

【図3】表面積測定式のグラフである。FIG. 3 is a graph of a surface area measurement formula.

【図4】体積測定式のグラフである。FIG. 4 is a volume measurement type graph.

【図5】容器の内部表面積測定に対する本発明の適用例
である。
FIG. 5 is an application example of the present invention for measuring the internal surface area of a container.

【符号の説明】[Explanation of symbols]

1 内部体積V1 の基準容器 2 空のときの内部体積がV0 で内部表面積がS0 の測
定容器 3 体積がVで表面積がSの被測定物体 4 蓋 5 連通管 6 スピーカ 7 スピーカの振動板 8、9、10 端子 11、12 マイクロホン 13、14 増幅器 15 信号処理装置 16 信号発生器 17、18、19 導線 21 断面積がSH の測定孔 22 内部体積がV0 で内部表面積がS0 のアダプタ 23 内部体積がVで内部表面積がSの被測定容器
1 Reference container with internal volume V 1 2 Measurement container with empty internal volume V 0 and internal surface area S 0 3 Object to be measured with volume V and surface area S 4 Lid 5 Communication tube 6 Speaker 7 Speaker vibration plate 8,9,10 terminals 11 and 12 microphones 13, 14 amplifier 15 signals measurement hole 22 inside the volume of the processing unit 16 the signal generator 17, 18, 19 lead 21 sectional area S H is the internal surface area V 0 S 0 Adapter 23 Measurement container with internal volume V and internal surface area S

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基準容器と、測定容器と、上記二つの容
器に交番的体積変化を差動的に与える手段と、上記二つ
の容器のそれぞれの内部の圧力変化を検出する手段と、
上記検出された二つの圧力変化の信号の間の位相差を測
定する手段を有し、上記測定容器に被測定物体を入れた
ときの上記位相差によって上記被測定物体の表面積を求
めることを特徴とする表面積計。
1. A reference container, a measurement container, means for differentially applying an alternating volume change to the two containers, and means for detecting a pressure change inside each of the two containers,
Means for measuring a phase difference between the two detected pressure change signals, wherein the surface area of the object to be measured is determined by the phase difference when the object to be measured is placed in the measurement container. And a surface area meter.
【請求項2】 被測定容器に結合される基準容器と、上
記二つの容器に交番的体積変化を差動的に与える手段
と、上記二つの容器のそれぞれの内部の圧力変化を検出
する手段と、上記検出された二つの圧力変化の信号の間
の位相差を測定する手段を有し、上記基準容器を上記被
測定容器に結合したときの上記位相差によって上記被測
定容器の内部表面積を求めることを特徴とする表面積
計。
2. A reference container coupled to the container to be measured, means for differentially applying an alternating volume change to the two containers, and means for detecting a pressure change inside each of the two containers. Means for measuring a phase difference between the two detected pressure change signals, and determining an internal surface area of the measured container by the phase difference when the reference container is coupled to the measured container. A surface area meter characterized in that:
JP12623497A 1997-05-01 1997-05-01 Acoustic surface area meter Expired - Fee Related JP3790873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12623497A JP3790873B2 (en) 1997-05-01 1997-05-01 Acoustic surface area meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12623497A JP3790873B2 (en) 1997-05-01 1997-05-01 Acoustic surface area meter

Publications (2)

Publication Number Publication Date
JPH10300551A true JPH10300551A (en) 1998-11-13
JP3790873B2 JP3790873B2 (en) 2006-06-28

Family

ID=14930116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12623497A Expired - Fee Related JP3790873B2 (en) 1997-05-01 1997-05-01 Acoustic surface area meter

Country Status (1)

Country Link
JP (1) JP3790873B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096419A1 (en) 2008-02-29 2009-09-02 Kumamoto University Acoustic Capacity, Volume, and Surface Area Measurement Method
CN110231006A (en) * 2019-06-10 2019-09-13 苏州博昇科技有限公司 Air Coupling ultrasound interferometry

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096419A1 (en) 2008-02-29 2009-09-02 Kumamoto University Acoustic Capacity, Volume, and Surface Area Measurement Method
JP2009204547A (en) * 2008-02-29 2009-09-10 Kumamoto Univ Acoustic capacity, volume, and surface area measurement method
US8104336B2 (en) 2008-02-29 2012-01-31 Kukamoto University Acoustic capacity, volume, and surface area measurement method
CN110231006A (en) * 2019-06-10 2019-09-13 苏州博昇科技有限公司 Air Coupling ultrasound interferometry
WO2020248516A1 (en) * 2019-06-10 2020-12-17 苏州博昇科技有限公司 Air-coupled ultrasonic interferometry method
US11892541B2 (en) 2019-06-10 2024-02-06 Suzhou Phaserise Technology Co., Ltd. Air-coupled ultrasonic interferometry method

Also Published As

Publication number Publication date
JP3790873B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
US5824892A (en) Acoustic device for measuring volume difference
JP2002513924A (en) Fluid temperature measuring method and device
JPH11509695A (en) Sound intensity calibration device
CN105025427B (en) Microphone test device and method for calibrating microphone
US7017401B2 (en) Measuring device for volume of engine combustion chamber
JP3790873B2 (en) Acoustic surface area meter
CN107436190B (en) A kind of nonreciprocal compensation method of electroacoustic reciprocity device
JP4379759B2 (en) Acoustic volume meter
JPS6273125A (en) Sound calibrating apparatus
JP3338941B2 (en) Acoustic leak tester
US7249487B2 (en) Device for calibrating a pressure detector
JP2000171282A (en) Acoustic volume meter for measuring volume difference
JPH05223616A (en) Gas type volumeter
JP2006064682A (en) Sound apparatus for measuring volume of engine combustion chamber
JP2000171281A (en) Acoustic volumeter
JPH07311071A (en) Gas type volumeter
US11503412B2 (en) Acoustic sensor and electrical circuits therefor
JPH07294307A (en) Volumenometer
JP2000258325A (en) Density-judging apparatus by acoustic volumeter
CN103234493B (en) A kind of nonlinear factor auto-correlation acoustic volume measuring method and system
JPH11211606A (en) Acoustic leak measuring unit
JP3525502B2 (en) Gas volume meter
JP4210708B1 (en) Measuring method using acoustic volume meter or acoustic volume meter
JPH07311069A (en) Volumenometer
JPH0875528A (en) Gas type volume meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150414

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees